
ISSN: 2008-1898

Journal of Nonlinear Sciences and Applications

Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa

Fixed point theorems for (L)-type mappings in complete CAT(0) spaces

Jing Zhou^{a,*}, Yunan Cui^b

^aDepartment of Mathematics, Harbin Institute of Technology, Harbin 150080, P. R. China. ^bDepartment of Mathematics, Harbin University of Science and Technology, Harbin 150080, P. R. China.

Communicated by M. Eslamian

Abstract

In this paper, fixed point properties for a class of more generalized nonexpansive mappings called (L)-type mappings are studied in geodesic spaces. Existence of fixed point theorem, demiclosed principle, common fixed point theorem of single-valued and set-valued are obtained in the third section. Moreover, in the last section, Δ -convergence and strong convergence theorems for (L)-type mappings are proved. Our results extend the fixed point results of Suzuki's results in 2008 and Llorens-Fuster's results in 2011. ©2017 All rights reserved.

Keywords: (L)-type mappings, geodesic spaces, fixed point theorems, common fixed point theorems, three-step iteration scheme.

2010 MSC: 47H09, 47H10, 54E40.

1. Introduction

Let D be a nonempty subset of a metric space (X, d). A mapping $T : D \rightarrow D$ is said to be

- 1. nonexpansive if $d(Tx, Ty) \leq d(x, y)$ for all $x, y \in D$;
- 2. quasi-nonexpansive if $d(Tx, p) \leq d(x, p)$ for all $x \in D$ and $p \in F(T)$, where $F(T) = \{x \in D : Tx = x\}$ denotes the set of fixed points of T.

We can find in the literature research about more general classes of mappings than the nonexpansive ones and quasi-nonexpansive ones. For instance, in 2008, Suzuki [28] defined a class of generalized nonexpansive mappings, which he called (C)-type mappings, whose set-valued version was defined and studied in [1, 2, 26, 30]. In 2011, García-Falset et al. [14] introduced two classes of single-valued generalized nonexpansive mappings called (C_{λ})-type mappings and (E_{μ})-type mappings, respectively, which both enlarged the family of (C)-type mappings. Again these new classes were generalized to the setvalued case in [3, 9, 12, 17].

Definition 1.1. Let D be a nonempty subset of a metric space (X, d). A mapping $T : D \to D$ is said to

*Corresponding author

Email addresses: zhoujinggirl@126.com (Jing Zhou), cuiya@hrbust.edu.cn (Yunan Cui)

doi:10.22436/jnsa.010.03.09

1. satisfy condition (C), (or be a (C)-type mapping) if

$$\frac{1}{2}d(x,Tx) \leqslant d(x,y) \quad \text{implies} \quad d(Tx,Ty) \leqslant d(x,y), \tag{1.1}$$

for all $x, y \in D$;

2. satisfy condition (C_{λ}), (or be a (C_{λ})-type mapping) if

$$\lambda d(x, Tx) \leq d(x, y)$$
 implies $d(Tx, Ty) \leq d(x, y)$, (1.2)

for all $x, y \in D$ and $\lambda \in (0, 1)$;

3. satisfy condition (E_{μ}) , (or be a (E_{μ}) -type mapping) if

$$d(x, Ty) \leqslant \mu d(x, Tx) + d(x, y), \tag{1.3}$$

for all $x, y \in D$ and $\mu \ge 1$.

In 2011 [23], fixed point results for a class of single-valued generalized nonexpansive mappings called (L)-type mappings were proved by Llorens-Fuster and Moreno-Gálvez. This class properly contains Suzuki's (C)-type mappings as (1.1) and several of its generalizations such as (C_{λ}) -type mappings as (1.2) and (E_{μ}) -type mappings as (1.3) mentioned before. The set-valued case for (L)-type mappings were discussed in [13] and more results in [24]. Their results closely depend upon geometric characteristics of the Banach space under consideration. In this paper, we shall prove the fixed point property for (L)-type mappings in a metric space without notion of a "topology" and "weak topology".

The aim of this paper is to prove fixed point property for (L)-type mappings in a special kind of metric spaces, namely CAT(0) spaces, which will be defined in the next section. Firstly, we prove the existence theorem of fixed point and demiclosed principle for (L)-type mappings in complete CAT(0) spaces. Furthermore, two common fixed point theorems are also obtained. Finally, we prove that a sequence defined by a three-step iteration Δ -converges (even on some condition strongly converges) to a fixed point of these kind of mappings. Our results extend and improve some results in [23] and [13].

2. Preliminaries

Let (X, d) be a metric space and $x, y \in X$ with d(x, y) = l. A geodesic path joining x to y is an isometric map c from a closed interval $[0, l] \subset \mathbb{R}$ to X such that c(0) = x, c(l) = y. The image of c is called a geodesic (or metric) segment joining x and y denoted by [x, y] whenever it is unique. The space (X, d)is said to be a (uniquely) geodesic space if every two points of X are joined by (exactly) one geodesic segment. A geodesic triangle $\Delta(x_1, x_2, x_3)$ in a geodesic space X consists of three points x_1, x_2, x_3 of X and three geodesic segments joining each pair of vertices. A comparison triangle of a geodesic triangle $\Delta(x_1, x_2, x_3)$ is the triangle $\overline{\Delta}(x_1, x_2, x_3) := \Delta(\overline{x_1}, \overline{x_2}, \overline{x_3})$ in the Euclidean space E^2 such that

$$d(x_i, x_j) = d_{E^2}(\bar{x_i}, \bar{x_j}), \quad \forall i, j = 1, 2, 3.$$

A geodesic space is a CAT(0) space, if for each geodesic triangle $\Delta(x_1, x_2, x_3)$ in X and its comparison triangle $\bar{\Delta} := \Delta(\bar{x_1}, \bar{x_2}, \bar{x_3})$ in E², the CAT(0) inequality

$$\mathbf{d}(\mathbf{x},\mathbf{y}) \leqslant \mathbf{d}_{\mathsf{E}^2}(\bar{\mathbf{x}},\bar{\mathbf{y}}),$$

holds for all $x, y \in \Delta$ and $\bar{x}, \bar{y} \in \bar{\Delta}$.

A thorough discussions of these spaces are given in [4]. The following lemma plays an important role in our paper.

Lemma 2.1 ([11]). *Let* (X, d) *be a* CAT(0) *space.*

1. For each $x, y \in X$ and $\alpha \in [0, 1]$, there exists a unique point $z \in [x, y]$ such that

$$d(z, x) = \alpha d(x, y), \quad d(z, y) = (1 - \alpha) d(x, y).$$

Denote $z = (1 - \alpha)x \oplus \alpha y$ in the above equations conveniently.

2. For each x, y, $z \in X$ and $\alpha \in [0, 1]$, we have

$$d((1-\alpha)x \oplus \alpha y, z) \leq (1-\alpha)d(x, z) + \alpha d(y, z).$$

3. For all $t \in [0, 1]$ and $x, y, z \in X$,

$$d^{2}((1-t)x \oplus ty, z) \leq (1-t)d^{2}(x, z) + t d^{2}(y, z) - t(1-t)d^{2}(x, y).$$
(2.1)

The inequality (2.1) is also called (CN) inequality. A geodesic space X is a CAT(0) space if and only if (CN) inequality holds.

CAT(0) spaces have a remarkably nice geometric structure. One can see almost immediately from Lemma 2.1 that in such spaces angles exist in a strong sense, the distance function is convex, one has both uniform convexity and orthogonal projection onto convex subsets, etc. Also, because of their generality, CAT(0) spaces arise in a wide variety of contexts. Some examples of CAT(0) spaces are pre-Hilbert spaces (see [4]), R-trees (see [18]), Euclidean buildings (see [6]), the complex Hilbert ball with a hyperbolic metric (see [16]), Hadamard manifolds, and many others.

The following lemma is a consequence of [25, Lemma 2.5].

Lemma 2.2. Let $\{x_n\}$ and $\{y_n\}$ be bounded sequences in a CAT(0) space X and $r \in [0,1)$. Suppose that $x_{n+1} = ry_n \oplus (1-r)x_n$ and $d(y_{n+1}, y_n) \leq d(x_{n+1}, x_n)$ for all $n \in \mathbb{N}$. Then $\lim_{n \to \infty} d(x_n, y_n) = 0$.

Firstly the definition of (L)-type mappings in the single-valued case will be given in a metric space as follows.

Definition 2.3. Let D be a nonempty bounded closed convex subset of a CAT(0) space X. A mapping $T : D \rightarrow D$ is said to satisfy condition (L) (or it is an (L)-type mapping) on D provided that it fulfills the following two conditions.

- 1. If a set $K \subset D$ is nonempty, closed, convex, and T-invariant, (i.e., $T(K) \subset K$), then there exists an a.f.p.s. for T in K (i.e., $d(x_n, Tx_n) \rightarrow 0$ for a sequence $\{x_n\}$ in K).
- 2. For any a.f.p.s. $\{x_n\}$ of T in D and each $x \in D$,

$$\limsup_{n\to\infty} d(x_n, Tx) \leqslant \limsup_{n\to\infty} d(x_n, x).$$

Proposition 2.4. *Let* D *be a nonempty bounded closed convex subset of a* CAT(0) *space* X *and* $T : D \rightarrow D$ *be a mapping satisfying condition* (L) *with a nonempty fixed point set, then* T *is a quasi-nonexpansive mapping.*

Proof. Let $p \in F(T)$. Taking $x_n = p$ for every positive integer n, it is obvious that $\{x_n\}$ is an a.f.p.s. for T. From condition (L), we have for each $x \in D$,

$$d(p,Tx) = \limsup_{n \to \infty} d(x_n,Tx) \leq \limsup_{n \to \infty} d(x_n,x) = d(p,x).$$

In other words, T is a quasi-nonexpansive mapping.

Next, in order to define the set-valued case for (L)-type mappings, we introduce some elementary concepts. Let D be a nonempty subset of a metric space X. We denote by B(D) the collection of all nonempty bounded closed subsets of D and C(D) the collection of all nonempty compact subsets of D. Suppose H is the Hausdorff metric with respect to d, that is,

$$H(U,V) := \max \left\{ \sup_{u \in U} \operatorname{dist}(u,V), \sup_{v \in V} \operatorname{dist}(v,U) \right\}, \quad U,V \in B(X),$$

where dist $(u, V) = \inf_{v \in V} d(u, v)$ is the distance from the point u to the set V.

Let $T : X \to 2^X$ be a set-valued mapping. If an element $x \in X$ satisfies $x \in Tx$, then x is called a fixed point of T. The set of fixed points of T is denoted by F(T). If a sequence $\{x_n\}$ in D satisfies $dist(x_n, Tx_n) \to 0$ as $n \to \infty$, then $\{x_n\}$ is called an a.f.p.s. for T.

Definition 2.5. Let D be a nonempty bounded closed convex subset of a CAT(0) space X. A set-valued mapping $T : D \rightarrow B(D)$ is said to satisfy condition (L), (or it is an (L)-type set-valued mapping), on D provided that it fulfills the following two conditions.

1. If a set $K \subset D$ is nonempty, closed, convex, and T-invariant, then there exists an a.f.p.s. for T in K.

2. For any a.f.p.s. $\{x_n\}$ of T in D and each $x \in D$,

 $\limsup_{n\to\infty} dist(x_n,\mathsf{T} x) \leqslant \limsup_{n\to\infty} d(x_n,x).$

Along with Definition 2.3 and the above two lemmas, we can obtain the following propositions which show the inclusion relations between (L)-type mappings and other generalized nonexpansive mappings in CAT(0) spaces.

Proposition 2.6. Let D be a nonempty, bounded, and convex subset of a CAT(0) space X and $T : D \rightarrow D$ be a mapping satisfying condition (C), then T satisfies condition (L).

Proof. Recall that if $T : D \to D$ is a mapping satisfying condition (C), then there exists an a.f.p.s $\{x_n\}$ for T in D by [25, Lemma 3.6]. Moreover, in view of [25, Lemma 3.5], we have that, for every $x, y \in D$,

$$d(x, Ty) \leq 3d(Tx, x) + d(x, y).$$

Hence, for the a.f.p.s. $\{x_n\}$ and each $x \in D$,

$$\limsup_{n \to \infty} d(x_n, \mathsf{T} x) \leq \limsup_{n \to \infty} (3d(x_n, \mathsf{T} x_n) + d(x_n, x)) = \limsup_{n \to \infty} d(x_n, x),$$

which means such mappings satisfy condition (L).

Proposition 2.7. Let D be a nonempty, bounded, and convex subset of a CAT(0) space X and T : D \rightarrow D be a mapping satisfying condition (E_{μ}) for some $\mu \ge 0$, then T satisfies condition (L) provided that it satisfies assumption 1 of Definition 2.3.

Proof. Replace 3 with μ in the proof of Proposition 2.6. Therefore, the desired conclusion is obtained. \Box

Proposition 2.8. Let D be a nonempty, bounded and convex subset of a CAT(0) space X and T : D \rightarrow D be a continuous mapping satisfying condition (C_{λ}) for some $\lambda \in (0, 1)$, then T satisfies condition (L).

Proof. Define a sequence $\{x_n\}$ in D by taking $x_1 \in D$ and

$$\mathbf{x}_{n+1} = \mathbf{r} \mathsf{T} \mathbf{x}_n \oplus (1-\mathbf{r}) \mathbf{x}_n,$$

for $n \ge 1$ and $r \in [\lambda, 1)$. It follows from Lemma 2.1 (1) that

$$\lambda d(x_n, Tx_n) \leq r d(x_n, Tx_n) = d(x_n, x_{n+1})$$
 for all $n \in \mathbb{N}$.

By condition (C_{λ}) , we have

 $d(Tx_{n+1}, Tx_n) \leq d(x_n, x_{n+1})$ for all $n \in \mathbb{N}$.

Hence, $\lim_{n\to\infty} d(x_n, Tx_n) = 0$ by Lemma 2.2.

Case 1. If for some $x \in D$, there is a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ converging to x. Since $\{x_{n_j}\}$ is an a.f.p.s., then it is obvious that the sequence $\{Tx_{n_j}\}$ has the same limit as $\{x_{n_j}\}$, and therefore by the continuity of T, x = Tx. Thus, for $\{x_n\}$ in D and $x \in D$, we have

$$\limsup_{n\to\infty} d(x_n, \mathsf{T} x) \leqslant \limsup_{n\to\infty} d(x_n, x)$$

holds, i.e., T satisfies condition (L).

Case 2. Suppose that for every $x \in D$, the sequence $\{x_n\}$ does not have any subsequence converging to x. Noticing that $\{x_n\}$ is an a.f.p.s., for any $\varepsilon > 0$, there exists some $n_0 \in \mathbb{N}$ such that $d(x_n, Tx_n) < \varepsilon$ for all $n \ge n_0$. Since $\{x_n\}$ does not converge to x, we can put $\varepsilon := \frac{1}{2} \liminf_n d(x_n, x) > 0$. Therefore,

 $\lambda d(x_n, Tx_n) \leqslant d(x_n, Tx_n) < \epsilon < d(x_n, x).$

By condition (C_{λ}) , we have

$$d(\mathsf{T} x_n, \mathsf{T} x) \leqslant d(x_n, x),$$

which implies

$$\limsup_{n\to\infty} d(x_n, \mathsf{T} x) \leqslant \limsup_{n\to\infty} (d(x_n, \mathsf{T} x_n) + d(\mathsf{T} x_n, \mathsf{T} x)) \leqslant \limsup_{n\to\infty} d(x_n, x).$$

So T satisfies condition (L).

We now give the notion of Δ -convergence and collect some of its basic properties. Let $\{x_n\}$ be a bounded sequence in a CAT(0) space X. For $z \in X$, we set

$$\mathbf{r}(z,\{\mathbf{x}_n\}) = \limsup_{n \to \infty} \mathbf{d}(z, \mathbf{x}_n).$$

The asymptotic radius $r({x_n})$ of ${x_n}$ is given by

$$r(\{x_n\}) = \inf\{r(z, \{x_n\}) : z \in X\}.$$

The asymptotic radius $r_D({x_n})$ of ${x_n}$ with respect to $D \subset X$ is given by

$$\mathbf{r}_{D}(\{\mathbf{x}_{n}\}) = \inf\{\mathbf{r}(z, \{\mathbf{x}_{n}\}) : z \in D\}$$

The asymptotic center $A({x_n})$ of ${x_n}$ is the set

$$A(\{x_n\}) = \{z \in X : r(z, \{x_n\}) = r(\{x_n\})\}.$$

And the asymptotic center $A_D({x_n})$ of ${x_n}$ with respect to $D \subset X$ is the set

$$A_{D}(\{x_{n}\}) = \{z \in D : r(z, \{x_{n}\}) = r(\{x_{n}\})\}.$$

It follows from [10, Proposition 7]) that $A({x_n})$ consists of exactly one point in a CAT(0) space. In 1976, Lim [21] introduced the concept of Δ -convergence in a general metric space. In 2008, Kirk and Panyanak [19] brought in Δ -convergence to CAT(0) spaces and proved that there is an analogy between Δ -convergence and weak convergence.

Definition 2.9 ([19]). A sequence $\{x_n\}$ in a CAT(0) space X is said to Δ -converge to $x \in X$ if x is the unique asymptotic center of $\{u_n\}$ for every subsequence $\{u_n\}$ of $\{x_n\}$. In this case, we write $\Delta - \lim_{n \to \infty} x_n = x$ and call x the Δ -limit of $\{x_n\}$.

Lemma 2.10 ([19]). *If* D *is a closed convex subset of a complete* CAT(0) *space and if* $\{x_n\}$ *is a bounded sequence in* D, *then the asymptotic centerasymptotic center of* $\{x_n\}$ *is in* D.

Lemma 2.11 ([19]). Every bounded sequence in a complete CAT(0) space always has a Δ -convergent subsequence.

Lemma 2.12 ([11]). If $\{x_n\}$ is a bounded sequence in a complete CAT(0) space with $A(\{x_n\}) = \{p\}, \{u_n\}$ is a subsequence of $\{x_n\}$ with $A(\{u_n\}) = \{u\}$, and the sequence $\{d(x_n, u)\}$ is convergent, then p = u.

3. Fixed point theorems

Theorem 3.1. Let D be a nonempty bounded closed convex subset of a complete CAT(0) space X. Suppose $T : D \rightarrow D$ is a mapping satisfying condition (L). Then T has a fixed point in D.

Proof. Since T satisfies condition (L), there exists an a.f.p.s. for T in D, say $\{x_n\}$. By Proposition 7 of [10] we let $A(\{x_n\}) = \{z\}$. It follows from Lemma 2.10 that $z \in D$. By condition (L), we get

 $\limsup_{n\to\infty} d(x_n, Tz) \leq \limsup_{n\to\infty} d(x_n, z),$

which means

$$\mathbf{r}(\mathsf{T}z,\{\mathbf{x}_n\}) \leqslant \mathbf{r}(z,\{\mathbf{x}_n\}).$$

By the uniqueness of asymptotic centers, we have z = Tz.

Theorem 3.1 extends [23, Theorem 4.2]. By using this theorem along with Proposition 2.4 and [8, Theorem 1.3], we can obtain the following corollary.

Corollary 3.2. Let D be a nonempty bounded closed convex subset of a complete CAT(0) space X. Suppose $T: D \rightarrow D$ is a mapping satisfying condition (L). Then F(T) is nonempty closed, convex and hence contractible.

In 1968, Browder proved demiclosedness principle [5] for nonexpansive mappings which has been one of the fundamental and celebrated results in fixed point theory. Demiclosedness principle states that if D is a nonempty closed convex subset of a uniformly convex Banach space X, and T : D \rightarrow X is a nonexpansive mapping, then I – T is demiclosed at 0, that is, for any sequence {x_n} in D, if {x_n} weakly converges to x and (I – T)x_n strongly converges to 0, then x = Tx (here I is the identity operator of X into itself). The principle is also valid in a space satisfying Opial's condition. It has been known that the demiclosedness principle plays a key role in studying the asymptotic and ergodic behavior of nonexpansive mapping, see for example [15, 22].

Remark 3.3. Let D be a closed convex subset of a CAT(0) space X and $\{x_n\}$ be a bounded sequence in D. We need the following notation:

 $\{x_n\} \rightarrow \omega$ if and only if $\Phi(\omega) = \inf_{x \in C} \Phi(x)$,

where $\Phi(x) := \limsup_{n \to \infty} d(x_n, x)$.

Theorem 3.4 in the following takes use of the notion defined above to prove demiclosedness principle for (L)-type mappings which extend [23, Theorem 4.6] to CAT(0) spaces.

Theorem 3.4 (Demiclosed principle). Suppose D is a bounded closed convex subset of a complete CAT(0) space X and T : D \rightarrow D is a mapping satisfying condition (L). If $\{x_n\} \subset$ D is an a.f.p.s. for T such that $\{x_n\} \rightharpoonup p$, then Tp = p.

Proof. By the definition, $\{x_n\} \rightarrow p$ if and only if $A_D(\{x_n\}) = \{p\}$. We have $A(\{x_n\}) = \{p\}$ from Lemma 2.10 and Lemma 2.11. Since $\{x_n\}$ is an a.f.p.s. for T, we have

$$\Phi(\mathbf{x}) := \limsup_{n \to \infty} d(\mathbf{x}_n, \mathbf{x}) = \limsup_{n \to \infty} d(\mathsf{T}\mathbf{x}_n, \mathbf{x}).$$
(3.1)

Taking x = Tp in (3.1), we have

$$\Phi\left(\mathsf{T}p\right)=\limsup_{n\to\infty}d\left(x_{n},\mathsf{T}p\right)\leqslant\limsup_{n\to\infty}d\left(x_{n},p\right)=\Phi\left(p\right).$$

Furthermore, for any $n \ge 1$, it follows from (CN) inequality with $t = \frac{1}{2}$ that

$$d^{2}\left(x_{n},\frac{p\oplus Tp}{2}\right) \leqslant \frac{1}{2}d^{2}\left(x_{n},p\right) + \frac{1}{2}d^{2}\left(x_{n},Tp\right) - \frac{1}{4}d^{2}\left(p,Tp\right).$$

Letting $n \to \infty$ and taking superior limit on the both sides of the above inequality, we get

$$\Phi\left(\frac{p\oplus \mathsf{T}p}{2}\right) \leqslant \frac{1}{2}\Phi\left(p\right) + \frac{1}{2}\Phi\left(\mathsf{T}p\right) - \frac{1}{4}d^{2}\left(p,\mathsf{T}p\right).$$

Since $A({x_n}) = {p}$, we have

$$\Phi\left(p\right) \leqslant \Phi\left(\frac{p \oplus \mathsf{T}p}{2}\right) \leqslant \frac{1}{2}\Phi\left(p\right) + \frac{1}{2}\Phi\left(\mathsf{T}p\right) - \frac{1}{4}d^{2}\left(p,\mathsf{T}p\right),$$

which implies that

$$\mathbf{d}(\mathbf{p},\mathsf{T}\mathbf{p})=\mathbf{0},$$

i.e., p = Tp.

Lemma 3.5 (cf. [20, 27]). Let X be a complete CAT(0) space, then the intersection of any decreasing sequence of nonempty bounded closed convex subsets of X is nonempty.

Together with Theorem 3.1 and Lemma 3.5, we have a common fixed point theorem of a countable family of mappings which satisfy condition (L).

Theorem 3.6. Let D be a nonempty bounded closed and convex subset of a complete CAT(0) space X. Let $\{T_i\}_{i=1}^{\infty}$ be a countable family of commuting mappings on D satisfying condition (L). Then $\{T_i\}_{i=1}^{\infty}$ has a common fixed point.

Proof. Let $C_n := \bigcap_{i=1}^n F(T_i)$ for each n. From Corollary 3.2, $C_1 = F(T_1)$ is nonempty bounded closed and convex subset of X. Now we assume that C_{k-1} is nonempty bounded closed and convex for $k \in \mathbb{N}$. We are going to show that C_k is also nonempty bounded closed and convex. Let $p \in C_{k-1}$ and $i \in \mathbb{N}$ with $1 \le i < k$. Since T_k and T_i commute, we have

$$\mathsf{T}_k \mathsf{p} = \mathsf{T}_k \circ \mathsf{T}_i \mathsf{p} = \mathsf{T}_i \circ \mathsf{T}_k \mathsf{p}.$$

Thus $T_k p$ is a fixed point of T_i , which implies that $T_k p \in C_{k-1}$. Hence we get $T_k(C_{k-1}) \subset C_{k-1}$. By Theorem 3.1, T_k has a fixed point in C_{k-1} , that is,

$$C_k = C_{k-1} \bigcap F(T_k) \neq \emptyset.$$

Also, it is closed and convex by Corollary 3.2. By induction, C_n is nonempty bounded closed and convex for all $n \in \mathbb{N}$. Since $C_n \subset C_{n-1}$ for all $n \in \mathbb{N}$, by Lemma 3.5 we have

$$\bigcap_{i=1}^{\infty} F(T_i) = \bigcap_{n=1}^{\infty} C_n \neq \emptyset.$$

This completes the proof.

Theorem 3.7. Let $t : D \to D$ and $T : D \to C(D)$ be a single-valued mapping and a set-valued mapping, respectively. If both t and T satisfy the condition (L) and in the meantime, they have common a.f.p.s., then they have a common fixed point, that is, there exists a point $z \in D$ such that $z = tz \in Tz$.

Proof. By Theorem 3.1 and Corollary 3.2, we know that the mapping t has a fixed point set F(t) which is a nonempty closed convex subset of X. Let $p \in F(t)$. Since Tp is a bounded closed convex subset of X, we can obtain that t has a fixed point in Tp for $p \in F(t)$. From the assumption, let $\{u_n\}$ be the common a.f.p.s. and $A(\{u_n\}) = \{z\}$. By the proof of Theorem 3.1, we have that $z \in F(t)$. Since Tz is a compact set, there exists $v_n \in Tz$ such that

$$d(u_n, v_n) = dist(u_n, Tz)$$

Again from the compactness of Tz, we may assume that $v_n \rightarrow z' \in Tz$. Since T satisfies condition (L),

$$\limsup_{n \to \infty} d(u_n, z') \leq \limsup_{n \to \infty} d(u_n, v_n) + \limsup_{n \to \infty} d(v_n, z') = \limsup_{n \to \infty} dist(u_n, Tz) \leq \limsup_{n \to \infty} dist(u_n, z).$$

This implies that

$$\mathbf{r}(\mathbf{z}', \{\mathbf{u}_n\}) \leqslant \mathbf{r}(\mathbf{z}, \{\mathbf{u}_n\}).$$

By the uniqueness of asymptotic centers, we have $z = z' \in Tz$. Hence $z = tz \in Tz$.

4. Convergence theorems

In this section, we shall prove Δ and strong convergence theorems for (L)-type mappings of a threestep iteration scheme introduced by Thakur et al. in [29] which not only converges faster than the known iterations but also is stable. Give $x_1 \in D$, the sequence $\{x_n\}$ is generated by

$$\begin{cases} x_{1} \in D, \\ x_{n+1} = Ty_{n}, \\ y_{n} = T((1 - \alpha_{n})x_{n} \oplus \alpha_{n}z_{n}), \\ z_{n} = (1 - \beta_{n})x_{n} \oplus \beta_{n}Tx_{n}, \end{cases}$$

$$(4.1)$$

for all $n \ge 1$, where $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences with $0 < a \le \alpha_n, \beta_n \le b < 1$. We now establish the following useful lemma.

Lemma 4.1. Let D be a nonempty bounded closed convex subset of a complete CAT(0) space X and let $T : D \to D$ be a mapping satisfying condition (L). For arbitrary chosen $x_1 \in D$ and $\{x_n\}$ generated by (4.1), $\lim_{n\to\infty} d(x_n, p)$ exists for all $p \in F(T)$.

Proof. By Theorem 3.1, F(T) is nonempty. Given $p \in F(T)$, by Lemma 2.1 (2) and Proposition 2.4 we have

$$d(z_{n}, p) = d((1 - \beta_{n})x_{n} \oplus \beta_{n}Tx_{n}, p))$$

$$\leq (1 - \beta_{n})d(x_{n}, p) + \beta_{n}d(Tx_{n}, p)$$

$$\leq (1 - \beta_{n})d(x_{n}, p) + \beta_{n}d(x_{n}, Tp)$$

$$\leq (1 - \beta_{n})d(x_{n}, p) + \beta_{n}d(x_{n}, p)$$

$$= d(x_{n}, p),$$
(4.2)

and from (4.2),

$$d(y_n, p) = d(T((1 - \alpha_n)x_n \oplus \alpha_n z_n), p)$$

$$\leq d((1 - \alpha_n)x_n \oplus \alpha_n z_n), p)$$

$$\leq (1 - \alpha_n)d(x_n, p) + \alpha_n d(z_n, p)$$

$$\leq (1 - \alpha_n)d(x_n, p) + \alpha_n d(x_n, p)$$

$$= d(x_n, p).$$
(4.3)

By (4.3) we can obtain that

$$d(x_{n+1}, p) = d(Ty_n, p) \leqslant d(y_n, p) \leqslant d(x_n, p).$$

$$(4.4)$$

Thus, $\{d(x_n, p)\}$ is bounded and decreasing for all $p \in F(T)$, i.e., $\lim_{n\to\infty} d(x_n, p)$ exists.

Lemma 4.2 ([7, Lemma 3.2]). Let X be a CAT(0) space, $x \in X$ be a given point, and $\{t_n\}$ be a sequence in [a, b] for some $a, b \in (0, 1)$. If $\{x_n\}$ and $\{y_n\}$ are sequences in X such that

$$\limsup_{n\to\infty} d(x_n,x)\leqslant r, \quad \limsup_{n\to\infty} d(y_n,x)\leqslant r, \quad and \quad \lim_{n\to\infty} d((1-t_n)x_n\oplus t_ny_n,x)=r,$$

for some $r \ge 0$. Then

$$\lim_{n\to\infty} d(x_n, y_n) = 0.$$

Theorem 4.3. Let D be a nonempty bounded closed convex subset of a complete CAT(0) space X. Suppose $T : D \rightarrow D$ is a mapping satisfying condition (L). For arbitrary chosen $x_1 \in D$ and $\{x_n\}$ generated by (4.1), $\{x_n\} \Delta$ -converges to a fixed point of T.

Proof. First we prove that

$$\lim_{n\to\infty} d(x_n, Tx_n) = 0$$

In fact, it follows from Lemma 4.1 that for each given $p \in F(T)$, $\lim_{n\to\infty} d(x_n, p)$ exists, without loss of generality, let

$$\lim_{n \to \infty} d(x_n, p) = r \ge 0.$$
(4.5)

By Proposition 2.4, we have

$$\limsup_{n \to \infty} d(\mathsf{T} x_n, \mathsf{p}) \leq \limsup_{n \to \infty} d(\mathsf{x}_n, \mathsf{p}) = \mathsf{r}. \tag{4.6}$$

Since $\{\alpha_n\}$ is a sequence with $0 < a \le \alpha_n \le b < 1$, we can assume that $\lim_{n\to\infty} \alpha_n = \alpha \in [a, b]$. By using (4.3)-(4.5), we get

$$r = \lim_{n \to \infty} d(x_{n+1}, p) = \lim_{n \to \infty} d(Ty_n, p)$$

$$\leq \lim_{n \to \infty} d((1 - \alpha_n)x_n \oplus \alpha_n z_n), p)$$

$$\leq \lim_{n \to \infty} (1 - \alpha_n)d(x_n, p) + \lim_{n \to \infty} \alpha_n d(z_n, p)$$

$$= (1 - \alpha)r + \alpha \lim_{n \to \infty} d(z_n, p),$$

which implies that

$$\lim_{n \to \infty} \mathbf{d}(z_n, p) \ge \mathbf{r}. \tag{4.7}$$

On the other hand, it follows from (4.2) and (4.5) that

$$\lim_{n \to \infty} d(z_n, p) \leq \lim_{n \to \infty} d(x_n, p) = r.$$
(4.8)

Hence, together with (4.7) and (4.8), we have

$$\mathbf{r} \leq \lim_{n \to \infty} \mathbf{d}(z_n, p) = \lim_{n \to \infty} \mathbf{d}((1 - \beta_n)\mathbf{x}_n \oplus \beta_n T \mathbf{x}_n, p) \leq \mathbf{r},$$

which implies that

$$\lim_{n \to \infty} d((1 - \beta_n) x_n \oplus \beta_n T x_n, p) = r,$$
(4.9)

where $0 < a \leq \beta_n \leq b < 1$. By (4.5), (4.6), (4.9), as well as Lemma 4.2, it gets that

$$\lim_{n \to \infty} \mathbf{d}(\mathbf{x}_n, \mathsf{T}\mathbf{x}_n) = \mathbf{0},\tag{4.10}$$

i.e., $\{x_n\}$ is an a.f.p.s. of T in D.

Now we prove that

$$\omega_{w}(\mathbf{x}_{n}) := \bigcup_{\{\mathbf{u}_{n}\}\subset\{\mathbf{x}_{n}\}} A(\{\mathbf{u}_{n}\}) \subset F(\mathsf{T}), \tag{4.11}$$

and $\omega_w(x_n)$ consists of exactly one point.

In fact, $u \in \omega_w(x_n)$, then, there exists a subsequence $\{u_n\}$ of $\{x_n\}$ such that $A(\{u_n\}) = \{u\}$. By Lemma 2.10 and Lemma 2.11, there exists a subsequence $\{v_n\}$ of $\{u_n\}$ such that $\Delta - \lim_{n \to \infty} v_n = v \in D$. In view of (4.10) and Theorem 3.4, we have $v \in F(T)$. Furthermore, u = v by Lemma 2.12. This implies that $\omega_w(x_n) \subset F(T)$. Next we claim that $\omega_w(x_n)$ consists of exactly one point. Let $\{u_n\}$ be a subsequence of $\{x_n\}$ with $A(\{u_n\}) = \{u\}$ and let $A(\{x_n\}) = \{x\}$. Since $u \in \omega_w(x_n) \subset F(T)$, from Lemma 4.1 we know that $\{d(x_n, u)\}$ is convergent. In view of Lemma 2.12, we have x = u.

Finally we prove that $\{x_n\} \Delta$ -converges to a fixed point of T.

In fact, by Lemma 4.1 we know that $\{d(x_n, p)\}$ is convergent for each $p \in F(T)$. By (4.10), $\lim_{n\to\infty} d(x_n, Tx_n) = 0$. By (4.11), $\omega_w(x_n) \subset F(T)$ and $\omega_w(x_n)$ consists of exactly one point. This shows that $\{x_n\}$ Δ -converges to a point of F(T). This completes the proof.

Theorem 4.4. Suppose that X, T, $\{x_n\}$ are as in Theorem 4.3 and D is a nonempty bounded closed convex compact subset of X. Then $\{x_n\}$ strongly converges to a fixed point of T.

Proof. In view of the proof of Theorem 4.3, we have $\lim_{n\to\infty} d(x_n, Tx_n) = 0$. Since D is compact, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{x_{n_k}\}$ strongly converges to some $z \in D$. By condition (L), we have

$$\limsup_{k\to\infty} d(x_{n_k}, Tz) \leq \limsup_{k\to\infty} d(x_{n_k}, z) \text{ for all } k \in \mathbb{N}$$

Thus we have $\{x_{n_k}\}$ converges to Tz. This implies z = Tz, i.e., $z \in F(T)$. By Lemma 4.1, we have $\lim_{n\to\infty} d(x_n, z)$ exists, thus z is the strong limit of the sequence $\{x_n\}$ itself.

Acknowledgment

The authors would like to appreciate the anonymous referee for some valuable comments and useful suggestions. Besides, the paper is supported by NFS of HeiLongjiang Provience (A2015018).

References

- [1] A. Abkar, M. Eslamian, *Fixed point theorems for Suzuki generalized nonexpansive multivalued mappings in Banach spaces*, Fixed Point Theory Appl., **2010** (2010), 10 pages. 1
- [2] A. Abkar, M. Eslamian, A fixed point theorem for generalized nonexpansive multivalued mappings, Fixed Point Theory, 12 (2011), 241–246.
- [3] A. Abkar, M. Eslamian, Generalized nonexpansive multivalued mappings in strictly convex Banach spaces, Fixed Point Theory, 14 (2013), 269–280. 1
- [4] M. R. Bridson, A. Haefliger, *Metric spaces of non-positive curvature*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, (1999). 2, 2
- [5] F. E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc., 74 (1968), 660–665. 3
- [6] K. S. Brown, Buildings, Springer-Verlag, New York, (1989). 2
- [7] S. S. Chang, L. Wang, H. W. J. Lee, C. K. Chan, L. Yang, Demiclosed principle and Δ-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) spaces, Appl. Math. Comput., 219 (2012), 2611–2617. 4.2
- [8] P. Chaoha, A. Phon-on, A note on fixed point sets in CAT(0) spaces, J. Math. Anal. Appl., 320 (2006), 983–987. 3
- [9] S. Dhompongsa, A. Kaewcharoen, Fixed point theorems for nonexpansive mappings and Suzuki-generalized nonexpansive mappings on a Banach lattice, Nonlinear Anal., **71** (2009), 5344–5353. 1
- [10] S. Dhompongsa, W. A. Kirk, B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal., 65 (2006), 762–772. 2, 3
- [11] S. Dhompongsa, B. Panyanak, On Δ-convergence theorems in CAT(0) spaces, Comput. Math. Appl., 56 (2008), 2572– 2579. 2.1, 2.12
- [12] R. Espínola, P. Lorenzo, A. Nicolae, Fixed points, selections and common fixed points for nonexpansive-type mappings, J. Math. Anal. Appl., 382 (2011), 503–515. 1
- [13] J. García-Falset, E. Llorens-Fuster, E. Moreno-Gálvez, Fixed point theory for multivalued generalized nonexpansive mappings, Appl. Anal. Discrete Math., 6 (2012), 265–286. 1
- [14] J. García-Falset, E. Llorens-Fuster, T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl., 375 (2011), 185–195. 1
- [15] J. García-Falset, B. Sims, M. A. Smyth, The demiclosedness principle for mappings of asymptotically nonexpansive type, Houston J. Math., 158 (1996), 101–108. 3
- [16] K. Goebel, S. Reich, *Uniform convexity, hyperbolic geometry, and nonexpansive mappings*, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, (1984). 2
- [17] A. Kaewcharoen, B. Panyanak, Fixed point theorems for some generalized multivalued nonexpansive mappings, Nonlinear Anal., 74 (2011), 5578–5584. 1
- [18] W. A. Kirk, Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl., 4 (2004), 309–316. 2
- [19] W. A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., 68 (2008), 3689–3696. 2, 2.9, 2.10, 2.11
- [20] U. Kohlenbach, L. Leuştean, Asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces, J. Eur. Math. Soc. (JEMS), 12 (2007), 71–92. 3.5
- [21] T. C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc., 60 (1976), 179–182. 2
- [22] P.-K. Lin, K.-K. Tan, H.-K. Xu, Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings, Nonlinear Anal., 24 (1995), 929–946. 3

- [23] E. Llorens-Fuster, E. Moreno Gálvez, The fixed point theory for some generalized nonexpansive mappings, Abstr. Appl. Anal., 2011 (2011), 15 pages. 1, 3, 3
- [24] E. Moreno Gálvez, E. Llorens-Fuster, *The fixed point property for some generalized nonexpansive mappings in a nonreflexive Banach space*, Fixed Point Theory, **14** (2013), 141–150. 1
- [25] B. Nanjaras, B. Panyanak, W. Phuengrattana, Fixed point theorems and convergence theorems for Suzuki-generalized nonexpansive mappings in CAT(0) spaces, Nonlinear Anal. Hybrid Syst., 4 (2010), 25–31. 2, 2
- [26] A. Razani, H. Salahifard, Invariant approximation for CAT(0) spaces, Nonlinear Anal., 72 (2010), 2421–2425. 1
- [27] T. Shimizu, W. Takahashi, Fixed points of multivalued mappings in certain convex metric spaces, Topol. Methods Nonlinear Anal., 8 (1996), 197–203. 3.5
- [28] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340 (2008), 1088–1095. 1
- [29] B. S. Thakur, D. Thakur, M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comput., **275** (2016), 147–155. 4
- [30] Z.-F. Zuo, Y.-N. Cui, Iterative approximations for generalized multivalued mappings in Banach spaces, Thai J. Math., 9 (2011), 333–342. 1