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Abstract

This paper presents a coincidence theory for general classes of maps based on the notion of a ®-essential map (we will also
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1. Introduction

The notion of essential maps was introduced by Granas [7] and extended in the literature by many
authors (see [6, 10, 13, 14]). In Section 2, using the notions of homotopy and ®-essential maps, we discuss
the existence of coincidence points (i.e., G(x) N ®(x) # () of maps G and ®. The maps G and @ will
belong to general classes of maps and will be defined on subsets of completely regular topological spaces.
In particular we present continuation theorems and generalized topological transversality theorems. We
will also discuss ®-epi maps [5, 13] in this paper.

2. Essential maps

Let E be a completely regular topological space and U an open subset of E. We consider classes A and
B of maps.

Definition 2.1. We say F € A(U, E) (respectively F € B(U,E)) if F: U — 2F and F € A(U, E) (respectively
F € B(U, E)); here 2F denotes the family of nonempty subsets of E.

In this section we fix a ® € B(U, E).

Definition 2.2. We say F € Ay (U, E) if F € A(U, E) with F(x) N ®(x) = () for x € dU; here dU denotes the
boundary of U in E.

Definition 2.3. Let F € Aau(U,E). We say F : U — 2F is ®-essential in Ayy (U, E) if for every map
J € Asu(U, E) with Jlgu = Flau there exists x € U with J(x) N ®(x) # (.
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Theorem 2.4. Let E be a completely regular (respectively normal) topological space, U an open subset of € and let
F € Apu(U, E) be ®-essential in Ayy (U, E). Suppose there exists a map H : U x [0, 1] — 28R with H(.,n(.)) €
A(U, E) for any continuous function n : U — [0,1] with n(dU) = 0, ®(x) NH¢(x) = 0 for any x € U and
t € (0,1], Hy = F and {x eU: O(x)NH(x,t) #0D for some t € [0, 1]} is compact (respectively closed). Then
there exists x € U with ®(x) N Hy(x) # 0; here Hy(x) = H(x, t).

Proof. Let
D={xelU:®(x)NH(x,t) #0 forsome te[0,1]}.

Note D # () since F is ®-essential in Aay (U, E). Also D is compact (respectively closed) if E is a completely
regular (respectively normal) topological space. Note D NoU = () (note Hy = F so for t = 0 we have
®(x) NHy(x) = 0 for x € dU since F € Ay (U, E)). Thus there exists a continuous map p: U — [0,1] with
1(dU) = 0 and (D) = 1. Define ] : U — 2F by J(x) = H(x, u(x)). Note ] € Apu (U, E) with Jlau = Flau
(note if x € 0U, then J(x) = Hp(x) = F(x) and ]( ) d(x) =Fx)N ( ) = ). Now since F is ®-essential
in Aau (U, E) then there exists an x € U with J(x) N ®(x) # 0 (i.e., Hy (x)(x) N ®(x) # 0), and thus x € D so
uw(x) =1 and as a result, Hy(x) N ®(x) # 0. O

We now give one example of how Theorem 2.4 can be applied. First we recall some concepts from the
literature. Let E be a Banach space, E* the conjugate space of E, and (., .) the duality between E* and E.
Let X be a subset of E. Now

(i). F: X — E* is monotone if (F(x) —F(y),x—y) > 0forall x, y € X;
(ii). F: X — E*is of class (S) if for any sequence (x;) in X, for which x; — x and lim sup (F(x;),x; —x) <
0, we have x; — x;
(iif). F: X — E* is maximal monotone if it is monotone and (x* —F(y),x —y) > 0 for all y € X implies
x € Xand F(x) =
(iv). F: X — E* is hemicontinuous if F(x +ty) — F(x) as t — 0;
(v). F: X — E* is demicontinuous if y — x implies F(y) — F(x).

For our next result, E will be a reflexive Banach space. We assume that E is endowed with an equivalent
norm, with respect to which, E and E* are locally uniformly convex (this is always possible [3, 4]). Then
there exists a unique mapping (duality mapping) J : E — E* such that (J(x),x) = x> = |Jx[?> for all
x € E. Moreover ]| is bijective, bicontinuous, monotone, and of class (S)+ (see [4, pp 20]). To apply
Theorem 2.4 below let E, E* and ] be as above, U a nonempty open subset of E and T : E — E* a fixed
monotone, hemicontinuous mapping. We know T is demicontinuous [8, 9]. Recall also that any monotone
hemicontinuous mapping is maximal monotone. As a result, since T : E — E* is maximal monotone, then
J + T is bijective and (J+ T)™! : E* — E is demicontinuous. We will apply Theorem 2.4 below with
®(x) = i(x) (the identity map) for x € U (and B(U, E) = C(U, E) is the class of continuous mappings from
U to E).

Definition 2.5. We let EM(U, E) denote the maps f = (J+T)"'(J—F) : U — E where F : U — E* is
demicontinuous, and of class (S)4. In this case we say f = (J+T)~ Y] —F) €e EM(U, E).

Definition 2.6. We say f = (J+T)"Y(J—F) € EMyu(W,E) if f € EM(WU,E) and (T+F)(x) # 0 (ie.,
x # (J4+T)"YJ —F)(x)) for x € OU.

Remark 2.7. Note if x € Uwith x = f(x) = (] + T)~!(J — F)(x) then it is clear that (T +F)(x) = 0. Conversely
ifxeUand (T+F)(x) =0then (J—F)(x) = (J+T)(x)sox =f(x) = (J+T) (] —F)(x).

Definition 2.8. A map f = (J+T)"1(J—F) € EMpu(U, E) is essential in EMpy (U, E) if for every g =
(J+T)1(J—G) € EMau(U, E) with glou = flou (i-e., Glou = Flou since (J+T)Lis injective), there exists
x € Uwith (T+F)(x) =0 @G.e,x=(J+T) Y] -F)(x)).
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Corollary 2.9. Let E, E*, U, ] and T be as above and let f = (J+T)"Y(] —F) € EMau(U, E) be essential in
EMou (U, E). Suppose there existsamap V¥ : U x [0,1] — E* with (T+W¢)(x) #0 (e, x # (J+T)7 (J—¥¢)(x))
forx e oUand t € (0,1] (here Y¢(x) =¥(x,t)), Yo =F, and

{ for any continuous function n: U — [0,1] with n(dU) =0, 2.1)

the map Y(.,n(.)) is demicontinuous and of class (S),

any sequence {t;} in [0,1] with t; —t for which (2.2)

for any sequence {x;} in U with x; — x and
limsup (W(x;j,t;), xj —x) <0, we have ¥(x;,t;) — ¥(x,t).

Then, there exists x € U with 0 = (T 4+W¥1)(x) (i.e., x = (J+T)71 (J — W) (x)).

Proof. We apply Theorem 2.4 with ® =i and H(x,t) = (J+ T)~! (J — ¥¢)(x). The result follows immedi-
ately from Theorem 2.4 once we show

D={xeU:x=(J+T) }(J—¥)(x) for some t € [0,1]}

is closed (note from (2.1) that H(.,n(.)) € EM(U, E) for any continuous function n : U — [0,1] with
n(oU) = 0). To show D is closed let (x;) be a sequence in D with x; — x. Then (T + ¥¢;)(x;) = 0 for some
sequence {t;} in [0, 1] (without loss of generality assume t; — t). Also note that since T is monotone then

(Wxj,t5), x5 —x) = (=Tx; +Tx, x5 —x) + (=Tx, x; —x) < (=Tx, x5 —x),

so since x; — x we have lim sup (¥(x;, tj), x; —x) < 0. Now (2.2) implies ¥(x;, t;) — ¥(x,t). This together
with (T +W¥¢;)(xj) = 0 and T demicontinuous gives (T +¥¢)(x) =0, so x € D. Thus D is closed. O

Remark 2.10. In Corollary 2.9 we could replace T : E — E* a monotone, hemicontinuous mapping with
T:E — E* a maximal monotone mapping. To see this we need to show D (in Corollary 2.9) is closed. Let
(xj) be a sequence in D with x; — x. Then (T +W¥¢,)(x;) = 0 for some sequences {t;} in [0, 1] (without loss
of generality assume t; — t). As in Corollary 2.9 we obtain ¥(x;,t;) — ¥(x,t). Now pass to the limit in
(herey € U),

(=¥, 4) =Ty, xj—y) = (Tx; =Ty, x5 —y) 20,

and we obtain
(—¥(x,t)—Ty,x—y) =0.

Now since T is a maximal monotone mapping we have Tx = —W¥(x,t), so x € D and D is closed.

Remark 2.11. Looking through the proof of Corollary 2.9 (see also [1, 4, 14] it is easy to see that (2.1) and
(2.2) could be replaced by the condition:

for any sequence {x;} in U with x; —x and
any sequence {t;} in [0,1] with t; —t for which
limsup (W(x;,t5), x; —x) <0, we have

xj —x and Y(xj,t;) = ¥Y(x,t).

Next we present a topological transversality theorem for ®-essential maps. To achieve this we need to
change Definition 2.3 (see Definition 2.13 below).

Definition 2.12. Let E be a completely regular (respectively normal) topological space, and U an open
subset of E. Let F, G € Apy (U, E). Wesay F=G in Ayy (U, E) if there exists amap H: U x [0,1] — 2F
with H(.,m(.)) € A(U,E) for any continuous function n : U — [0, 1] with n(dU) = 0, He(x) N ®(x) = 0
forany x € 0Uand t € [0,1], Hy =F, Hp = Gand {x € U: ®(x)NH(x,t) #0 forsome te [0,1]} is
compact (respectively closed); here H¢(x) = H(x, t)).
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The following condition will be assumed in our next two results:
= s an equivalence relation in Ay (U, E). (2.3)

Definition 2.13. Let F € Apy (U, E). We say F: U — 2F is ®-essential in Apy (U, E) if for every map
] € Asu(UW,E) with Jlgu = Flou and J = F in Aay(U, E) there exists x € U with J(x) N ® (x) # 0.
Otherwise F is ®@-inessential in Ay (U, E), i.e., there exists a map | € Apyu (U, E) with Jlau = Flou and
J=Fin Aau(U,E) with J (x)N® (x) = 0 for all x € U.

Theorem 2.14. Let E be a completely reqular (respectively normal) topological space, U an open subset of E, and
assume (2.3) holds. Suppose F € Agu (U, E) and assume the following condition holds:

if there exists a map G € Apu (U, E) with G =F in Apu(U, E)

and G (x)N® (x) =0 forallx € U and if H is the map defined

in Definition 2.12 and w: U — [0,1] is any continuous map with

p(dU) =0, then {x € U: 0 # ®(x) NH(x,tu(x)) for some t € [0,1]} is closed.

(2.4)

Then the following are equivalent:

(i). Fis ®-inessential in Ay (U, E);
(ii). there exists a map G € Apu (U, E) with G =F in Au (U, E)and G (x) N @ (x) =0 for all x € U.

Proof. (i) implies (ii) immediately. Next we prove (ii) implies (i). Suppose there exists a map G €
Asu(U,E) with G = Fin Aju(U,E) and G(x)N®D (x) = O for all x € U. Let H : Ux[0,1] — 2F
with H(.,n(.)) € A(U,E) for any continuous function 1 : U — [0,1] with n(dU) =0, H¢(x) N @ (x) = 0
forany x € 0U and t € [0,1], Hy = F, H; = G (here H¢(x) = H(x,t)) and {x € U: ®(x) NH(x,t) #
() for some t € [0,1]} is compact (respectively closed). Consider

D={xeU:®(x)NH(x,t) #0 for some t € [0,1]}.

If D = (), then in particular () = ®(x) N H(x,0) = ®(x) NF(x) for x € U so F is ®-inessential in Ay (U, E)
(take ] = F in Definition 2.13). Next suppose D # . Note D is compact (respectively closed) if E is
a completely regular (respectively normal) topological space. Also DN dU = (. Thus there exists a
continuous map w: U — [0,1] with p(dU) = 0 and p(D) = 1. Define ] : U — 2F by J(x) = H(x, u(x)). Note
J € A(U,E) and Jlau = Holou = Flau. Also note if there exists an x € U with J(x) N ®(x) # () then x € D so
w(x) =1,ie., G(x) N ®(x) # 0, a contradiction. Thus | € Ay (U, E) and Jlau = Flou and J(x) N @ (x) = 0
for x € U. We now claim

J=F in Ayu(U, E). (2.5)

If (2.5) is true, then F is ®@-inessential in Aguy (U, E).
It remains to show (2.5). Let Q : U x [0,1] — 2F be given by Q(x,t) = H(x, tp(x)). Note Q(.,n(.)) €
A(U, E) for any continuous functionn : U — [0,1] with n(dU) = 0 and (see (2.4) and Definition 2.12)

{xeU: 0£0x)NQ(x,t) = @(x) NH(x,tu(x)) for some t € [0,1]}

is compact (respectively closed). Note Qo = F and Q; = J. Finally if there exists a t € [0,1] and x € dU
with @ (x) N Q¢(x) # 0, then @(x) N Hy(x)(x) # 0 sox € D and so u(x) =1, ie, O(x)NH(x) # 0, a
contradiction. Thus (2.5) holds. O

Theorem 2.15. Let E be a completely regular (respectively normal) topological space, U an open subset of £ and
assume (2.3) and (2.4) hold. Suppose F and G are two maps in Ay (U, E) with F = G in Ay (U, E). Then Fis
®-essential in Ay (U, E) if and only if G is ®-essential in Ayy (U, E).
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Proof. Fis ®-inessential in Agu (U, E) iff there exists a map ¥ € Apu (U, E) with F = W in Aay(U, E) and
O (x)NY¥(x) = 0 for x € U iff (since (2.3) holds) there exists amap ¥ € Ayy (U, E) with G =W¥in Ayy (U, E)
and @ (x) N¥(x) = 0 for x € U iff G is ®-inessential in Ay (U, E). O

Remark 2.16. In Definition 2.13 if ¢ and n are in Agy (U, E) with ¢lau = nlow, is ¢ = 1 in Ay (U, E)?
Certainly this is true for certain classes of maps (see [2, 11, 12]). This is also true for the maps considered
in EMau (U, E) (see Definition 2.6) with the definition of = given below (see (2.6)). Let f = (J+T)"}(J —F),
g=(J+T)(J—G) bein EMay(U,E) (here F,G : U — E* are demicontinuous, and of class (S);). We
say f = g in EMay (U, E) if the following condition holds:

there exists W : U x [0,1] — E* such thatWy =F,

Y1 =G, (T+W¥)(x) #0 for x € 0U, and t € (0,1),

and for any sequence {x;} in U with x; — x and (2.6)
any sequence {t;} in [0,1] with t; — t for which

limsup (W(x;,t5), xj —x) <0, we have x; — x and ¥(x;,t;) = ¥(x, ).

Now suppose f and g are as above with flau = glou (i-e., Flou = Glau since (] + T lis injective). Now
take W(x,t) = (1 —t)F(x) + tG(x). First note for x € 0U and t € [0, 1] that (note Flau = Glau)

(T+Y)(x) =(TH+(1—-t)F+tG)(x) = (T+F)(x) #0,
since f € EMay (U, E). This together with [4, Proposition 12] guarantees that f = g in EMay (U, E).

We now generalize the theory presented above. Let E be a topological vector space (so automatically
a completely regular space), Y a topological vector space, and U an open subset of E. Also let L : domL C
E — Y be a linear single-valued map; here dom L is a vector subspace of E. Finally T : E — Y will be a
linear single-valued map with L+ T:domL — Y a bijection; for convenience we say T € Hy (E,Y).

Definition 2.17. Wesay F € A(U,Y; L, T) (respectively F € B(W,Y;L,T))if F: U — 2Y and (L+T) }(F+T) €
A(U, E) (respectively (L+T) Y (F+T) € B(L, E)).

We now fixa ® € B(W,Y;L, T).

Definition 2.18. We say F € Ay (U, Y; L, T)if F € A(W,Y;L,T) with (L+T) " YF+T)(x)N(L+T) (@ +
T)(x) = 0 for x € oU.

Definition 2.19. Let F € Ay (W, Y;L, T). We say Fis (L, T) @-essential in Asu(W,Y; L, T) if for every map
J € Apu(W,Y; L, T) with Jlau = Flau there exists x € Uwith (L+T) 1 (J+T)(x)N(L+T)"H(®+T) (x) # 0.

Theorem 2.20. Let E be a topological vector space (so automatically completely reqular), Y a topological vector
space, U an open subset of €, L : domL C E — Y a linear single-valued map, and T € Hi(E,Y). Let F €
Aou(W,Y;L,T) be (L, T) ®-essential in Ayy(U,Y;L, T). Suppose there exists a map H : U x [0,1] — 2Y with
(L+T)"L(H(.,m(.)+T(.)) € A(U,E) for any continuous function n : U — [0,1] with n(dU) = 0, (L +
T THe+TE)N(L+T) LD+ T)(x) =0 forany x € dU and t € (0,1], Hy = F (here Hi(x) = H(x,t)) and
{xelU: L+T)H(@+T)x)N(L+T)"t (H¢+T)(x) # 0 for some t € [0,1]} is compact. Then there exists
x € Uwith (L+T)" L (Hy + T)(x) N (L+T) (@ + T)(x) # 0.

Proof. Let
D={xel: (L+T) M (@+T)(x)N(L+T)" " (H¢+T)(x) # 0 for some t € [0,1]}.

Note D # () and D is compact, D N dU = () so there exists a continuous map w : U — [0,1] with p(dU) =0
and p(D) = 1. Define J : U — 2V by J(x) = H(x, u(x)). Note ] € Apu(W,Y;L,T) and Jlou = Flou. Now
since Fis (L, T) ®-essential in Ayy (U, Y; L, T) there exists x € U with (L+T)" ' (J+T)(x)N(L+T)"1(d +
T(x) # 0 (ie., (L+T) 1 (Hpx) +Tx) N (L+ T)~ (D +T)(x) # 0), and thus x € D so u(x) = 1 and we
are finished. O
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Remark 2.21. If E is a normal topological vector space then the assumption that D (in the proof of Theorem
2.20) is compact, can be replaced by D is closed, in the statement (and proof) of Theorem 2.20.

Next we present a topological transversality theorem for (L, T) ®-essential maps. To achieve this we
need to change Definition 2.19 (see Definition 2.23 below).

Definition 2.22. Let F,G € Ay (W, Y;L,T). Wesay F = G in Apy(U,Y;L,T) if there exists a map ¥ :
U x [0,1] — 2Y with (L+T)"}(¥(.,n(.))+T(.)) € A(U, E) for any continuous functionn : U — [0, 1] with
nEW =0, (L+T) 1 (We+T)x)N(L+T) 1 (@+T)(x) =0 forany x € dU and t € [0,1], ¥; =F, ¥ = G
and

xelW: (L+T)  (@+T)x)N(L+T) (Y +T)(x) # 0 for some t € [0,1]}

is compact; here W (x) = ¥(x, t).
The following condition will be assumed in our next two results:

= is an equivalence relation in Asu(W,Y;L,T). (2.7)

Definition 2.23. Let F € Ay (W, Y;L, T). We say Fis (L, T) ®-essential in Asu(W,Y; L, T) if for every map
] € Agu(W,Y;L,T) with Jlou = Flou and ] = Fin Ay (U,Y; L, T) there exists x € U with (L+T)~' (] +
T)(x)N(L+T)" (D +T)(x) # 0. Otherwise Fis (L, T) ®-inessential in Aay (U, E), i.e., there exists a map
J € Apu(W,Y;L,T) with Jlou = Flouand ] = Fin Ay (U, Y; L, T) with (L+T)"* (J+T) (x)N(L+T)" 1 (D +
T)(x) =0 forall x € U.

Theorem 2.24. Let E and Y be topological vector spaces, U an open subset of E, L : domL C E — Y a linear
single valued map, T € Hy(E,Y), and assume (2.7) holds. Suppose F € Agu(U,Y;L, T) and assume the following
condition holds:

if there exists a map G € Ayu(U,Y;L, T) with G = F in Ayu(W,Y;L,T)

and (L+T) 1 (G+T)(x)N(L+T) L (@ +T)(x —(Z)forallxeugnd

if H is the map defined in Definition 2.22 and p: U — [0,1] is any (2.8)
continuous map with u(oU) =0, then

{xelW: (L+T) ™ H(@+T)x)N(L+T) (He yx) + T)(x) # 0 for some t € [0,1]} is closed.

Then, the following are equivalent:

(). Fis (L, T) ®-inessential in Agy (U, Y;L,T);
(ii). there exists a map G e AyuWY;LT) with G =Fin Agu(W,Y;L,T)and (L+T)"1(G+T)(x)N(L+
T) Y ®+T)(x) =0 forall x € U.

Proof. (i) implies (ii) 1mmed1ately Next we prove (ii) 1mp11es (i). Suppose there exists a map G €
Asu(W,Y;L,T) with G = Fin Ayu(W,Y;L, T) and (L+T) ' (G+T)(x)N(L+T) ' (@+T)(x) = 0 for
allx € U. Let H: U x [0,1] — 2Y with (L+T)"! (H(.,n(.))+T(.)) € A(U, E) for any continuous function
n:U— [0,1] withn(@U) =0, (L+T) }(H¢ +T)(x) N (L+T) "1 (@ +T)(x) =0 forany x € dU and t € [0,1],
H; =F, Hy = G (here H¢(x) = H(x,t)) and

{xeu: (L+T) @ +T)(x)N(L+T)"F (He 4+ T)(x) # 0 for some t € [0,1]}
is compact. Let
D={xelU: (L+T) " (@+T)(x)N(L+T) ' (H+T)(x) # 0 for some t € [0,1]}.

If D = () we are finished. Next suppose D # (. Note D is compact, D N oU = (}, so there exists a
continuous map p : U — [0,1] with u(dU) = 0 and u(D) = 1. Define J : U — 2Y by J(x) = H(x, u(x)).
It is easy to check (a slight modlflcatlon of the argument in Theorem 2.14) that | € Apu(W,Y;L,T),
Jlou = Holou = Flou, (L+T) " H(@+T)(X)N(L+T) 1 (J+T)(x) =0 forx € Uand ] = Fin Au (U, Y;L,T).
Thus Fis (L, T) ®-inessential in Ayy (U, Y;L, T). O]
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Theorem 2.25. Let E and Y be topological vector spaces, U an open subset of E, L : dom L C E — Y a linear single-
valued map, T € Hy(E,Y), and assume (2.7) and (2.8) hold. Suppose F and G are two maps in Ayy(U,Y;L,T)
withF = G in Apu (U, Y; L, T). Then Fis (L, T) ®@-essential in Agu (U, Y; L, T) if and only if G is (L, T) ®-essential
in Aau (ﬁ, Y,‘ L, T)

Remark 2.26. If E is a normal topological vector space then the assumption that D in the proof of Theorem
2.24 is compact (see Definition 2.22), can be replaced by D is closed, in the proof of Theorem 2.24 and
Theorem 2.25 (modify Definition 2.22 accordingly).

Motivated by the above theory, we note that it is also possible to discuss ®-epi maps in a general
setting. For completeness we present the theory here. We fix a ® € B(U, E).
Definition 2.27. We say F € Bo (U, E) if F € B(U, E) and F(x) C ®(x) for x € oU.
Definition 2.28. A map F € Aay (U, E) is ®-epi if for every map G € Bg (U, E) there exists x € U with
F(x) N G(x) # 0.
Remark 2.29. Suppose F € Aay (U, E) is ®-epi. Then there exists x € U with F(x) N ®(x) # () (take G = ©
in Definition 2.28).

Our next result can be called the "homotopy property” for ®-epi maps. In our result E will be a

topological vector space so automatically a completely regular space.

Theorem 2.30. Let E be a topological vector space and U an open subset of E. Suppose F € Ay (U, E) is ®-epi
and H : U x [0,1] — 2F with H(x,0) = {0} for x € dUW and F(.) —H(.,1) € A(U,E). In addition assume the
following conditions hold:

if F1 € B(U,E), then F1(.)+H(.,u(.)) € B(U,E) 2.9)
for any continuous map w: U — [0,1] with p(dU) =0, :
xelU: F(x)N[D(x)+H(x,t)] # 0 for some t € [0,1]} does not intersect dU, (2.10)
{ f
and
for any map G € Bo (U, E), the set 2.11)
{x e U: F(x)NI[G(x) +H(x,t)] # 0 for some t € [0,1]} is compact. |

Then, F(.)—H(.,1): U — K(E) is ®-epi.
Proof. Let G € Bg (U, E). We must show that there exists x € U with [F(x) —H(x, 1)1 N G(x) # 0. Let
D = {xeU: F(x)N[G(x)+ H(x,t)] # 0 for some t € [0,1]}.

When t = 0, we have G(.) +H(.,0) € Bo (U, E) since from (2.9) we have G(.) + H(.,0) € B(U, E) and for
x € 0U we have G(x) + H(x,0) = G(x) C @(x) and this together with the fact that F is ®-epi yields D # 0.
Note from (2.11) that D is compact. Next we note that (2.10) guarantees that D N oU = ) (note if x € oU
then F(x) N [G(x) + H(x,t)] C F(x) N[®(x) + H(x,t)]). Thus there exists a continuous map p : U — [0,1]
with u(oU) =0 and (D) = 1.
Define a map ] : U — 2F by
J(x) = G(x) + H(x, n(x)).

Note | € B(U, E) from (2.9) and for x € 0U we have J(x) = G(x) + H(x, u(x)) = G(x) + H(x, 0) G(x) C
®(x). Thus ] € Bo(U,E). Now since F is ®-epi there exists x € U with F(x) N J(x) # 0, i.e., F(x)N
[G(x) + H(x, u(x))] # 0. Thus x € D and as a result pu(x) = 1. Consequently F(x) N [G(x) + H(x, 75 0 so
[F(x) —H(x, 1) N G(x) # 0. O

Remark 2.31. If E is a normal topological vector space then the assumption that D (in the proof of Theorem
2.30) is compact, can be replaced by D is closed, in the statement (and proof) of Theorem 2.30.
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Our next result can be called the “coincidence property” for ®-epi maps.

Theorem 2.32. Let E be a topological vector space and U an open subset of E. Suppose F € Agu (U, E) is ©-epi,
G € B(U, E) and assume the following conditions hold:

{ u(. +(1—u(.)®(.) € B(U,E) for any continuous map w: U — [0,1] with u(dU) =0, (2.12)
{ {x elu: F( )NIEG(x)+ (1 —1t) ©(x)] # 0 for some t € [0,1]} does not intersect Ol (2.13)
and

{{xelU: Fx)N[tG(x)+ (1—1t) D(x)] # 0 for some t € [0,1]} is compact.

Then, there exists x € U with F(x) N G(x) # (.

Proof. Let
D={xelU: Fx)N[tG(x)+(1—t)®(x)] #0 for some t € [0,1]}.

When t = 0 note F(x) N ®(x) # @ for some x € U since F € Ayu(U, E) is ®-epi, so D # (. Note D is
compact and D N dU = () from (2.13). Thus there exists a continuous map p: U — [0,1] with p(oU) =0
and p(D) = 1.

Define a map ] : U — 2F by

J(x) = n{x) G(x) + (1 —u(x)) ©(x).

Now (2.12) guarantees that ] € B(U, E) and for x € 90U we have J(x) = 0+ ®(x) = ®(x), so ] € B (U, E).
Now since F is ®-epi there exists x € U with F(x)NJ(x) # 0. Thus x € D and as a result p(x) = 1
Consequently F(x) N G(x) # 0. O

Remark 2.33. If E is a normal topological vector space then the assumption that D (in the proof of Theorem
2.32) is compact, can be replaced by D is closed, in the statement (and proof) of Theorem 2.32.

Let E and Y be topological vector spaces, and U an open subset of E. Alsolet L:domL C E — Ybea
linear single-valued map and T € Hy (E,Y). We fixa ® € B(U, Y;L,T).
Definition 2.34. We say F € Bo (W, Y;L,T) if F € B(U,Y;L,T) and (L+T)"' (F+T)(x) C (L+T)" 1 (D +
T)(x) for x € oL
Definition 2.35. A map F € Ay (U, Y;L, T)is (L, T) ®-epi if for every map G € Bo (U, Y; L, T) there exists
x € Uwith (L+T) M F4+T)x)N(L+T)"H(G+T)(x) #0.

Remark 2.36. Suppose F € Aau(U,Y;L,T) is (L, T) ®-epi. Then there exists x € U with (L + T F+
T(x)N(L+T) 1D +T)(x) # 0 (take G = ® in Definition 2.35).
Theorem 2.37. Let E and Y be topological vector spaces, U an open subset of E, L : domL C E — Y a linear
single-valued map and T € Hy(E,Y). Suppose F € Apu(W,Y;L,T) is (L, T) ®-epi and H : U x [0,1] — 2v
with (L+T)"'H(x,0) = {0} for x € W and F(.) —H(.,1) € A(W,Y;L,T). In addition assume the following
conditions hold:

if F1 € B(W,Y;L,T), then F1(.)+H(.,u(.)) € B(LY;L,T)

for any continuous map w: U — [0,1] with p(dU) =0,

xel: L+ T F+TX)N(L+T)HD(x)+H(x, t) +T(x)] #0

for some t € [0,1]} does not intersect oU,
and

xelW: (L+T) M F+T)x)N(L+T)1[G(x)+H(x, 1)+ T(x)] # 0

forany map G € Bq)(u Y;L,T) the set
for some t € [0,1]} is compact.

Then, F(.)—H(.,1)is (L, T) @-epi.
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Proof. Let G € By (W, Y;L, T) and
D={xel: (L+T) ' (F+T)(x)N(L+T) '[G(x) +H(x,t) + T(x)] # 0 for some t € [0,1]}.

When t = 0 we have G(.)+ H(.,0) € B(UW,Y;L, T) and for x € o0U we have (L+T)" ' [G(x) + H(x,0) +
T =L+T)HG+T)(x) C (L+T) 1@ +T)(x),s0 G(.)+H(.,0) € Bgp(LL,Y;L,T) and this together
with the fact that F is (L, T) ®-epi yields D # . Also D is compact and D NoU = {), so there exists a
continuous map : U — [0,1] with p(dU) = 0 and (D) = 1. Define a map J : U — 2¥ by

J(x) = G(x) + Hx, u(x)).

Now ] € B(U,Y;L,T) and for x € dU we have (L+T)"' (J+T)(x) = (L+T)"1[G(x) + H(x,0) + T(x)] =
(L+T) HG+T)(x) C(L+T) 1 (@ +T)(x). Thus ] € Be(U,Y;L,T) so since Fis (L, T) ®-epi there exists
x € Uwith (L+T)" L F+T)(x)N(L+T)" L (J+T)(x) # 0. Thus x € D so u(x) = 1 and we are finished. [

Remark 2.38. If E is a normal topological vector space then the assumption that D (in the proof of Theorem
2.37) is compact, can be replaced by D is closed, in the statement (and proof) of Theorem 2.37.

Theorem 2.39. Let E and Y be topological vector spaces, U an open subset of E, L : domL C E — Y a linear
single-valued map, and T € Hy (E,Y). Suppose F € Apu(W,Y;L,T)is (L, T) ®-epi, G € B(U,Y; L, T), and assume
the following conditions hold:

R(DGL)+(1—u())@(.) € B(W,Y;L,T) forany
continuous map w: U — [0,1] with u(oU) =0,

xel: (L+T) PF+TE)NL+T)TEGH) +(1—1) O(x)+T(x)] #0
for some t € [0,1]} does not intersect o,
and

xelW: (L+T) HF+T)NL+T)TRHGHx)+(1—1t) O(x) +T(x)] #0
for some t € [0,1]} is compact.

Then, there exists x € U with (L+T)™  (F+T)(x)N(L+T)"1 (G +T)(x) # 0.
Proof. Let

D={xel: (L+T) ' (F+T)(x)N(L+T) [t G(x) + (1 —t) D(x) + T(x)] # 0 for some t € [0,1]}.

Now D # () is compact and D NdU = (). Thus there exists a continuous map p: U — [0, 1] with p(oU) =0
and (D) = 1. Define a map J : U — 2¥ by

J(x) = n(x) G(x) + (1 —u(x)) ©(x).

Now | € B(U,Y;L,T) and for x € 0U we have (L+T) ' (J+T)(x) = (L+T) 1[0+ (P +T)(x)],s0] €
Bo (U, Y;L,T). Now, since Fis (L, T) ®-epi, there exists x € U with (L+T)"}(F+T)(x)N(L+T)~1 (J+
T)(x) # 0. Thus, x € D and as a result, p(x) = 1, so we are finished. O

Remark 2.40. If E is a normal topological vector space then the assumption that D (in the proof of Theorem
2.39) is compact, can be replaced by D is closed, in the statement (and proof) of Theorem 2.39.
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