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Abstract

In this paper, we give an interesting extension of the partial S-metric space which was introduced [N. Mlaiki, Univers. J.
Math. Math. Appl., 5 (2014), 109–119] to the Ms-metric space. Also, we prove the existence and uniqueness of a fixed point for
a self-mapping on an Ms-metric space under different contraction principles. c©2017 all rights reserved.
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1. Introduction

Many researchers over the years proved many interesting results on the existence of a fixed point for
a self-mapping on different types of metric spaces, for example, see [1, 2, 4, 8, 10–12, 14–16]. The idea
behind this paper was inspired by the work of Asadi et al. in [7]. He gave a more general extension
of almost any metric space with two dimensions, and that is not just by defining the self “distance” in
a metric as in partial metric spaces [3, 5, 6, 13, 17], but he assumed that is not necessary that the self
“distance” is less than the value of the metric between two different elements.

In [9], an extension of S-metric spaces to a partial S-metric spaces was introduced. Also, it was shown
that every S-metric space is a partial S-metric space, but not every partial S-metric space is an S-metric
space. In our paper, we introduce the concept of Ms-metric spaces which is an extension of the partial
S-metric spaces in which we will prove some fixed point results.

First, we remind the reader definition of a partial S-metric space.

Definition 1.1. [9] Let X be a nonempty set. A partial S-metric on X is a function Sp : X3 → [0,∞) that
satisfies the following conditions for all x,y, z, t ∈ X :

(i) x = y if and only if Sp(x, x, x) = Sp(y,y,y) = Sp(x, x,y);
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(ii) Sp(x,y, z) 6 Sp(x, x, t) + Sp(y,y, t) + Sp(z, z, t) − Sp(t, t, t);

(iii) Sp(x, x, x) 6 Sp(x,y, z);

(iv) Sp(x, x,y) = Sp(y,y, x).

The pair (X,Sp) is called a partial S-metric space.

Next, we give the definition of an Ms-metric space, but first we introduce the following notations.

Notations.

1. msx,y,z := min{ms(x, x, x),ms(y,y,y),ms(z, z, z)};
2. Msx,y,z := max{ms(x, x, x),ms(y,y,y),ms(z, z, z)}.

Definition 1.2. An Ms-metric on a nonempty set X is a function ms : X3 → R+ such that for all x,y, z, t ∈
X, the following conditions are satisfied:

1. ms(x, x, x) = ms(y,y,y) = ms(x, x,y) if and only if x = y;
2. msx,y,z 6 ms(x,y, z);
3. ms(x, x,y) = ms(y,y, x);
4. (ms(x,y, z) −msx,y,z) 6 (ms(x, x, t) −msx,x,t) + (ms(y,y, t) −msy,y,t) + (ms(z, z, t) −msz,z,t).

The pair (X,ms) is called an Ms-metric space. Notice that the condition ms(x, x, x) = ms(y,y,y) =
ms(z, z, z) = ms(x,y, z)⇔ x = y = z implies (1) above.

It is straightforward to verify that every partial S-metric space is an Ms-metric space but the converse
is not true. The following example is an Ms-metric which is not a partial S-metric space.

Example 1.3. Let X = {1, 2, 3} and define the Ms-metric space ms on X by ms(1, 2, 3) = 6, ms(1, 1, 2) =
ms(2, 2, 1) = ms(1, 1, 1) = 8, ms(1, 1, 3) = ms(3, 3, 1) = ms(3, 3, 2) = ms(2, 2, 3) = 7, ms(2, 2, 2) =
9, and ms(3, 3, 3) = 5. It is not difficult to see that (X,ms) is an Ms-metric space, but since ms(1, 1, 1) 66
ms(1, 2, 3) we deduce that ms is not a partial S-metric space.

Definition 1.4. Let (X,ms) be an Ms-metric space. Then:

1. A sequence {xn} in X converges to a point x if and only if

lim
n→∞(ms(xn, xn, x) −msxn,xn,x) = 0.

2. A sequence {xn} in X is said to be Ms-Cauchy sequence if and only if

lim
n,m→∞(ms(xn, xn, xm) −msxn,xn,xm), and lim

n,m→∞(Msxn,xn,xm −msxn,xn,xm)

exist and are finite.
3. An Ms-metric space is said to be complete if every Ms-Cauchy sequence {xn} converges to a point
x such that

lim
n→∞(ms(xn, xn, x) −msxn,xn,x) = 0 and lim

n→∞(Msxn,xn,x −msxn,xn,x) = 0.

A ball in the Ms-metric (X,ms) space with center x ∈ X and radius η > 0 is defined by

Bs[x,η] = {y ∈ X | ms(x, x,y) −msx,x,y 6 η}.

The topology of (X,Ms) is generated by means of the basis β = {Bs[x,η] : η > 0}.
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Lemma 1.5. Assume xn → x and yn → y as n→∞ in an Ms-metric space (X,ms). Then,

lim
n→∞(ms(xn, xn,yn) −msxn,xn,yn) = ms(x, x,y) −msx,x,y.

Proof. The proof follows by the inequality (4) in Definition 1.2. Indeed, we have

|(ms(xn, xn,yn) −msxn,xn,yn) − (ms(x, x,y) −msx,x,y)| 6 2[(ms(xn, xn, x) −msxn,xn,x)

+ (ms(yn,yn,y) −msyn,yn,y)].

2. Fixed point theorems

In this section, we consider some results about the existence and the uniqueness of fixed point for
self-mappings on an Ms-metric space, under different contraction principles.

Theorem 2.1. Let (X,ms) be a complete Ms-metric space and T be a self-mapping on X satisfying the following
condition:

ms(Tx, Tx, Ty) 6 kms(x, x,y), (2.1)

for all x,y ∈ X, where k ∈ [0, 1). Then T has a unique fixed point u. Moreover, ms(u,u,u) = 0.

Proof. Since k ∈ [0, 1), we can choose a natural number n0 such that for a given 0 < ε < 1, we have
kn0 <

ε

8
. Let Tn0 ≡ F and Fix0 = xi for all natural numbers i, where x0 is arbitrary. Hence, for all x,y ∈ X,

we have
ms(Fx, Fx, Fy) = ms(Tn0x, Tn0x, Tn0y) 6 kn0ms(x, x,y).

For any i, we have

ms(xi+1, xi+1, xi) = ms(Fxi, Fxi, Fxi−1)

6 kn0ms(xi, xi, xi−1)

6 kn0+ims(x1, x1, x0)→ 0 as i→∞.

Similarly, by (2.1) we have ms(xi, xi, xi)→ 0 as i→∞. Thus, we choose l such that

ms(xl+1, xl+1, xl) <
ε

8
and ms(xl, xl, xl) <

ε

4
.

Now, let η = ε
2 +ms(xl, xl, xl). Define the set

Bs[xl,η] = {y ∈ X | ms(xl, xl,y) −msxl,xl,y 6 η}.

Note that, xl ∈ Bs[xl,η]. Therefore Bs[xl,η] 6= ∅. Let z ∈ Bs[xl,η] be arbitrary. Hence,

ms(Fz, Fz, Fxl) 6 kn0ms(z, z, xl)

6
ε

8
[
ε

2
+msz,z,xl +ms(xl, xl, xl)]

<
ε

8
[1 + 2ms(xl, xl, xl)].

Also, we know that ms(Fxl, Fxl, xl) = ms(xl+1, xl+1, xl) <
ε

8
. Therefore,

ms(Fz, Fz, xl) −msFz,Fz,xl 6 2[(ms(Fz, Fz, Fxl) −msFz,Fz,Fxl)] + (ms(Fxl, Fxl, xl) −msFxl,Fxl,xl)
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6 2ms(Fz, Fz, Fxl) +ms(Fxl, Fxl, xl)]

6 2
ε

8
(1 + 2ms(xl, xl, xl)) +

ε

8
=
ε

4
+
ε

8
+
ε

2
ms(xl, xl, xl)

<
ε

2
+ms(xl, xl, xl).

Thus, Fz ∈ Bb[xl,η] which implies that F maps Bb[xl,η] into itself. Thus, by repeating this process we
deduce that for all n > 1 we have Fnxl ∈ Bb[xl,η] and that is xm ∈ Bb[xl,η] for all m > l. Therefore, for
all m > n > l where n = l+ i for some i

ms(xn, xn, xm) = ms(Fxn−1, Fxn−1, Fxm−1)

6 kn0ms(xn−1, xn−1, xm−1)

6 k2n0ms(xn−2, xn−2, xm−2)

...

6 kin0ms(xl, xl, xm−i)

6 ms(xl, xl, xm−i)

6
ε

2
+msxl,xl,xm−i

+ms(xl, xl, xl)

6
ε

2
+ 2ms(xl, xl, xl).

Also, we have ms(xl, xl, xl) < ε
4 , which implies that ms(xn, xn, xm) < ε for all m > n > l, and thus

ms(xn, xn, xm) −msxn,xn,xm < ε for all m > n > l. By the contraction condition (2.1) we see that the
sequence {ms(xn, xn, xn)} is decreasing and hence, for all m > n > l, we have

Msxn,xn,xm −msxn,xn,xm 6Msxn,xn,xm

= ms(xn, xn, xn)
6 kms(xn−1, xn−1, xn−1)

...
6 knms(x0, x0, x0)→ 0 as n→∞.

Thus, we deduce that

lim
n,m→∞(ms(xn, xn, xm) −msxn,xn,xm) = 0, and lim

n→∞(Msxn,xn,xm −msxn,xn,xm) = 0.

Hence, the sequence {xn} is an Ms-Cauchy. Since X is complete, there exists u ∈ X such that

lim
n→∞ms(xn, xn,u) −msxn,xn,u = 0, lim

n→∞Msxn,xn,u −msxn,xn,u = 0.

The contraction condition (2.1) implies that ms(xn, xn, xn)→ 0 as n→∞. Moreover, notice that

lim
n→∞Msxn,xn,u −msxn,xn,u = lim

n→∞ |ms(xn, xn, xn) −ms(u,u,u)| = 0,

and hence ms(u,u,u) = 0. Since xn → u, ms(u,u,u) = 0 and ms(xn, xn, xn) → 0 as n → ∞, then
limn→∞ms(xn, xn,u) = limn→∞msxn,xn,u = 0. Sincems(Txn, Txn, Tu) 6 kms(xn, xn,u)→ 0 as n→∞,
then Txn → Tu.

Now, we show that Tu = u. By Lemma 1.5 and that Txn → Tu and xn+1 = Txn → u, we have

lim
n→∞ms(xn, xn,u) −msxn,xn,u = 0 = lim

n→∞ms(xn+1, xn+1,u) −msxn+1,xn+1,u
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= lim
n→∞ms(Txn, Txn,u) −msTxn,Txn,u

= ms(u,u,u) −msTu,Tu,u

= ms(Tu, Tu,u) −msTu,Tu,u.

Hence, ms(Tu, Tu,u) = msTu,Tu,u = ms(u,u,u), but also by the contraction condition (2.1) we see that
msTu,Tu,u = ms(Tu, Tu, Tu). Therefore, (2) in Definition 1.2 implies that Tu = u.

To prove the uniqueness of the fixed point u, assume that T has two fixed points u, v ∈ X; that is,
Tu = u and Tv = v. Thus,

ms(u,u, v) = ms(Tu, Tu, Tv) 6 kms(u,u, v) < ms(u,u, v),
ms(u,u,u) = ms(Tu, Tu, Tu) 6 kms(u,u,u) < ms(u,u,u),

and
ms(v, v, v) = ms(Tv, Tv, Tv) 6 kms(v, v, v) < ms(v, v, v),

which implies that ms(u,u, v) = 0 = ms(u,u,u) = ms(v, v, v), and hence u = v as desired. Finally,
assume that u is a fixed point of T . Then applying the contraction condition (2.1) with k ∈ [0, 1), implies
that

ms(u,u,u) = ms(Tu, Tu, Tu)
6 kms(u,u,u)
...
6 knms(u,u,u).

Taking the limit as n tends to infinity, implies that ms(u,u,u) = 0.

In the following result, we prove the existence and uniqueness of a fixed point for a self-mapping in
Ms-metric space, but under a more general contraction.

Theorem 2.2. Let (X,ms) be a complete Ms-metric space and T be a self-mapping on X satisfying the following
condition:

ms(Tx, Tx, Ty) 6 λ[ms(x, x, Tx) +ms(y,y, Ty)], (2.2)

for all x,y ∈ X, where λ ∈ [0, 1
2). Then T has a unique fixed point u, where ms(u,u,u) = 0.

Proof. Let x0 ∈ X be arbitrary. Consider the sequence {xn} is defined by xn = Tnx0 and msn =
ms(xn, xn, xn+1). Note that if there exists a natural number n such that msn = 0, then xn is a fixed
point of T and we are done. So, we may assume that msn > 0 for n > 0. By (2.2), we obtain for any n > 0,

msn = ms(xn, xn, xn+1) = ms(Txn−1, Txn−1, Txn)
6 λ[ms(xn−1, xn−1, Txn−1) +ms(xn, xn, Txn)]
= λ[ms(xn−1, xn−1, xn) +ms(xn, xn, xn+1)]

= λ[msn−1 +msn ].

Hence, msn 6 λmsn−1 + λmsn , which implies msn 6 µmsn−1 , where µ = λ
1−λ < 1 as λ ∈ [0, 1

2). By
repeating this process we get

msn 6 µnms0 .

Thus, limn→∞msn = 0. By (2.2), for all natural numbers n,m, we have

ms(xn, xn, xm) = ms(T
nx0, Tnx0, Tmx0) = ms(Txn−1, Txn−1, Txm−1)

6 λ[ms(xn−1, xn−1, Txn−1) +ms(xm−1, xm−1, Txm−1)]
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= λ[ms(xn−1, xn−1, xn) +ms(xm−1, xm−1, xm)]

= λ[msn−1 +msm−1 ].

Since limn→∞msn = 0, for every ε > 0, we can find a natural number n0 such that msn <
ε
2 and msm <

ε
2

for all m,n > n0. Therefore, it follows that

ms(xn, xn, xm) 6 λ[msn−1 +msm−1 ] < λ[
ε

2
+
ε

2
] <

ε

2
+
ε

2
= ε for all n,m > n0.

This implies that
ms(xn, xn, xm) −msxn,xn,xm < ε for all n,m > n0.

Now, for all natural numbers n,m we have

Msxn,xn,xm = ms(Txn−1, Txn−1, Txn−1)

6 λ[ms(xn−1, xn−1, Txn−1) +ms(xn−1, xn−1, Txn−1)]

= λ[ms(xn−1, xn−1, xn) +ms(xn−1, xn−1, xn)]
= λ[msn−1 +msn−1 ]

= 2λmsn−1 .

As limn→∞msn−1 = 0, for every ε > 0 we can find a natural number n0 such that msn <
ε
2 and for all

m,n > n0. Therefore, it follows that

Msxn,xn,xm 6 λ[msn−1 +msn−1 ] < λ[
ε

2
+
ε

2
] <

ε

2
+
ε

2
= ε for all n,m > n0,

which implies that
Msxn,xn,xm −msxn,xn,xm < ε for all n,m > n0.

Thus, {xn} is an Ms-Cauchy sequence in X. Since X is complete, there exists u ∈ X such that

lim
n→∞ms(xn, xn,u) −msxn,xn,u = 0.

Now, we show that u is a fixed point of T in X. For any natural number n we have,

lim
n→∞ms(xn, xn,u) −msxn,xn,u = 0 = lim

n→∞ms(xn+1, xn+1,u) −msxn+1,xn+1,u

= lim
n→∞ms(Txn, Txn,u) −msTxn,Txn,u

= ms(Tu, Tu,u) −msTu,Tu,u.

This implies that ms(Tu, Tu,u) −msu,u,Tu = 0, and that is ms(Tu, Tu,u) = msu,u,Tu. Now, assume
that

ms(Tu, Tu,u) = ms(Tu, Tu, Tu) 6 2λms(u,u, Tu) = 2λms(Tu, Tu,u) < ms(u,u, Tu).

Thus,
ms(Tu, Tu,u) = ms(u,u,u) 6 ms(Tu, Tu, Tu) 6 2λms(u,u, Tu) < ms(u,u, Tu).

Therefore, Tu = u and thus u is a fixed point of T .
Next, we show that if u is a fixed point, then ms(u,u,u) = 0. Assume that u is a fixed point of T , then

using the contraction (2.2), we have

ms(u,u,u) = ms(Tu, Tu, Tu)
6 λ[ms(u,u, Tu) +ms(u,u, Tu)]
= 2λms(u,u, Tu)
= 2λms(u,u,u)

< ms(u,u,u) since λ ∈ [0,
1
2
),

that is, ms(u,u,u) = 0.
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Finally, to prove the uniqueness, assume that T has two fixed points, say u, v ∈ X. Hence,

ms(u,u, v) = ms(Tu, Tu, Tv) 6 λ[ms(u,u, Tu) +ms(v, v, Tv)] = λ[ms(u,u,u) +ms(v, v, v)] = 0,

which implies that ms(u,u, v) = 0 = ms(u,u,u) = ms(v, v, v), and hence u = v as required.

In closing, the authors would like to bring to the reader’s attention that in this interesting Ms-metric
space it is possible to add some control functions in both contractions of Theorems 2.1 and 2.2.

Theorem 2.3. Let (X,ms) be a complete Ms-metric space and T be a self mapping on X satisfying the following
condition: for all x,y, z ∈ X

ms(Tx, Ty, Tz) 6 ms(x,y, z) −φ(ms(x,y, z)), (2.3)

where φ : [0,∞) → [0,∞) is a continuous and non-decreasing function and φ−1(0) = 0 and φ(t) > 0 for all
t > 0. Then T has a unique fixed point in X.

Proof. Let x0 ∈ X. Define the sequence {xn} in X such that xn = Tn−1x0 = Txn−1 for all n ∈ IN. Note that
if there exists an n ∈ IN such that xn+1 = xn, then xn is a fixed point for T . Without loss of generality,
assume that xn+1 6= xn for all n ∈ IN. Now

ms(xn, xn+1, xn+1) = ms(Txn−1, Txn, Txn)
6 ms(xn−1, xn, xn) −φ(ms(xn−1, xn, xn))
6 ms(xn−1, xn, xn).

(2.4)

Similarly, we can prove that ms(xn−1, xn, xn) 6 ms(xn−2, xn−1, xn−1). Hence, ms(xn, xn+1, xn+1) is a
monotone decreasing sequence. Hence there exists r > 0 such that

lim
n→∞ms(xn, xn+1, xn+1) = r.

Now, by taking the limit as n→∞ in the inequality (2.4), we get r 6 r−φ(r) which leads to a contradic-
tion unless r = 0. Therefore,

lim
n→∞ms(xn, xn+1, xn+1) = 0.

Suppose that {xn} is not an Ms-Cauchy sequence. Then there exists an ε > 0 such that we can find
subsequences xmk

and xnk of {xn} such that

ms(xnk , xmk
, xmk

) −msxnk ,xmk ,xmk
> ε. (2.5)

Choose nk to be the smallest integer with nk > mk and satisfies the inequality (2.5).
Hence, ms(xnk , xmk−1 , xmk−1) −msxnk ,xmk−1 ,xmk−1

< ε. Now,

ε 6 ms(xmk
, xnk , xnk) −msxmk ,xnk ,xnk

6 ms(xmk
, xnk−1 , xnk−1) + 2ms(xnk−1 , xnk−1 , xnk−1) −msxmk ,xnk−1 ,xnk−1

6 ε+ 2ms(xnk−1 , xnk−1 , xnk−1)

< ε,

as n → ∞. Hence, we have a contradiction. Without loss of generality, assume that msxn,xn,xm =
ms(xn, xn, xn). Then we have

0 6 msxn,xn,xm −msxn,xn,xm 6Msxn,xn,xm

= ms(xn, xn, xn)
= ms(Txn−1, Txn−1, Txn−1)
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6 ms(xn−1, xn−1, xn−1) −φ(ms(xn−1, xn−1, xn−1))

6 ms(xn−1, xn−1, xn−1)

...
6 ms(x0, x0, x0).

Hence, lim
n→∞msxn,xn,xm −msxn,xn,xm exists and finite. Therefore, {xn} is an Ms-Cauchy sequence. Since

X is complete, the sequence {xn} converges to an element x ∈ X; that is,

0 = lim
n→∞ms(xn, xn, x) −msxn,xn,x

= lim
n→∞ms(xn+1, xn+1, x) −msxn+1,xn+1,x

= lim
n→∞ms(Txn, Txn, x) −msTxn,Txn,x

= ms(Tx, Tx, x) −msTx,Tx,x.

Similar to the proof of Theorem 2.2, it is not difficult to show that this implies that, Tx = x and so x is a
fixed point.

Finally, we show that T has a unique fixed point. Assume that there are two fixed points u, v ∈ X of T .
If we have ms(u,u, v) > 0, then condition (2.3) implies that

ms(u,u, v) = ms(Tu, Tu, Tv) 6 ms(u,u, v) −φ(ms(u,u, v)) < ms(u,u, v),

and that is a contradiction. Therefore, ms(u,u, v) = 0 and similarly ms(u,u,u) =Ms(v, v, v) = 0 and thus
u = v as desired.

In closing, is it possible to define the same space but without the symmetry condition, (i.e.,ms(x, x,y) 6=
ms(y,y, x))? If possible, what kind of results can be obtained in such space?
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