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Abstract

In this paper, fixed point properties for a class of more generalized nonexpansive mappings called (L)-type mappings are
studied in geodesic spaces. Existence of fixed point theorem, demiclosed principle, common fixed point theorem of single-valued
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1. Introduction

Let D be a nonempty subset of a metric space (X,d). A mapping T : D→ D is said to be

1. nonexpansive if d(Tx, Ty) 6 d(x,y) for all x,y ∈ D;
2. quasi-nonexpansive if d(Tx,p) 6 d(x,p) for all x ∈ D and p ∈ F(T), where F(T) = {x ∈ D : Tx = x}

denotes the set of fixed points of T .

We can find in the literature research about more general classes of mappings than the nonexpan-
sive ones and quasi-nonexpansive ones. For instance, in 2008, Suzuki [28] defined a class of generalized
nonexpansive mappings, which he called (C)-type mappings, whose set-valued version was defined and
studied in [1, 2, 26, 30]. In 2011, Garcı́a-Falset et al. [14] introduced two classes of single-valued gener-
alized nonexpansive mappings called (Cλ)-type mappings and (Eµ)-type mappings, respectively, which
both enlarged the family of (C)-type mappings. Again these new classes were generalized to the set-
valued case in [3, 9, 12, 17].

Definition 1.1. Let D be a nonempty subset of a metric space (X,d). A mapping T : D→ D is said to
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1. satisfy condition (C), (or be a (C)-type mapping) if

1
2
d(x, Tx) 6 d(x,y) implies d(Tx, Ty) 6 d(x,y), (1.1)

for all x,y ∈ D;
2. satisfy condition (Cλ), (or be a (Cλ)-type mapping) if

λd(x, Tx) 6 d(x,y) implies d(Tx, Ty) 6 d(x,y), (1.2)

for all x,y ∈ D and λ ∈ (0, 1);
3. satisfy condition (Eµ), (or be a (Eµ)-type mapping) if

d(x, Ty) 6 µd(x, Tx) + d(x,y), (1.3)

for all x,y ∈ D and µ > 1.

In 2011 [23], fixed point results for a class of single-valued generalized nonexpansive mappings called
(L)-type mappings were proved by Llorens-Fuster and Moreno-Gálvez. This class properly contains
Suzuki’s (C)-type mappings as (1.1) and several of its generalizations such as (Cλ)-type mappings as
(1.2) and (Eµ)-type mappings as (1.3) mentioned before. The set-valued case for (L)-type mappings were
discussed in [13] and more results in [24]. Their results closely depend upon geometric characteristics of
the Banach space under consideration. In this paper, we shall prove the fixed point property for (L)-type
mappings in a metric space without notion of a “topology” and “weak topology”.

The aim of this paper is to prove fixed point property for (L)-type mappings in a special kind of
metric spaces, namely CAT(0) spaces, which will be defined in the next section. Firstly, we prove the
existence theorem of fixed point and demiclosed principle for (L)-type mappings in complete CAT(0)
spaces. Furthermore, two common fixed point theorems are also obtained. Finally, we prove that a
sequence defined by a three-step iteration ∆-converges (even on some condition strongly converges) to a
fixed point of these kind of mappings. Our results extend and improve some results in [23] and [13].

2. Preliminaries

Let (X,d) be a metric space and x,y ∈ X with d(x,y) = l. A geodesic path joining x to y is an isometric
map c from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y. The image of c is called a
geodesic (or metric) segment joining x and y denoted by [x,y] whenever it is unique. The space (X,d)
is said to be a (uniquely) geodesic space if every two points of X are joined by (exactly) one geodesic
segment. A geodesic triangle ∆(x1, x2, x3) in a geodesic space X consists of three points x1, x2, x3 of X
and three geodesic segments joining each pair of vertices. A comparison triangle of a geodesic triangle
∆(x1, x2, x3) is the triangle ∆̄(x1, x2, x3) := ∆(x̄1, x̄2, x̄3) in the Euclidean space E2 such that

d(xi, xj) = dE2(x̄i, x̄j), ∀i, j = 1, 2, 3.

A geodesic space is a CAT(0) space, if for each geodesic triangle ∆(x1, x2, x3) in X and its comparison
triangle ∆̄ := ∆(x̄1, x̄2, x̄3) in E2, the CAT(0) inequality

d(x,y) 6 dE2(x̄, ȳ),

holds for all x,y ∈ ∆ and x̄, ȳ ∈ ∆̄.
A thorough discussions of these spaces are given in [4]. The following lemma plays an important role

in our paper.

Lemma 2.1 ([11]). Let (X,d) be a CAT(0) space.
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1. For each x,y ∈ X and α ∈ [0, 1], there exists a unique point z ∈ [x,y] such that

d(z, x) = αd(x,y), d(z,y) = (1 −α)d(x,y).

Denote z = (1 −α)x⊕αy in the above equations conveniently.
2. For each x,y, z ∈ X and α ∈ [0, 1], we have

d((1 −α)x⊕αy, z) 6 (1 −α)d(x, z) +αd(y, z).

3. For all t ∈ [0, 1] and x, y, z ∈ X,

d2((1 − t)x⊕ ty, z
)
6 (1 − t)d2(x, z) + t d2(y, z) − t(1 − t)d2(x,y). (2.1)

The inequality (2.1) is also called (CN) inequality. A geodesic space X is a CAT(0) space if and only if
(CN) inequality holds.

CAT(0) spaces have a remarkably nice geometric structure. One can see almost immediately from
Lemma 2.1 that in such spaces angles exist in a strong sense, the distance function is convex, one has both
uniform convexity and orthogonal projection onto convex subsets, etc. Also, because of their generality,
CAT(0) spaces arise in a wide variety of contexts. Some examples of CAT(0) spaces are pre-Hilbert spaces
(see [4]), R-trees (see [18]), Euclidean buildings (see [6]), the complex Hilbert ball with a hyperbolic metric
(see [16]), Hadamard manifolds, and many others.

The following lemma is a consequence of [25, Lemma 2.5].

Lemma 2.2. Let {xn} and {yn} be bounded sequences in a CAT(0) space X and r ∈ [0, 1). Suppose that xn+1 =
ryn ⊕ (1 − r)xn and d(yn+1,yn) 6 d(xn+1, xn) for all n ∈N. Then limn→∞ d(xn,yn) = 0.

Firstly the definition of (L)-type mappings in the single-valued case will be given in a metric space as
follows.

Definition 2.3. Let D be a nonempty bounded closed convex subset of a CAT(0) space X. A mapping
T : D → D is said to satisfy condition (L) (or it is an (L)-type mapping) on D provided that it fulfills the
following two conditions.

1. If a set K ⊂ D is nonempty, closed, convex, and T -invariant, (i.e., T(K) ⊂ K), then there exists an
a.f.p.s. for T in K (i.e., d(xn, Txn)→ 0 for a sequence {xn} in K).

2. For any a.f.p.s. {xn} of T in D and each x ∈ D,

lim sup
n→∞ d(xn, Tx) 6 lim sup

n→∞ d(xn, x).

Proposition 2.4. Let D be a nonempty bounded closed convex subset of a CAT(0) space X and T : D → D be a
mapping satisfying condition (L) with a nonempty fixed point set, then T is a quasi-nonexpansive mapping.

Proof. Let p ∈ F(T). Taking xn = p for every positive integer n, it is obvious that {xn} is an a.f.p.s. for T .
From condition (L), we have for each x ∈ D,

d(p, Tx) = lim sup
n→∞ d(xn, Tx) 6 lim sup

n→∞ d(xn, x) = d(p, x).

In other words, T is a quasi-nonexpansive mapping.

Next, in order to define the set-valued case for (L)-type mappings, we introduce some elementary
concepts. Let D be a nonempty subset of a metric space X. We denote by B(D) the collection of all
nonempty bounded closed subsets of D and C(D) the collection of all nonempty compact subsets of D.
Suppose H is the Hausdorff metric with respect to d, that is,

H (U,V) := max

{
sup
u∈U

dist (u,V) , sup
v∈V

dist (v,U)

}
, U,V ∈ B (X) ,
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where dist (u,V) = infv∈Vd (u, v) is the distance from the point u to the set V .
Let T : X → 2X be a set-valued mapping. If an element x ∈ X satisfies x ∈ Tx, then x is called

a fixed point of T . The set of fixed points of T is denoted by F(T). If a sequence {xn} in D satisfies
dist(xn, Txn)→ 0 as n→∞, then {xn} is called an a.f.p.s. for T .

Definition 2.5. Let D be a nonempty bounded closed convex subset of a CAT(0) space X. A set-valued
mapping T : D → B(D) is said to satisfy condition (L), (or it is an (L)-type set-valued mapping), on D
provided that it fulfills the following two conditions.

1. If a set K ⊂ D is nonempty, closed, convex, and T -invariant, then there exists an a.f.p.s. for T in K.
2. For any a.f.p.s. {xn} of T in D and each x ∈ D,

lim sup
n→∞ dist(xn, Tx) 6 lim sup

n→∞ d(xn, x).

Along with Definition 2.3 and the above two lemmas, we can obtain the following propositions which
show the inclusion relations between (L)-type mappings and other generalized nonexpansive mappings
in CAT(0) spaces.

Proposition 2.6. Let D be a nonempty, bounded, and convex subset of a CAT(0) space X and T : D → D be a
mapping satisfying condition (C), then T satisfies condition (L).

Proof. Recall that if T : D→ D is a mapping satisfying condition (C), then there exists an a.f.p.s {xn} for T
in D by [25, Lemma 3.6]. Moreover, in view of [25, Lemma 3.5], we have that, for every x,y ∈ D,

d(x, Ty) 6 3d(Tx, x) + d(x,y).

Hence, for the a.f.p.s. {xn} and each x ∈ D,

lim sup
n→∞ d(xn, Tx) 6 lim sup

n→∞ (3d(xn, Txn) + d(xn, x)) = lim sup
n→∞ d(xn, x),

which means such mappings satisfy condition (L).

Proposition 2.7. Let D be a nonempty, bounded, and convex subset of a CAT(0) space X and T : D → D be a
mapping satisfying condition (Eµ) for some µ > 0, then T satisfies condition (L) provided that it satisfies assumption
1 of Definition 2.3.

Proof. Replace 3 with µ in the proof of Proposition 2.6. Therefore, the desired conclusion is obtained.

Proposition 2.8. Let D be a nonempty, bounded and convex subset of a CAT(0) space X and T : D → D be a
continuous mapping satisfying condition (Cλ) for some λ ∈ (0, 1), then T satisfies condition (L).

Proof. Define a sequence {xn} in D by taking x1 ∈ D and

xn+1 = rTxn ⊕ (1 − r)xn,

for n > 1 and r ∈ [λ, 1). It follows from Lemma 2.1 (1) that

λd(xn, Txn) 6 rd(xn, Txn) = d(xn, xn+1) for all n ∈N.

By condition (Cλ), we have

d(Txn+1, Txn) 6 d(xn, xn+1) for all n ∈N.

Hence, limn→∞ d(xn, Txn) = 0 by Lemma 2.2.
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Case 1. If for some x ∈ D, there is a subsequence {xnj} of {xn} converging to x. Since {xnj} is an a.f.p.s.,
then it is obvious that the sequence {Txnj} has the same limit as {xnj}, and therefore by the continuity of
T , x = Tx. Thus, for {xn} in D and x ∈ D, we have

lim sup
n→∞ d(xn, Tx) 6 lim sup

n→∞ d(xn, x)

holds, i.e., T satisfies condition (L).

Case 2. Suppose that for every x ∈ D, the sequence {xn} does not have any subsequence converging to
x. Noticing that {xn} is an a.f.p.s., for any ε > 0, there exists some n0 ∈N such that d(xn, Txn) < ε for all
n > n0. Since {xn} does not converge to x, we can put ε := 1

2 lim infn d(xn, x) > 0. Therefore,

λd(xn, Txn) 6 d(xn, Txn) < ε < d(xn, x).

By condition (Cλ), we have
d(Txn, Tx) 6 d(xn, x),

which implies

lim sup
n→∞ d(xn, Tx) 6 lim sup

n→∞ (d(xn, Txn) + d(Txn, Tx)) 6 lim sup
n→∞ d(xn, x).

So T satisfies condition (L).

We now give the notion of ∆-convergence and collect some of its basic properties. Let {xn} be a
bounded sequence in a CAT(0) space X. For z ∈ X, we set

r(z, {xn}) = lim sup
n→∞ d(z, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(z, {xn}) : z ∈ X}.

The asymptotic radius rD ({xn}) of {xn} with respect to D ⊂ X is given by

rD ({xn}) = inf {r (z, {xn}) : z ∈ D} .

The asymptotic center A({xn}) of {xn} is the set

A({xn}) = {z ∈ X : r(z, {xn}) = r({xn})}.

And the asymptotic center AD({xn}) of {xn} with respect to D ⊂ X is the set

AD({xn}) = {z ∈ D : r(z, {xn}) = r({xn})}.

It follows from [10, Proposition 7]) that A({xn}) consists of exactly one point in a CAT(0) space. In
1976, Lim [21] introduced the concept of ∆-convergence in a general metric space. In 2008, Kirk and
Panyanak [19] brought in ∆-convergence to CAT(0) spaces and proved that there is an analogy between
∆-convergence and weak convergence.

Definition 2.9 ([19]). A sequence {xn} in a CAT(0) space X is said to ∆-converge to x ∈ X if x is the unique
asymptotic center of {un} for every subsequence {un} of {xn}. In this case, we write ∆− limn→∞ xn = x

and call x the ∆-limit of {xn}.

Lemma 2.10 ([19]). If D is a closed convex subset of a complete CAT(0) space and if {xn} is a bounded sequence in
D, then the asymptotic centerasymptotic center of {xn} is in D.

Lemma 2.11 ([19]). Every bounded sequence in a complete CAT(0) space always has a ∆-convergent subsequence.

Lemma 2.12 ([11]). If {xn} is a bounded sequence in a complete CAT(0) space with A({xn}) = {p}, {un} is a
subsequence of {xn} with A({un}) = {u}, and the sequence {d(xn,u)} is convergent, then p = u.
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3. Fixed point theorems

Theorem 3.1. Let D be a nonempty bounded closed convex subset of a complete CAT(0) space X. Suppose T : D→
D is a mapping satisfying condition (L). Then T has a fixed point in D.

Proof. Since T satisfies condition (L), there exists an a.f.p.s. for T in D, say {xn}. By Proposition 7 of [10]
we let A({xn}) = {z}. It follows from Lemma 2.10 that z ∈ D. By condition (L), we get

lim sup
n→∞ d (xn, Tz) 6 lim sup

n→∞ d (xn, z) ,

which means
r(Tz, {xn}) 6 r(z, {xn}).

By the uniqueness of asymptotic centers, we have z = Tz.

Theorem 3.1 extends [23, Theorem 4.2]. By using this theorem along with Proposition 2.4 and [8,
Theorem 1.3], we can obtain the following corollary.

Corollary 3.2. Let D be a nonempty bounded closed convex subset of a complete CAT(0) space X. Suppose
T : D→ D is a mapping satisfying condition (L). Then F(T) is nonempty closed, convex and hence contractible.

In 1968, Browder proved demiclosedness principle [5] for nonexpansive mappings which has been
one of the fundamental and celebrated results in fixed point theory. Demiclosedness principle states
that if D is a nonempty closed convex subset of a uniformly convex Banach space X, and T : D → X

is a nonexpansive mapping, then I − T is demiclosed at 0, that is, for any sequence {xn} in D, if {xn}

weakly converges to x and (I− T)xn strongly converges to 0, then x = Tx (here I is the identity operator
of X into itself). The principle is also valid in a space satisfying Opial’s condition. It has been known
that the demiclosedness principle plays a key role in studying the asymptotic and ergodic behavior of
nonexpansive mapping, see for example [15, 22].

Remark 3.3. Let D be a closed convex subset of a CAT(0) space X and {xn} be a bounded sequence in D.
We need the following notation:

{xn} ⇀ ω if and only if Φ(ω) = inf
x∈C

Φ(x),

where Φ(x) := lim supn→∞ d(xn, x).

Theorem 3.4 in the following takes use of the notion defined above to prove demiclosedness principle
for (L)-type mappings which extend [23, Theorem 4.6] to CAT(0) spaces.

Theorem 3.4 (Demiclosed principle). Suppose D is a bounded closed convex subset of a complete CAT(0) space
X and T : D → D is a mapping satisfying condition (L). If {xn} ⊂ D is an a.f.p.s. for T such that {xn} ⇀ p, then
Tp = p.

Proof. By the definition, {xn} ⇀ p if and only if AD({xn}) = {p}. We have A({xn}) = {p} from Lemma 2.10
and Lemma 2.11. Since {xn} is an a.f.p.s. for T , we have

Φ (x) := lim sup
n→∞ d (xn, x) = lim sup

n→∞ d (Txn, x) . (3.1)

Taking x = Tp in (3.1), we have

Φ (Tp) = lim sup
n→∞ d (xn, Tp) 6 lim sup

n→∞ d (xn,p) = Φ (p) .

Furthermore, for any n > 1, it follows from (CN) inequality with t = 1
2 that

d2
(
xn,

p⊕ Tp
2

)
6

1
2
d2 (xn,p) +

1
2
d2 (xn, Tp) −

1
4
d2 (p, Tp) .
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Letting n→∞ and taking superior limit on the both sides of the above inequality, we get

Φ

(
p⊕ Tp

2

)
6

1
2
Φ (p) +

1
2
Φ (Tp) −

1
4
d2 (p, Tp) .

Since A({xn}) = {p}, we have

Φ (p) 6 Φ

(
p⊕ Tp

2

)
6

1
2
Φ (p) +

1
2
Φ (Tp) −

1
4
d2 (p, Tp) ,

which implies that
d(p, Tp) = 0,

i.e., p = Tp.

Lemma 3.5 (cf. [20, 27]). Let X be a complete CAT(0) space, then the intersection of any decreasing sequence of
nonempty bounded closed convex subsets of X is nonempty.

Together with Theorem 3.1 and Lemma 3.5, we have a common fixed point theorem of a countable
family of mappings which satisfy condition (L).

Theorem 3.6. LetD be a nonempty bounded closed and convex subset of a complete CAT(0) space X. Let {Ti}∞i=1 be
a countable family of commuting mappings on D satisfying condition (L). Then {Ti}

∞
i=1 has a common fixed point.

Proof. Let Cn :=
⋂n
i=1 F(Ti) for each n. From Corollary 3.2, C1 = F(T1) is nonempty bounded closed and

convex subset of X. Now we assume that Ck−1 is nonempty bounded closed and convex for k ∈ N. We
are going to show that Ck is also nonempty bounded closed and convex. Let p ∈ Ck−1 and i ∈ N with
1 6 i < k. Since Tk and Ti commute, we have

Tkp = Tk ◦ Tip = Ti ◦ Tkp.

Thus Tkp is a fixed point of Ti, which implies that Tkp ∈ Ck−1. Hence we get Tk(Ck−1) ⊂ Ck−1. By
Theorem 3.1, Tk has a fixed point in Ck−1, that is,

Ck = Ck−1

⋂
F(Tk) 6= ∅.

Also, it is closed and convex by Corollary 3.2. By induction, Cn is nonempty bounded closed and convex
for all n ∈N. Since Cn ⊂ Cn−1 for all n ∈N, by Lemma 3.5 we have∞⋂

i=1

F(Ti) =

∞⋂
n=1

Cn 6= ∅.

This completes the proof.

Theorem 3.7. Let t : D → D and T : D → C(D) be a single-valued mapping and a set-valued mapping,
respectively. If both t and T satisfy the condition (L) and in the meantime, they have common a.f.p.s., then they have
a common fixed point, that is, there exists a point z ∈ D such that z = tz ∈ Tz.
Proof. By Theorem 3.1 and Corollary 3.2, we know that the mapping t has a fixed point set F(t) which is
a nonempty closed convex subset of X. Let p ∈ F(t). Since Tp is a bounded closed convex subset of X,
we can obtain that t has a fixed point in Tp for p ∈ F(t). From the assumption, let {un} be the common
a.f.p.s. and A({un}) = {z}. By the proof of Theorem 3.1, we have that z ∈ F(t). Since Tz is a compact set,
there exists vn ∈ Tz such that

d(un, vn) = dist(un, Tz).

Again from the compactness of Tz, we may assume that vn → z′ ∈ Tz. Since T satisfies condition (L),

lim sup
n→∞ d

(
un, z′

)
6 lim sup

n→∞ d (un, vn) + lim sup
n→∞ d

(
vn, z′

)
= lim sup

n→∞ dist (un, Tz) 6 lim sup
n→∞ dist (un, z) .

This implies that
r(z′, {un}) 6 r(z, {un}).

By the uniqueness of asymptotic centers, we have z = z′ ∈ Tz. Hence z = tz ∈ Tz.
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4. Convergence theorems

In this section, we shall prove ∆ and strong convergence theorems for (L)-type mappings of a three-
step iteration scheme introduced by Thakur et al. in [29] which not only converges faster than the known
iterations but also is stable. Give x1 ∈ D, the sequence {xn} is generated by

x1 ∈ D,
xn+1 = Tyn,
yn = T((1 −αn)xn ⊕αnzn),
zn = (1 −βn)xn ⊕βnTxn,

(4.1)

for all n > 1, where {αn} and {βn} are real sequences with 0 < a 6 αn,βn 6 b < 1.
We now establish the following useful lemma.

Lemma 4.1. Let D be a nonempty bounded closed convex subset of a complete CAT(0) space X and let T : D→ D

be a mapping satisfying condition (L). For arbitrary chosen x1 ∈ D and {xn} generated by (4.1), limn→∞ d(xn,p)
exists for all p ∈ F(T).

Proof. By Theorem 3.1, F(T) is nonempty. Given p ∈ F(T), by Lemma 2.1 (2) and Proposition 2.4 we have

d(zn,p) = d((1 −βn)xn ⊕βnTxn,p))
6 (1 −βn)d(xn,p) +βnd(Txn,p)
6 (1 −βn)d(xn,p) +βnd(xn, Tp)
6 (1 −βn)d(xn,p) +βnd(xn,p)
= d(xn,p),

(4.2)

and from (4.2),

d(yn,p) = d(T((1 −αn)xn ⊕αnzn),p)
6 d((1 −αn)xn ⊕αnzn),p)
6 (1 −αn)d(xn,p) +αnd(zn,p)
6 (1 −αn)d(xn,p) +αnd(xn,p)
= d(xn,p).

(4.3)

By (4.3) we can obtain that

d(xn+1,p) = d(Tyn,p) 6 d(yn,p) 6 d(xn,p). (4.4)

Thus, {d(xn,p)} is bounded and decreasing for all p ∈ F(T), i.e., limn→∞d (xn,p) exists.

Lemma 4.2 ([7, Lemma 3.2]). Let X be a CAT(0) space, x ∈ X be a given point, and {tn} be a sequence in [a,b]
for some a,b ∈ (0, 1). If {xn} and {yn} are sequences in X such that

lim sup
n→∞ d(xn, x) 6 r, lim sup

n→∞ d(yn, x) 6 r, and lim
n→∞d((1 − tn)xn ⊕ tnyn, x) = r,

for some r > 0. Then
lim
n→∞d(xn,yn) = 0.

Theorem 4.3. Let D be a nonempty bounded closed convex subset of a complete CAT(0) space X. Suppose T : D→
D is a mapping satisfying condition (L). For arbitrary chosen x1 ∈ D and {xn} generated by (4.1), {xn} ∆-converges
to a fixed point of T .
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Proof. First we prove that
lim
n→∞d(xn, Txn) = 0.

In fact, it follows from Lemma 4.1 that for each given p ∈ F(T), limn→∞ d(xn,p) exists, without loss of
generality, let

lim
n→∞d(xn,p) = r > 0. (4.5)

By Proposition 2.4, we have
lim sup
n→∞ d(Txn,p) 6 lim sup

n→∞ d(xn,p) = r. (4.6)

Since {αn} is a sequence with 0 < a 6 αn 6 b < 1, we can assume that limn→∞ αn = α ∈ [a,b]. By using
(4.3)-(4.5), we get

r = lim
n→∞d(xn+1,p) = lim

n→∞d(Tyn,p)

6 lim
n→∞d((1 −αn)xn ⊕αnzn),p)

6 lim
n→∞(1 −αn)d(xn,p) + lim

n→∞αnd(zn,p)

= (1 −α)r+α lim
n→∞d(zn,p),

which implies that
lim
n→∞d(zn,p) > r. (4.7)

On the other hand, it follows from (4.2) and (4.5) that

lim
n→∞d(zn,p) 6 lim

n→∞d(xn,p) = r. (4.8)

Hence, together with (4.7) and (4.8), we have

r 6 lim
n→∞d(zn,p) = lim

n→∞d((1 −βn)xn ⊕βnTxn,p) 6 r,

which implies that
lim
n→∞d((1 −βn)xn ⊕βnTxn,p) = r, (4.9)

where 0 < a 6 βn 6 b < 1. By (4.5), (4.6), (4.9), as well as Lemma 4.2, it gets that

lim
n→∞d(xn, Txn) = 0, (4.10)

i.e., {xn} is an a.f.p.s. of T in D.
Now we prove that

ωw(xn) :=
⋃

{un}⊂{xn}

A({un}) ⊂ F(T), (4.11)

and ωw(xn) consists of exactly one point.
In fact, u ∈ ωw(xn), then, there exists a subsequence {un} of {xn} such that A({un}) = {u}. By Lemma

2.10 and Lemma 2.11, there exists a subsequence {vn} of {un} such that ∆− limn→∞ vn = v ∈ D. In view
of (4.10) and Theorem 3.4, we have v ∈ F(T). Furthermore, u = v by Lemma 2.12. This implies that
ωw(xn) ⊂ F(T). Next we claim that ωw(xn) consists of exactly one point. Let {un} be a subsequence of
{xn} with A({un}) = {u} and let A({xn}) = {x}. Since u ∈ ωw(xn) ⊂ F(T), from Lemma 4.1 we know that
{d(xn,u)} is convergent. In view of Lemma 2.12, we have x = u.

Finally we prove that {xn} ∆-converges to a fixed point of T .
In fact, by Lemma 4.1 we know that {d(xn,p)} is convergent for each p ∈ F(T). By (4.10), limn→∞ d(xn,

Txn) = 0. By (4.11), ωw(xn) ⊂ F(T) and ωw(xn) consists of exactly one point. This shows that {xn} ∆-
converges to a point of F(T). This completes the proof.
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Theorem 4.4. Suppose that X, T , {xn} are as in Theorem 4.3 and D is a nonempty bounded closed convex compact
subset of X. Then {xn} strongly converges to a fixed point of T .

Proof. In view of the proof of Theorem 4.3, we have limn→∞ d(xn, Txn) = 0. Since D is compact, there
exists a subsequence {xnk} of {xn} such that {xnk} strongly converges to some z ∈ D. By condition (L), we
have

lim sup
k→∞ d(xnk , Tz) 6 lim sup

k→∞ d(xnk , z) for all k ∈N.

Thus we have {xnk} converges to Tz. This implies z = Tz, i.e., z ∈ F(T). By Lemma 4.1, we have
limn→∞ d(xn, z) exists, thus z is the strong limit of the sequence {xn} itself.
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