Fixed point theorems for \((L)\)-type mappings in complete CAT(0) spaces

Jing Zhou\(^a\)*, Yunan Cui\(^b\)

\(^a\)Department of Mathematics, Harbin Institute of Technology, Harbin 150080, P. R. China.
\(^b\)Department of Mathematics, Harbin University of Science and Technology, Harbin 150080, P. R. China.

Communicated by M. Eslamian

Abstract

In this paper, fixed point properties for a class of more generalized nonexpansive mappings called \((L)\)-type mappings are studied in geodesic spaces. Existence of fixed point theorem, demiclosed principle, common fixed point theorem of single-valued and set-valued are obtained in the third section. Moreover, in the last section, \(\Delta\)-convergence and strong convergence theorems for \((L)\)-type mappings are proved. Our results extend the fixed point results of Suzuki’s results in 2008 and Llorens-Fuster’s results in 2011. ©2017 All rights reserved.

Keywords: \((L)\)-type mappings, geodesic spaces, fixed point theorems, common fixed point theorems, three-step iteration scheme.

2010 MSC: 47H09, 47H10, 54E40.

1. Introduction

Let \(D\) be a nonempty subset of a metric space \((X, d)\). A mapping \(T : D \rightarrow D\) is said to be

1. nonexpansive if \(d(Tx, Ty) \leq d(x, y)\) for all \(x, y \in D\);
2. quasi-nonexpansive if \(d(Tx, p) \leq d(x, p)\) for all \(x \in D\) and \(p \in F(T)\), where \(F(T) = \{x \in D : Tx = x\}\) denotes the set of fixed points of \(T\).

We can find in the literature research about more general classes of mappings than the nonexpansive ones and quasi-nonexpansive ones. For instance, in 2008, Suzuki [28] defined a class of generalized nonexpansive mappings, which he called \((C)\)-type mappings, whose set-valued version was defined and studied in [1, 2, 26, 30]. In 2011, Garcia-Falset et al. [14] introduced two classes of single-valued generalized nonexpansive mappings called \((C_\lambda)\)-type mappings and \((E_\mu)\)-type mappings, respectively, which both enlarged the family of \((C)\)-type mappings. Again these new classes were generalized to the set-valued case in [3, 9, 12, 17].

Definition 1.1. Let \(D\) be a nonempty subset of a metric space \((X, d)\). A mapping \(T : D \rightarrow D\) is said to
1. satisfy condition (C), (or be a (C)-type mapping) if
 \[\frac{1}{2} d(x, Tx) \leq d(x, y) \quad \text{implies} \quad d(Tx, Ty) \leq d(x, y), \]
 for all \(x, y \in D \);
2. satisfy condition (\(C_\lambda \)), (or be a (\(C_\lambda \))-type mapping) if
 \[\lambda d(x, Tx) \leq d(x, y) \quad \text{implies} \quad d(Tx, Ty) \leq d(x, y), \]
 for all \(x, y \in D \) and \(\lambda \in (0, 1) \);
3. satisfy condition (\(E_\mu \)), (or be a (\(E_\mu \))-type mapping) if
 \[d(x, Ty) \leq \mu d(x, Tx) + d(x, y), \]
 for all \(x, y \in D \) and \(\mu \geq 1 \).

In 2011 [23], fixed point results for a class of single-valued generalized nonexpansive mappings called (L)-type mappings were proved by Llorens-Fuster and Moreno-Gálvez. This class properly contains Suzuki’s (C)-type mappings as (1.1) and several of its generalizations such as (\(C_\lambda \))-type mappings as (1.2) and (\(E_\mu \))-type mappings as (1.3) mentioned before. The set-valued case for (L)-type mappings were discussed in [13] and more results in [24]. Their results closely depend upon geometric characteristics of the Banach space under consideration. In this paper, we shall prove the fixed point property for (L)-type mappings in a metric space without notion of a “topology” and “weak topology”.

The aim of this paper is to prove fixed point property for (L)-type mappings in a special kind of metric spaces, namely CAT(0) spaces, which will be defined in the next section. Firstly, we prove the existence theorem of fixed point and demiclosed principle for (L)-type mappings in complete CAT(0) spaces. Furthermore, two common fixed point theorems are also obtained. Finally, we prove that a sequence defined by a three-step iteration \(\Delta \)-converges (even on some condition strongly converges) to a fixed point of these kind of mappings. Our results extend and improve some results in [23] and [13].

2. Preliminaries

Let \((X, d)\) be a metric space and \(x, y \in X\) with \(d(x, y) = 1\). A geodesic path joining \(x\) to \(y\) is an isometric map \(c\) from a closed interval \([0, 1] \subset \mathbb{R}\) to \(X\) such that \(c(0) = x\), \(c(1) = y\). The image of \(c\) is called a geodesic (or metric) segment joining \(x\) and \(y\) denoted by \([x, y]\) whenever it is unique. The space \((X, d)\) is said to be a (uniquely) geodesic space if every two points of \(X\) are joined by (exactly) one geodesic segment. A geodesic triangle \(\Delta(x_1, x_2, x_3)\) in a geodesic space \(X\) consists of three points \(x_1, x_2, x_3\) of \(X\) and three geodesic segments joining each pair of vertices. A comparison triangle of a geodesic triangle \(\Delta(x_1, x_2, x_3)\) is the triangle \(\hat{\Delta}(x_1, \bar{x}_2, \bar{x}_3)\) in the Euclidean space \(\mathbb{E}^2\) such that
 \[d(x_i, x_j) = d_{\mathbb{E}^2}(\bar{x}_i, \bar{x}_j), \quad \forall i, j = 1, 2, 3. \]

A geodesic space is a CAT(0) space, if for each geodesic triangle \(\Delta(x_1, x_2, x_3)\) in \(X\) and its comparison triangle \(\hat{\Delta} := \hat{\Delta}(\bar{x}_1, \bar{x}_2, \bar{x}_3)\) in \(\mathbb{E}^2\), the CAT(0) inequality
 \[d(x, y) \leq d_{\mathbb{E}^2}(\bar{x}, \bar{y}), \]
holds for all \(x, y \in \Delta\) and \(\bar{x}, \bar{y} \in \hat{\Delta}\).

A thorough discussions of these spaces are given in [4]. The following lemma plays an important role in our paper.

Lemma 2.1 ([11]). Let \((X, d)\) be a CAT(0) space.
Lemma 2.2. (see [16]), Hadamard manifolds, and many others. R-trees (see [18]), Euclidean buildings (see [6]), the complex Hilbert ball with a hyperbolic metric CAT(0) spaces arise in a wide variety of contexts. Some examples of CAT(0) spaces are pre-Hilbert spaces uniform convexity and orthogonal projection onto convex subsets, etc. Also, because of their generality, (CN) inequality holds.

The following lemma is a consequence of [25, Lemma 2.5].

Lemma 2.2. Let \(\{x_n\} \) and \(\{y_n\} \) be bounded sequences in a CAT(0) space \(X \) and \(r \in [0, 1) \). Suppose that \(x_{n+1} = r y_n \oplus (1-r)x_n \) and \(d(y_{n+1}, y_n) \leq d(x_{n+1}, x_n) \) for all \(n \in \mathbb{N} \). Then \(\lim_{n \to \infty} d(x_n, y_n) = 0 \).

Firstly the definition of \((L)\)-type mappings in the single-valued case will be given in a metric space as follows.

Definition 2.3. Let \(D \) be a nonempty bounded closed convex subset of a CAT(0) space \(X \). A mapping \(T : D \to D \) is said to satisfy condition \((L)\) (or it is an \((L)\)-type mapping) on \(D \) provided that it fulfills the following two conditions.

1. If a set \(K \subset D \) is nonempty, closed, convex, and \(T \)-invariant, (i.e., \(T(K) \subset K \)), then there exists an a.f.p.s. for \(T \) in \(K \) (i.e., \(d(x_n, T x_n) \to 0 \) for a sequence \(\{x_n\} \) in \(K \)).

2. For any a.f.p.s. \(\{x_n\} \) of \(T \) in \(D \) and each \(x \in D \),

\[
\limsup_{n \to \infty} d(x_n, T x) \leq \limsup_{n \to \infty} d(x_n, x).
\]

Proposition 2.4. Let \(D \) be a nonempty bounded closed convex subset of a CAT(0) space \(X \) and \(T : D \to D \) be a mapping satisfying condition \((L)\) with a nonempty fixed point set, then \(T \) is a quasi-nonexpansive mapping.

Proof. Let \(p \in F(T) \). Taking \(x_n = p \) for every positive integer \(n \), it is obvious that \(\{x_n\} \) is an a.f.p.s. for \(T \). From condition \((L)\), we have for each \(x \in D \),

\[
d(p, T x) = \limsup_{n \to \infty} d(x_n, T x) \leq \limsup_{n \to \infty} d(x_n, x) = d(p, x).
\]

In other words, \(T \) is a quasi-nonexpansive mapping. \(\square \)

Next, in order to define the set-valued case for \((L)\)-type mappings, we introduce some elementary concepts. Let \(D \) be a nonempty subset of a metric space \(X \). We denote by \(B(D) \) the collection of all nonempty bounded closed subsets of \(D \) and \(C(D) \) the collection of all nonempty compact subsets of \(D \). Suppose \(H \) is the Hausdorff metric with respect to \(d \), that is,

\[
H(U, V) := \max \left\{ \sup_{u \in U} \text{dist}(u, V), \sup_{v \in V} \text{dist}(v, U) \right\}, \quad U, V \in B(X),
\]
where \(\text{dist}(u, V) = \inf_{v \in V} d(u, v) \) is the distance from the point \(u \) to the set \(V \).

Let \(T: X \to 2^X \) be a set-valued mapping. If an element \(x \in X \) satisfies \(x \in Tx \), then \(x \) is called a fixed point of \(T \). The set of fixed points of \(T \) is denoted by \(F(T) \). If a sequence \(\{x_n\} \) in \(D \) satisfies \(\text{dist}(x_n, Tx_n) \to 0 \) as \(n \to \infty \), then \(\{x_n\} \) is called an a.f.p.s. for \(T \).

Definition 2.5. Let \(D \) be a nonempty bounded closed convex subset of a CAT(0) space \(X \). A set-valued mapping \(T: D \to B(D) \) is said to satisfy condition (L), (or it is an \((L)\)-type set-valued mapping), on \(D \) provided that it fulfills the following two conditions.

1. If a set \(K \subset D \) is nonempty, closed, convex, and \(T \)-invariant, then there exists an a.f.p.s. for \(T \) in \(K \).
2. For any a.f.p.s. \(\{x_n\} \) of \(T \) in \(D \) and each \(x \in D \),

\[
\limsup_{n \to \infty} \text{dist}(x_n, Tx) \leq \limsup_{n \to \infty} d(x_n, x).
\]

Along with Definition 2.3 and the above two lemmas, we can obtain the following propositions which show the inclusion relations between \((L)\)-type mappings and other generalized nonexpansive mappings in CAT(0) spaces.

Proposition 2.6. Let \(D \) be a nonempty, bounded, and convex subset of a CAT(0) space \(X \) and \(T: D \to D \) be a mapping satisfying condition (C), then \(T \) satisfies condition (L).

Proof. Recall that if \(T: D \to D \) is a mapping satisfying condition (C), then there exists an a.f.p.s \(\{x_n\} \) for \(T \) in \(D \) by [25, Lemma 3.6]. Moreover, in view of [25, Lemma 3.5], we have that, for every \(x, y \in D \),

\[
d(x, Ty) \leq 3d(Tx, x) + d(x, y).
\]

Hence, for the a.f.p.s. \(\{x_n\} \) and each \(x \in D \),

\[
\limsup_{n \to \infty} d(x_n, Tx) \leq \limsup_{n \to \infty} (3d(x_n, Tx_n) + d(x_n, x)) = \limsup_{n \to \infty} d(x_n, x),
\]

which means such mappings satisfy condition (L). \(\square \)

Proposition 2.7. Let \(D \) be a nonempty, bounded, and convex subset of a CAT(0) space \(X \) and \(T: D \to D \) be a mapping satisfying condition \((E_\mu)\) for some \(\mu \geq 0 \), then \(T \) satisfies condition (L) provided that it satisfies assumption 1 of Definition 2.3.

Proof. Replace 3 with \(\mu \) in the proof of Proposition 2.6. Therefore, the desired conclusion is obtained. \(\square \)

Proposition 2.8. Let \(D \) be a nonempty, bounded and convex subset of a CAT(0) space \(X \) and \(T: D \to D \) be a continuous mapping satisfying condition \((C_\lambda)\) for some \(\lambda \in (0, 1) \), then \(T \) satisfies condition (L).

Proof. Define a sequence \(\{x_n\} \) in \(D \) by taking \(x_1 \in D \) and

\[
x_{n+1} = rTx_n \oplus (1 - r)x_n,
\]

for \(n \geq 1 \) and \(r \in [\lambda, 1] \). It follows from Lemma 2.1 (1) that

\[
\lambda d(x_n, Tx_n) \leq r d(x_n, Tx_n) = d(x_n, x_{n+1}) \text{ for all } n \in \mathbb{N}.
\]

By condition \((C_\lambda)\), we have

\[
d(Tx_{n+1}, Tx_n) \leq d(x_n, x_{n+1}) \text{ for all } n \in \mathbb{N}.
\]

Hence, \(\lim_{n \to \infty} d(x_n, Tx_n) = 0 \) by Lemma 2.2.
Case 1. If for some \(x \in D \), there is a subsequence \(\{ x_n \} \) of \(\{ x_n \} \) converging to \(x \). Since \(\{ x_n \} \) is an a.f.p.s., then it is obvious that the sequence \(\{ T x_n \} \) has the same limit as \(\{ x_n \} \), and therefore by the continuity of \(T \), \(x = T x \). Thus, for \(\{ x_n \} \) in \(D \) and \(x \in D \), we have

\[
\limsup_{n \to \infty} d(x_n, T x) \leq \limsup_{n \to \infty} d(x_n, x)
\]

holds, i.e., \(T \) satisfies condition (L).

Case 2. Suppose that for every \(x \in D \), the sequence \(\{ x_n \} \) does not have any subsequence converging to \(x \). Noticing that \(\{ x_n \} \) is an a.f.p.s., for any \(\varepsilon > 0 \), there exists some \(n_0 \in \mathbb{N} \) such that \(d(x_n, T x_n) < \varepsilon \) for all \(n \geq n_0 \). Since \(\{ x_n \} \) does not converge to \(x \), we can put \(\varepsilon := \frac{1}{2} \liminf_n d(x_n, x) > 0 \). Therefore,

\[
\lambda d(x_n, T x_n) \leq d(x_n, T x_n) < \varepsilon < d(x_n, x).
\]

By condition \((C_{\lambda}) \), we have

\[
d(T x_n, T x) \leq d(x_n, x),
\]

which implies

\[
\limsup_{n \to \infty} d(x_n, T x) \leq \limsup_{n \to \infty} (d(x_n, T x_n) + d(T x_n, T x)) \leq \limsup_{n \to \infty} d(x_n, x).
\]

So \(T \) satisfies condition (L).

We now give the notion of \(\Delta \)-convergence and collect some of its basic properties. Let \(\{ x_n \} \) be a bounded sequence in a \(\text{CAT}(0) \) space \(X \). For \(z \in X \), we set

\[
r(z, \{ x_n \}) = \limsup_{n \to \infty} d(z, x_n).
\]

The asymptotic radius \(r(\{ x_n \}) \) of \(\{ x_n \} \) is given by

\[
r(\{ x_n \}) = \inf \{ r(z, \{ x_n \}) : z \in X \}.
\]

The asymptotic radius \(r_D(\{ x_n \}) \) of \(\{ x_n \} \) with respect to \(D \subset X \) is given by

\[
r_D(\{ x_n \}) = \inf \{ r(z, \{ x_n \}) : z \in D \}.
\]

The asymptotic center \(A(\{ x_n \}) \) of \(\{ x_n \} \) is the set

\[
A(\{ x_n \}) = \{ z \in X : r(z, \{ x_n \}) = r(\{ x_n \}) \}.
\]

And the asymptotic center \(A_D(\{ x_n \}) \) of \(\{ x_n \} \) with respect to \(D \subset X \) is the set

\[
A_D(\{ x_n \}) = \{ z \in D : r(z, \{ x_n \}) = r(\{ x_n \}) \}.
\]

It follows from [10, Proposition 7] that \(A(\{ x_n \}) \) consists of exactly one point in a \(\text{CAT}(0) \) space. In 1976, Lim [21] introduced the concept of \(\Delta \)-convergence in a general metric space. In 2008, Kirk and Panyanak [19] brought in \(\Delta \)-convergence to \(\text{CAT}(0) \) spaces and proved that there is an analogy between \(\Delta \)-convergence and weak convergence.

Definition 2.9 ([19]). A sequence \(\{ x_n \} \) in a \(\text{CAT}(0) \) space \(X \) is said to \(\Delta \)-converge to \(x \in X \) if \(x \) is the unique asymptotic center of \(\{ u_n \} \) for every subsequence \(\{ u_n \} \) of \(\{ x_n \} \). In this case, we write \(\Delta \lim_{n \to \infty} x_n = x \) and call \(x \) the \(\Delta \)-limit of \(\{ x_n \} \).

Lemma 2.10 ([19]). If \(D \) is a closed convex subset of a complete \(\text{CAT}(0) \) space and if \(\{ x_n \} \) is a bounded sequence in \(D \), then the asymptotic center asymptotic center of \(\{ x_n \} \) is in \(D \).

Lemma 2.11 ([19]). Every bounded sequence in a complete \(\text{CAT}(0) \) space always has a \(\Delta \)-convergent subsequence.

Lemma 2.12 ([11]). If \(\{ x_n \} \) is a bounded sequence in a complete \(\text{CAT}(0) \) space with \(A(\{ x_n \}) = \{ p \} \), \(\{ u_n \} \) is a subsequence of \(\{ x_n \} \) with \(A(\{ u_n \}) = \{ u \} \), and the sequence \(\{ d(x_n, u) \} \) is convergent, then \(p = u \).
3. Fixed point theorems

Theorem 3.1. Let D be a nonempty bounded closed convex subset of a complete CAT(0) space X. Suppose $T : D \to D$ is a mapping satisfying condition (L). Then T has a fixed point in D.

Proof. Since T satisfies condition (L), there exists an a.f.p.s. for T in D, say $\{x_n\}$. By Proposition 7 of [10] we let $A(\{x_n\}) = \{z\}$. It follows from Lemma 2.10 that $z \in D$. By condition (L), we get

$$
\limsup_{n \to \infty} d(x_n, Tz) \leq \limsup_{n \to \infty} d(x_n, z),
$$

which means

$$
r(Tz, \{x_n\}) \leq r(z, \{x_n\}).
$$

By the uniqueness of asymptotic centers, we have $z = Tz$. □

Theorem 3.1 extends [23, Theorem 4.2]. By using this theorem along with Proposition 2.4 and [8, Theorem 1.3], we can obtain the following corollary.

Corollary 3.2. Let D be a nonempty bounded closed convex subset of a complete CAT(0) space X. Suppose $T : D \to D$ is a mapping satisfying condition (L). Then $F(T)$ is nonempty closed, convex and hence contractible.

In 1968, Browder proved demiclosedness principle [5] for nonexpansive mappings which has been one of the fundamental and celebrated results in fixed point theory. Demiclosedness principle states that if D is a nonempty closed convex subset of a uniformly convex Banach space X, and $T : D \to X$ is a nonexpansive mapping, then $I - T$ is demiclosed at 0, that is, for any sequence $\{x_n\}$ in D, if $\{x_n\}$ weakly converges to x and $(I - T)x_n$ strongly converges to 0, then $x = Tx$ (here I is the identity operator of X into itself). The principle is also valid in a space satisfying Opial’s condition. It has been known that the demiclosedness principle plays a key role in studying the asymptotic and ergodic behavior of nonexpansive mapping, see for example [15, 22].

Remark 3.3. Let D be a closed convex subset of a CAT(0) space X and $\{x_n\}$ be a bounded sequence in D. We need the following notation:

$$
\{x_n\} \rightharpoonup \omega \quad \text{if and only if} \quad \Phi(\omega) = \inf_{x \in D} \Phi(x),
$$

where $\Phi(x) := \limsup_{n \to \infty} d(x_n, x)$.

Theorem 3.4 in the following takes use of the notion defined above to prove demiclosedness principle for (L)-type mappings which extend [23, Theorem 4.6] to CAT(0) spaces.

Theorem 3.4 (Demiclosed principle). Suppose D is a bounded closed convex subset of a complete CAT(0) space X and $T : D \to D$ is a mapping satisfying condition (L). If $\{x_n\} \subset D$ is an a.f.p.s. for T such that $\{x_n\} \rightharpoonup p$, then $Tp = p$.

Proof. By the definition, $\{x_n\} \rightharpoonup p$ if and only if $A_D(\{x_n\}) = \{p\}$. We have $A(\{x_n\}) = \{p\}$ from Lemma 2.10 and Lemma 2.11. Since $\{x_n\}$ is an a.f.p.s. for T, we have

$$
\Phi(x) := \limsup_{n \to \infty} d(x_n, x) = \limsup_{n \to \infty} d(Tx_n, x). \quad (3.1)
$$

Taking $x = Tp$ in (3.1), we have

$$
\Phi(Tp) = \limsup_{n \to \infty} d(x_n, Tp) \leq \limsup_{n \to \infty} d(x_n, p) = \Phi(p).
$$

Furthermore, for any $n \geq 1$, it follows from (CN) inequality with $t = \frac{1}{2}$ that

$$
\frac{d^2(x_n, \frac{p \oplus Tp}{2})}{\leq \frac{1}{2} d^2(x_n, p) + \frac{1}{2} d^2(x_n, Tp) - \frac{1}{4} d^2(p, Tp)}.
$$
Letting \(n \to \infty \) and taking superior limit on the both sides of the above inequality, we get
\[
\Phi \left(\frac{p + Tp}{2} \right) \leq \frac{1}{2} \Phi (p) + \frac{1}{2} \Phi (Tp) - \frac{1}{4} d^2 (p, Tp).
\]
Since \(A(\{x_n\}) = \{p\} \), we have
\[
\Phi (p) \leq \Phi \left(\frac{p + Tp}{2} \right) \leq \frac{1}{2} \Phi (p) + \frac{1}{2} \Phi (Tp) - \frac{1}{4} d^2 (p, Tp),
\]
which implies that
\[
d(p, Tp) = 0,
\]
i.e., \(p = Tp \).

Lemma 3.5 (cf. [20, 27]). Let \(X \) be a complete \(\text{CAT}(0) \) space, then the intersection of any decreasing sequence of nonempty bounded closed convex subsets of \(X \) is nonempty.

Together with Theorem 3.1 and Lemma 3.5, we have a common fixed point theorem of a countable family of mappings which satisfy condition (L).

Theorem 3.6. Let \(D \) be a nonempty bounded closed and convex subset of a complete \(\text{CAT}(0) \) space \(X \). Let \(\{T_i\}_{i=1}^\infty \) be a countable family of commuting mappings on \(D \) satisfying condition (L). Then \(\{T_i\}_{i=1}^\infty \) has a common fixed point.

Proof. Let \(C_n := \bigcap_{i=1}^n F(T_i) \) for each \(n \). From Corollary 3.2, \(C_1 = F(T_1) \) is nonempty bounded closed and convex subset of \(X \). Now we assume that \(C_{k-1} \) is nonempty bounded closed and convex for \(k \in \mathbb{N} \). We are going to show that \(C_k \) is also nonempty bounded closed and convex. Let \(p \in C_{k-1} \) and \(i \in \mathbb{N} \) with \(1 \leq i < k \). Since \(T_k \) and \(T_i \) commute, we have
\[
T_k p = T_k \circ T_i p = T_i \circ T_k p.
\]
Thus \(T_k p \) is a fixed point of \(T_i \), which implies that \(T_k p \in C_{k-1} \). Hence we get \(T_k (C_{k-1}) \subseteq C_{k-1} \). By Theorem 3.1, \(T_k \) has a fixed point in \(C_{k-1} \), that is,
\[
C_k = C_{k-1} \bigcap F(T_k) \neq \emptyset.
\]
Also, it is closed and convex by Corollary 3.2. By induction, \(C_n \) is nonempty bounded closed and convex for all \(n \in \mathbb{N} \). Since \(C_n \subseteq C_{n-1} \) for all \(n \in \mathbb{N} \), by Lemma 3.5 we have
\[
\bigcap_{i=1}^\infty F(T_i) = F_{\infty} \neq \emptyset.
\]
This completes the proof.

Theorem 3.7. Let \(t : D \to D \) and \(T : D \to C(D) \) be a single-valued mapping and a set-valued mapping, respectively. If both \(t \) and \(T \) satisfy the condition (L) and in the meantime, they have common a.f.p.s., then they have a common fixed point, that is, there exists a point \(z \in D \) such that \(z = tz \in Tz \).

Proof. By Theorem 3.1 and Corollary 3.2, we know that the mapping \(t \) has a fixed point set \(F(t) \) which is a nonempty closed convex subset of \(X \). Let \(p \in F(t) \). Since \(Tp \) is a bounded closed convex subset of \(X \), we can obtain that \(t \) has a fixed point in \(Tp \) for \(p \in F(t) \). From the assumption, let \(\{u_n\} \) be the common a.f.p.s. and \(A(\{u_n\}) = \{z\} \). By the proof of Theorem 3.1, we have that \(z \in F(t) \). Since \(Tz \) is a compact set, there exists \(v_n \in Tz \) such that
\[
d(u_n, v_n) = \text{dist}(u_n, Tz).
\]
Again from the compactness of \(Tz \), we may assume that \(v_n \to z' \in Tz \). Since \(T \) satisfies condition (L),
\[
\lim_{n \to \infty} d(u_n, z') \leq \lim_{n \to \infty} d(u_n, v_n) + \lim_{n \to \infty} d(v_n, z') = \lim_{n \to \infty} \text{dist}(u_n, Tz) \leq \lim_{n \to \infty} \text{dist}(u_n, z).
\]
This implies that
\[
r(z', \{u_n\}) \leq r(z, \{u_n\}).
\]
By the uniqueness of asymptotic centers, we have \(z = z' \in Tz \). Hence \(z = tz \in Tz \).
4. Convergence theorems

In this section, we shall prove Δ and strong convergence theorems for (L)-type mappings of a threestep iteration scheme introduced by Thakur et al. in [29] which not only converges faster than the known iterations but also is stable. Give $x_1 \in D$, the sequence $\{x_n\}$ is generated by

$$\begin{cases}
x_1 \in D, \\
x_{n+1} = Ty_n, \\
y_n = T((1-\alpha_n)x_n \oplus \alpha_n z_n), \\
z_n = (1-\beta_n)x_n \oplus \beta_n T x_n,
\end{cases} \tag{4.1}$$

for all $n \geq 1$, where $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences with $0 < \alpha \leq \alpha_n, \beta_n \leq b < 1$.

We now establish the following useful lemma.

Lemma 4.1. Let D be a nonempty bounded closed convex subset of a complete CAT(0) space X and let $T : D \to D$ be a mapping satisfying condition (L). For arbitrary chosen $x_1 \in D$ and $\{x_n\}$ generated by (4.1), $\lim_{n\to\infty} d(x_n, p)$ exists for all $p \in F(T)$.

Proof. By Theorem 3.1, $F(T)$ is nonempty. Given $p \in F(T)$, by Lemma 2.1 (2) and Proposition 2.4 we have

$$d(z_n, p) = d((1-\beta_n)x_n \oplus \beta_n T x_n, p)$$

$$\leq (1-\beta_n)d(x_n, p) + \beta_n d(T x_n, p)$$

$$\leq (1-\beta_n)d(x_n, p) + \beta_n d(x_n, T p)$$

$$\leq (1-\beta_n)d(x_n, p) + \beta_n d(x_n, p)$$

$$= d(x_n, p), \tag{4.2}$$

and from (4.2),

$$d(y_n, p) = d(T((1-\alpha_n)x_n \oplus \alpha_n z_n), p)$$

$$\leq d((1-\alpha_n)x_n \oplus \alpha_n z_n, p)$$

$$\leq (1-\alpha_n)d(x_n, p) + \alpha_n d(z_n, p)$$

$$\leq (1-\alpha_n)d(x_n, p) + \alpha_n d(x_n, p)$$

$$= d(x_n, p). \tag{4.3}$$

By (4.3) we can obtain that

$$d(x_{n+1}, p) = d(T y_n, p) \leq d(y_n, p) \leq d(x_n, p). \tag{4.4}$$

Thus, $\{d(x_n, p)\}$ is bounded and decreasing for all $p \in F(T)$, i.e., $\lim_{n\to\infty} d(x_n, p)$ exists.

Lemma 4.2 ([7, Lemma 3.2]). Let X be a CAT(0) space, $x \in X$ be a given point, and $\{t_n\}$ be a sequence in $[a, b]$ for some $a, b \in [0, 1]$. If $\{x_n\}$ and $\{y_n\}$ are sequences in X such that

$$\limsup_{n\to\infty} d(x_n, x) \leq r, \quad \limsup_{n\to\infty} d(y_n, x) \leq r,$$

and

$$\lim_{n\to\infty} d((1-t_n)x_n \oplus t_n y_n, x) = r,$$

for some $r \geq 0$. Then

$$\lim_{n\to\infty} d(x_n, y_n) = 0.$$

Theorem 4.3. Let D be a nonempty bounded closed convex subset of a complete CAT(0) space X. Suppose $T : D \to D$ is a mapping satisfying condition (L). For arbitrary chosen $x_1 \in D$ and $\{x_n\}$ generated by (4.1), $\{x_n\}$ Δ-converges to a fixed point of T.

Hence, together with (4.7) and (4.8), we have
\[\lim_{n \to \infty} d(x_n, Tx_n) = 0. \]
In fact, it follows from Lemma 4.1 that for each given \(p \in F(T) \), \(\lim_{n \to \infty} d(x_n, p) \) exists, without loss of generality, let
\[\lim_{n \to \infty} d(x_n, p) = r \geq 0. \]
(4.5)
By Proposition 2.4, we have
\[\limsup_{n \to \infty} d(Tx_n, p) \leq \limsup_{n \to \infty} d(x_n, p) = r. \]
(4.6)
Since \(\{\alpha_n\} \) is a sequence with \(0 < a \leq \alpha_n \leq b < 1 \), we can assume that \(\lim_{n \to \infty} \alpha_n = \alpha \in [a, b] \). By using (4.3)-(4.5), we get
\[r = \lim_{n \to \infty} d(x_{n+1}, p) = \lim_{n \to \infty} d(Ty_n, p) \leq \lim_{n \to \infty} d((1 - \alpha_n)x_n + \alpha_n z_n, p) \leq \lim_{n \to \infty} (1 - \alpha_n) d(x_n, p) + \lim_{n \to \infty} \alpha_n d(z_n, p) = (1 - \alpha) r + \alpha \lim_{n \to \infty} d(z_n, p), \]
which implies that
\[\lim_{n \to \infty} d(z_n, p) \geq r. \]
(4.7)
On the other hand, it follows from (4.2) and (4.5) that
\[\lim_{n \to \infty} d(z_n, p) \leq \lim_{n \to \infty} d(x_n, p) = r. \]
(4.8)
Hence, together with (4.7) and (4.8), we have
\[r \leq \lim_{n \to \infty} d(z_n, p) = \lim_{n \to \infty} d((1 - \beta_n)x_n + \beta_n Tx_n, p) \leq r, \]
which implies that
\[\lim_{n \to \infty} d((1 - \beta_n)x_n + \beta_n Tx_n, p) = r, \]
(4.9)
where \(0 < a \leq \beta_n \leq b < 1 \). By (4.5), (4.6), (4.9), as well as Lemma 4.2, it gets that
\[\lim_{n \to \infty} d(x_n, Tx_n) = 0, \]
(4.10)
i.e., \(\{x_n\} \) is an a.f.p.s. of \(T \) in \(D \).

Now we prove that
\[\omega_w(x_n) := \bigcup_{\{u_n\} \subset \{x_n\}} A([u_n]) \subset F(T), \]
(4.11)
and \(\omega_w(x_n) \) consists of exactly one point.

In fact, \(u \in \omega_w(x_n) \), then, there exists a subsequence \(\{u_n\} \) of \(\{x_n\} \) such that \(A([u_n]) = \{u\} \). By Lemma 2.10 and Lemma 2.11, there exists a subsequence \(\{v_n\} \) of \(\{u_n\} \) such that \(\Delta - \lim_{n \to \infty} v_n = v \in D \). In view of (4.10) and Theorem 3.4, we have \(v \in F(T) \). Furthermore, \(u = v \) by Lemma 2.12. This implies that \(\omega_w(x_n) \subset F(T) \). Next we claim that \(\omega_w(x_n) \) consists of exactly one point. Let \(\{u_n\} \) be a subsequence of \(\{x_n\} \) with \(A([u_n]) = \{u\} \) and let \(A([x_n]) = \{x\} \). Since \(u \in \omega_w(x_n) \subset F(T) \), from Lemma 4.1 we know that \(d(x_n, u) \) is convergent. In view of Lemma 2.12, we have \(x = u \).

Finally we prove that \(\{x_n\} \Delta \)-converges to a fixed point of \(T \).

In fact, by Lemma 4.1 we know that \(d(x_n, p) \) is convergent for each \(p \in F(T) \). By (4.10), \(\lim_{n \to \infty} d(x_n, Tx_n) = 0 \). By (4.11), \(\omega_w(x_n) \subset F(T) \) and \(\omega_w(x_n) \) consists of exactly one point. This shows that \(\{x_n\} \Delta \)-converges to a point of \(F(T) \). This completes the proof. \(\square \)
Thus we have

\[\exists z \in D. \]

This implies \(z = Tz \), i.e., \(z \in F(T) \). By Lemma 4.1, we have

\[\lim_{n \to \infty} d(x_n, z) \]

exists, thus \(\{x_n\} \) converges to \(Tz \). This implies \(z = Tz \), i.e., \(z \in F(T) \). By Lemma 4.1, we have

\[\lim_{n \to \infty} d(x_n, z) \]

exists, thus \(z \) is the strong limit of the sequence \(\{x_n\} \) itself.

\[\square \]

Acknowledgment

The authors would like to appreciate the anonymous referee for some valuable comments and useful suggestions. Besides, the paper is supported by NFS of HeiLongjiang Provience (A2015018).

References

