Contraction principles in M_{s}-metric spaces

N. Mlaikia ${ }^{\text {a,* }}$, N. Souayah ${ }^{\text {b }}$, K. Abodayeh ${ }^{\text {a }}$, T. Abdeljawad ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Prince Sultan University.
${ }^{b}$ Department of Natural Sciences, Community College, King Saud University.
Communicated by W. Shatanawi

Abstract

In this paper, we give an interesting extension of the partial S-metric space which was introduced [N. Mlaiki, Univers. J. Math. Math. Appl., 5 (2014), 109-119] to the M_{s}-metric space. Also, we prove the existence and uniqueness of a fixed point for a self-mapping on an M_{s}-metric space under different contraction principles. (C)2017 all rights reserved.

Keywords: Functional analysis, M_{S}-metric space, fixed point.
2010 MSC: 47H10, 54H25.

1. Introduction

Many researchers over the years proved many interesting results on the existence of a fixed point for a self-mapping on different types of metric spaces, for example, see [1, 2, 4, 8, 10-12, 14-16]. The idea behind this paper was inspired by the work of Asadi et al. in [7]. He gave a more general extension of almost any metric space with two dimensions, and that is not just by defining the self "distance" in a metric as in partial metric spaces [$3,5,6,13,17$], but he assumed that is not necessary that the self "distance" is less than the value of the metric between two different elements.

In [9], an extension of S-metric spaces to a partial S-metric spaces was introduced. Also, it was shown that every S-metric space is a partial S-metric space, but not every partial S-metric space is an S-metric space. In our paper, we introduce the concept of M_{s}-metric spaces which is an extension of the partial S-metric spaces in which we will prove some fixed point results.

First, we remind the reader definition of a partial S-metric space.
Definition 1.1. [9] Let X be a nonempty set. A partial S-metric on X is a function $S_{p}: X^{3} \rightarrow[0, \infty)$ that satisfies the following conditions for all $x, y, z, t \in X$:
(i) $x=y$ if and only if $S_{p}(x, x, x)=S_{p}(y, y, y)=S_{p}(x, x, y)$;

[^0]doi:10.22436/jnsa.010.02.21
(ii) $S_{p}(x, y, z) \leqslant S_{p}(x, x, t)+S_{p}(y, y, t)+S_{p}(z, z, t)-S_{p}(t, t, t)$;
(iii) $S_{p}(x, x, x) \leqslant S_{p}(x, y, z)$;
(iv) $S_{p}(x, x, y)=S_{p}(y, y, x)$.

The pair ($X, S_{\mathfrak{p}}$) is called a partial S-metric space.
Next, we give the definition of an M_{s}-metric space, but first we introduce the following notations.

Notations.

1. $m_{s_{x, y, z}}:=\min \left\{m_{s}(x, x, x), m_{s}(y, y, y), m_{s}(z, z, z)\right\} ;$
2. $M_{s_{x, y, z}}:=\max \left\{m_{s}(x, x, x), m_{s}(y, y, y), m_{s}(z, z, z)\right\}$.

Definition 1.2. An M_{s}-metric on a nonempty set X is a function $m_{s}: X^{3} \rightarrow \mathbb{R}^{+}$such that for all $x, y, z, t \in$ X, the following conditions are satisfied:

1. $m_{s}(x, x, x)=m_{s}(y, y, y)=m_{s}(x, x, y)$ if and only if $x=y$;
2. $m_{s_{x, y, z}} \leqslant m_{s}(x, y, z)$;
3. $\mathfrak{m}_{s}(x, x, y)=\mathfrak{m}_{s}(y, y, x)$;
4. $\left(m_{s}(x, y, z)-m_{s_{x, y, z}}\right) \leqslant\left(m_{s}(x, x, t)-m_{s_{x, x, t}}\right)+\left(m_{s}(y, y, t)-m_{s_{y, y, t}}\right)+\left(m_{s}(z, z, t)-m_{s_{z, z, t}}\right)$.

The pair $\left(X, m_{s}\right)$ is called an M_{s}-metric space. Notice that the condition $m_{s}(x, x, x)=m_{s}(y, y, y)=$ $m_{s}(z, z, z)=m_{s}(x, y, z) \Leftrightarrow x=y=z$ implies (1) above.

It is straightforward to verify that every partial S-metric space is an M_{s}-metric space but the converse is not true. The following example is an M_{s}-metric which is not a partial S-metric space.

Example 1.3. Let $X=\{1,2,3\}$ and define the M_{s}-metric space m_{s} on X by $m_{s}(1,2,3)=6, m_{s}(1,1,2)=$ $m_{s}(2,2,1)=m_{s}(1,1,1)=8, m_{s}(1,1,3)=m_{s}(3,3,1)=m_{s}(3,3,2)=m_{s}(2,2,3)=7, m_{s}(2,2,2)=$ 9 , and $m_{s}(3,3,3)=5$. It is not difficult to see that $\left(X, m_{s}\right)$ is an M_{s}-metric space, but since $m_{s}(1,1,1) \notin$ $m_{s}(1,2,3)$ we deduce that m_{s} is not a partial S-metric space.

Definition 1.4. Let $\left(X, m_{s}\right)$ be an M_{s}-metric space. Then:

1. A sequence $\left\{x_{n}\right\}$ in X converges to a point x if and only if

$$
\lim _{n \rightarrow \infty}\left(m_{s}\left(x_{n}, x_{n}, x\right)-m_{s x_{n}, x_{n}, x}\right)=0 .
$$

2. A sequence $\left\{x_{n}\right\}$ in X is said to be M_{s}-Cauchy sequence if and only if

$$
\lim _{n, m \rightarrow \infty}\left(m_{s}\left(x_{n}, x_{n}, x_{m}\right)-m_{s x_{n}, x_{n}, x_{m}}\right) \text {, and } \lim _{n, m \rightarrow \infty}\left(M_{s x_{n}, x_{n}, x_{m}}-m_{s x_{n}, x_{n}, x_{m}}\right)
$$

exist and are finite.
3. An M_{s}-metric space is said to be complete if every M_{s}-Cauchy sequence $\left\{x_{n}\right\}$ converges to a point x such that

$$
\lim _{n \rightarrow \infty}\left(m_{s}\left(x_{n}, x_{n}, x\right)-m_{s x_{n}, x_{n}, x}\right)=0 \text { and } \lim _{n \rightarrow \infty}\left(M_{s x_{n}, x_{n}, x}-m_{s x_{n}, x_{n}, x}\right)=0
$$

A ball in the M_{s}-metric (X, m_{s}) space with center $x \in X$ and radius $\eta>0$ is defined by

$$
B_{s}[x, \eta]=\left\{y \in X \mid m_{s}(x, x, y)-m_{s x, x, y} \leqslant \eta\right\} .
$$

The topology of $\left(X, M_{s}\right)$ is generated by means of the basis $\beta=\left\{B_{s}[x, \eta]: \eta>0\right\}$.

Lemma 1.5. Assume $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}$ and $\mathrm{y}_{\mathrm{n}} \rightarrow \mathrm{y}$ as $\mathrm{n} \rightarrow \infty$ in an M_{s}-metric space $\left(\mathrm{X}, \mathrm{m}_{s}\right.$). Then,

$$
\lim _{n \rightarrow \infty}\left(m_{s}\left(x_{n}, x_{n}, y_{n}\right)-m_{s x_{n}, x_{n}, y_{n}}\right)=m_{s}(x, x, y)-m_{s x, x, y} .
$$

Proof. The proof follows by the inequality (4) in Definition 1.2. Indeed, we have

$$
\begin{aligned}
\left|\left(m_{s}\left(x_{n}, x_{n}, y_{n}\right)-m_{s x_{n}, x_{n}, y_{n}}\right)-\left(m_{s}(x, x, y)-m_{s x, x, y}\right)\right| \leqslant & 2\left[\left(m_{s}\left(x_{n}, x_{n}, x\right)-m_{s x_{n}, x_{n}, x}\right)\right. \\
& \left.+\left(m_{s}\left(y_{n}, y_{n}, y\right)-m_{s y_{n}, y_{n}, y}\right)\right] .
\end{aligned}
$$

2. Fixed point theorems

In this section, we consider some results about the existence and the uniqueness of fixed point for self-mappings on an M_{s}-metric space, under different contraction principles.

Theorem 2.1. Let $\left(X, m_{s}\right)$ be a complete M_{s}-metric space and T be a self-mapping on X satisfying the following condition:

$$
\begin{equation*}
m_{s}(T x, T x, T y) \leqslant k m_{s}(x, x, y) \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$, where $k \in[0,1)$. Then T has a unique fixed point u. Moreover, $m_{s}(u, u, u)=0$.
Proof. Since $k \in[0,1)$, we can choose a natural number n_{0} such that for a given $0<\epsilon<1$, we have $k^{n_{0}}<\frac{\epsilon}{8}$. Let $T^{n_{0}} \equiv F$ and $F^{i} x_{0}=x_{i}$ for all natural numbers i, where x_{0} is arbitrary. Hence, for all $x, y \in X$, we have

$$
m_{s}(F x, F x, F y)=m_{s}\left(T^{n_{0}} x, T^{n_{0}} x, T^{n_{0}} y\right) \leqslant k^{n_{0}} m_{s}(x, x, y)
$$

For any i, we have

$$
\begin{aligned}
m_{s}\left(x_{i+1}, x_{i+1}, x_{i}\right) & =m_{s}\left(F x_{i}, F x_{i}, F x_{i-1}\right) \\
& \leqslant k^{n_{0}} m_{s}\left(x_{i}, x_{i}, x_{i-1}\right) \\
& \leqslant k^{n_{0}+i} m_{s}\left(x_{1}, x_{1}, x_{0}\right) \rightarrow 0 \text { as } i \rightarrow \infty .
\end{aligned}
$$

Similarly, by (2.1) we have $m_{s}\left(x_{i}, x_{i}, x_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$. Thus, we choose l such that

$$
m_{s}\left(x_{l+1}, x_{l+1}, x_{l}\right)<\frac{\epsilon}{8} \text { and } m_{s}\left(x_{l}, x_{l}, x_{l}\right)<\frac{\epsilon}{4} .
$$

Now, let $\eta=\frac{\epsilon}{2}+m_{s}\left(x_{l}, x_{l}, x_{l}\right)$. Define the set

$$
B_{s}\left[x_{l}, \eta\right]=\left\{y \in X \mid m_{s}\left(x_{l}, x_{l}, y\right)-m_{s x_{1}, x_{l}, y} \leqslant \eta\right\} .
$$

Note that, $x_{l} \in B_{s}\left[x_{l}, \eta\right]$. Therefore $B_{s}\left[x_{l}, \eta\right] \neq \emptyset$. Let $z \in B_{s}\left[x_{l}, \eta\right]$ be arbitrary. Hence,

$$
\begin{aligned}
\mathfrak{m}_{s}\left(F z, F z, F x_{l}\right) & \leqslant k^{n_{0}} m_{s}\left(z, z, x_{l}\right) \\
& \leqslant \frac{\epsilon}{8}\left[\frac{\epsilon}{2}+m_{s z, z, x_{l}}+m_{s}\left(x_{l}, x_{l}, x_{l}\right)\right] \\
& <\frac{\epsilon}{8}\left[1+2 m_{s}\left(x_{l}, x_{l}, x_{l}\right)\right] .
\end{aligned}
$$

Also, we know that $m_{s}\left(F x_{l}, F x_{l}, x_{l}\right)=m_{s}\left(x_{l+1}, x_{l+1}, x_{l}\right)<\frac{\epsilon}{8}$. Therefore,

$$
m_{s}\left(F z, F z, x_{l}\right)-m_{s F z, F z, x_{l}} \leqslant 2\left[\left(m_{s}\left(F z, F z, F x_{l}\right)-m_{s F z, F z, F x_{l}}\right)\right]+\left(m_{s}\left(F x_{l}, F x_{l}, x_{l}\right)-m_{s F x_{1}, F x_{l}, x_{l}}\right)
$$

$$
\begin{aligned}
& \left.\leqslant 2 m_{s}\left(F z, F z, F x_{l}\right)+m_{s}\left(F x_{l}, F x_{l}, x_{l}\right)\right] \\
& \leqslant 2 \frac{\epsilon}{8}\left(1+2 m_{s}\left(x_{l}, x_{l}, x_{l}\right)\right)+\frac{\epsilon}{8} \\
& =\frac{\epsilon}{4}+\frac{\epsilon}{8}+\frac{\epsilon}{2} m_{s}\left(x_{l}, x_{l}, x_{l}\right) \\
& <\frac{\epsilon}{2}+m_{s}\left(x_{l}, x_{l}, x_{l}\right) .
\end{aligned}
$$

Thus, $F z \in B_{b}\left[x_{l}, \eta\right]$ which implies that F maps $B_{b}\left[x_{l}, \eta\right]$ into itself. Thus, by repeating this process we deduce that for all $n \geqslant 1$ we have $F^{n} x_{l} \in B_{b}\left[x_{l}, \eta\right]$ and that is $x_{m} \in B_{b}\left[x_{l}, \eta\right]$ for all $m \geqslant l$. Therefore, for all $m>n \geqslant l$ where $n=l+i$ for some i

$$
\begin{aligned}
m_{s}\left(x_{n}, x_{n}, x_{m}\right) & =m_{s}\left(F x_{n-1}, F x_{n-1}, F x_{m-1}\right) \\
& \leqslant k^{n_{0}} m_{s}\left(x_{n-1}, x_{n-1}, x_{m-1}\right) \\
& \leqslant k^{2 n_{0}} m_{s}\left(x_{n-2}, x_{n-2}, x_{m-2}\right) \\
& \vdots \\
& \leqslant k^{i n_{0}} m_{s}\left(x_{l}, x_{l}, x_{m-i}\right) \\
& \leqslant m_{s}\left(x_{l}, x_{l}, x_{m-i}\right) \\
& \leqslant \frac{\epsilon}{2}+m_{s x_{l}, x_{l}, x_{m-i}}+m_{s}\left(x_{l}, x_{l}, x_{l}\right) \\
& \leqslant \frac{\epsilon}{2}+2 m_{s}\left(x_{l}, x_{l}, x_{l}\right)
\end{aligned}
$$

Also, we have $m_{s}\left(x_{l}, x_{l}, x_{l}\right)<\frac{\epsilon}{4}$, which implies that $m_{s}\left(x_{n}, x_{n}, x_{m}\right)<\epsilon$ for all $m>n>l$, and thus $m_{s}\left(x_{n}, x_{n}, x_{m}\right)-m_{s x_{n}, x_{n}, x_{m}}<\epsilon$ for all $m>n>l$. By the contraction condition (2.1) we see that the sequence $\left\{m_{s}\left(x_{n}, x_{n}, x_{n}\right)\right\}$ is decreasing and hence, for all $m>n>l$, we have

$$
\begin{aligned}
M_{s x_{n}, x_{n}, x_{m}}-m_{s x_{n}, x_{n}, x_{m}} & \leqslant M_{s x_{n}, x_{n}, x_{m}} \\
& =m_{s}\left(x_{n}, x_{n}, x_{n}\right) \\
& \leqslant \operatorname{km}_{s}\left(x_{n-1}, x_{n-1}, x_{n-1}\right) \\
& \vdots \\
& \leqslant k^{n} m_{s}\left(x_{0}, x_{0}, x_{0}\right) \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Thus, we deduce that

$$
\lim _{n, m \rightarrow \infty}\left(m_{s}\left(x_{n}, x_{n}, x_{m}\right)-m_{s x_{n}, x_{n}, x_{m}}\right)=0, \text { and } \lim _{n \rightarrow \infty}\left(M_{s x_{n}}, x_{n}, x_{m}-m_{s x_{n}, x_{n}, x_{m}}\right)=0 .
$$

Hence, the sequence $\left\{x_{n}\right\}$ is an M_{s}-Cauchy. Since X is complete, there exists $u \in X$ such that

$$
\lim _{n \rightarrow \infty} m_{s}\left(x_{n}, x_{n}, u\right)-m_{s x_{n}, x_{n}, u}=0, \quad \lim _{n \rightarrow \infty} M_{s x_{n}, x_{n}, u}-m_{s x_{n}, x_{n}, u}=0 .
$$

The contraction condition (2.1) implies that $\mathfrak{m}_{s}\left(x_{n}, x_{n}, x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Moreover, notice that

$$
\lim _{n \rightarrow \infty} M_{s x_{n}, x_{n}, u}-m_{s x_{n}, x_{n}, u}=\lim _{n \rightarrow \infty}\left|m_{s}\left(x_{n}, x_{n}, x_{n}\right)-m_{s}(u, u, u)\right|=0,
$$

and hence $m_{s}(u, u, u)=0$. Since $x_{n} \rightarrow u, m_{s}(u, u, u)=0$ and $m_{s}\left(x_{n}, x_{n}, x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, then $\lim _{n \rightarrow \infty} m_{s}\left(x_{n}, x_{n}, u\right)=\lim _{n \rightarrow \infty} m_{s x_{n}, x_{n}, u}=0$. Since $m_{s}\left(T x_{n}, T x_{n}, T u\right) \leqslant k m_{s}\left(x_{n}, x_{n}, u\right) \rightarrow 0$ as $n \rightarrow \infty$, then $T x_{n} \rightarrow T u$.

Now, we show that $T u=u$. By Lemma 1.5 and that $T x_{n} \rightarrow T u$ and $x_{n+1}=T x_{n} \rightarrow u$, we have

$$
\lim _{n \rightarrow \infty} m_{s}\left(x_{n}, x_{n}, u\right)-m_{s x_{n}, x_{n}, u}=0=\lim _{n \rightarrow \infty} m_{s}\left(x_{n+1}, x_{n+1}, u\right)-m_{s x_{n+1}, x_{n+1}, u}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} m_{s}\left(T x_{n}, T x_{n}, u\right)-m_{s} T x_{n}, T x_{n}, u \\
& =m_{s}(u, u, u)-m_{s} T u, T u, u \\
& =m_{s}(T u, T u, u)-m_{s} T u, T u, u .
\end{aligned}
$$

Hence, $\mathfrak{m}_{s}(T u, T u, u)=m_{s T u, T u, u}=m_{s}(u, u, u)$, but also by the contraction condition (2.1) we see that $\mathfrak{m}_{s} T u, T u, u=m_{s}(T u, T u, T u)$. Therefore, (2) in Definition 1.2 implies that $T u=u$.

To prove the uniqueness of the fixed point u, assume that T has two fixed points $u, v \in X$; that is, $\mathrm{Tu}=u$ and $\mathrm{T} v=v$. Thus,

$$
\begin{aligned}
m_{s}(u, u, v) & =m_{s}(T u, T u, T v) \leqslant k m_{s}(u, u, v)<m_{s}(u, u, v), \\
m_{s}(u, u, u) & =m_{s}(T u, T u, T u) \leqslant k m_{s}(u, u, u)<m_{s}(u, u, u),
\end{aligned}
$$

and

$$
m_{s}(v, v, v)=m_{s}(T v, T v, T v) \leqslant k m_{s}(v, v, v)<m_{s}(v, v, v),
$$

which implies that $m_{s}(u, u, v)=0=m_{s}(u, u, u)=m_{s}(v, v, v)$, and hence $u=v$ as desired. Finally, assume that u is a fixed point of T. Then applying the contraction condition (2.1) with $k \in[0,1$), implies that

$$
\begin{aligned}
m_{s}(u, u, u) & =m_{s}(T u, T u, T u) \\
& \leqslant k m_{s}(u, u, u) \\
& \vdots \\
& \leqslant k^{n} m_{s}(u, u, u) .
\end{aligned}
$$

Taking the limit as n tends to infinity, implies that $m_{s}(u, u, u)=0$.
In the following result, we prove the existence and uniqueness of a fixed point for a self-mapping in M_{s}-metric space, but under a more general contraction.

Theorem 2.2. Let $\left(X, m_{s}\right)$ be a complete M_{s}-metric space and T be a self-mapping on X satisfying the following condition:

$$
\begin{equation*}
m_{s}(T x, T x, T y) \leqslant \lambda\left[m_{s}(x, x, T x)+m_{s}(y, y, T y)\right], \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$, where $\lambda \in\left[0, \frac{1}{2}\right)$. Then T has a unique fixed point u, where $m_{s}(u, u, u)=0$.
Proof. Let $x_{0} \in X$ be arbitrary. Consider the sequence $\left\{x_{n}\right\}$ is defined by $x_{n}=T^{n} x_{0}$ and $m_{s_{n}}=$ $m_{s}\left(x_{n}, x_{n}, x_{n+1}\right)$. Note that if there exists a natural number n such that $m_{s_{n}}=0$, then x_{n} is a fixed point of T and we are done. So, we may assume that $m_{s_{n}}>0$ for $n \geqslant 0$. By (2.2), we obtain for any $n \geqslant 0$,

$$
\begin{aligned}
m_{s_{n}}=m_{s}\left(x_{n}, x_{n}, x_{n+1}\right) & =m_{s}\left(T x_{n-1}, T x_{n-1}, T x_{n}\right) \\
& \leqslant \lambda\left[m_{s}\left(x_{n-1}, x_{n-1}, T x_{n-1}\right)+m_{s}\left(x_{n}, x_{n}, T x_{n}\right)\right] \\
& =\lambda\left[m_{s}\left(x_{n-1}, x_{n-1}, x_{n}\right)+m_{s}\left(x_{n}, x_{n}, x_{n+1}\right)\right] \\
& =\lambda\left[m_{s_{n-1}}+m_{s_{n}}\right] .
\end{aligned}
$$

Hence, $m_{s_{n}} \leqslant \lambda m_{s_{n-1}}+\lambda m_{s_{n}}$, which implies $m_{s_{n}} \leqslant \mu m_{s_{n-1}}$, where $\mu=\frac{\lambda}{1-\lambda}<1$ as $\lambda \in\left[0, \frac{1}{2}\right)$. By repeating this process we get

$$
m_{s_{n}} \leqslant \mu^{n} m_{s_{0}} .
$$

Thus, $\lim _{n \rightarrow \infty} m_{s_{n}}=0$. By (2.2), for all natural numbers n, m, we have

$$
\begin{aligned}
m_{s}\left(x_{n}, x_{n}, x_{m}\right)=m_{s}\left(T^{n} x_{0}, T^{n} x_{0}, T^{m} x_{0}\right) & =m_{s}\left(T x_{n-1}, T x_{n-1}, T x_{m-1}\right) \\
& \leqslant \lambda\left[m_{s}\left(x_{n-1}, x_{n-1}, T x_{n-1}\right)+m_{s}\left(x_{m-1}, x_{m-1}, T x_{m-1}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\lambda\left[m_{s}\left(x_{n-1}, x_{n-1}, x_{n}\right)+m_{s}\left(x_{m-1}, x_{m-1}, x_{m}\right)\right] \\
& =\lambda\left[m_{s_{n-1}}+m_{s_{m-1}}\right] .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} m_{s_{n}}=0$, for every $\epsilon>0$, we can find a natural number n_{0} such that $m_{s_{n}}<\frac{\epsilon}{2}$ and $m_{s_{m}}<\frac{\epsilon}{2}$ for all $m, n>n_{0}$. Therefore, it follows that

$$
m_{s}\left(x_{n}, x_{n}, x_{m}\right) \leqslant \lambda\left[m_{s_{n-1}}+m_{s_{m-1}}\right]<\lambda\left[\frac{\epsilon}{2}+\frac{\epsilon}{2}\right]<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \text { for all } n, m>n_{0} .
$$

This implies that

$$
m_{s}\left(x_{n}, x_{n}, x_{m}\right)-m_{s x_{n}, x_{n}, x_{m}}<\epsilon \text { for all } n, m>n_{0} .
$$

Now, for all natural numbers n, m we have

$$
\begin{aligned}
M_{s x_{n}, x_{n}, x_{m}} & =m_{s}\left(T x_{n-1}, T x_{n-1}, T x_{n-1}\right) \\
& \leqslant \lambda\left[m_{s}\left(x_{n-1}, x_{n-1}, T x_{n-1}\right)+m_{s}\left(x_{n-1}, x_{n-1}, T x_{n-1}\right)\right] \\
& =\lambda\left[m_{s}\left(x_{n-1}, x_{n-1}, x_{n}\right)+m_{s}\left(x_{n-1}, x_{n-1}, x_{n}\right)\right] \\
& =\lambda\left[m_{s_{n-1}}+m_{s_{n-1}}\right] \\
& =2 \lambda m_{s_{n-1}} .
\end{aligned}
$$

As $\lim _{n \rightarrow \infty} m_{s_{n-1}}=0$, for every $\epsilon>0$ we can find a natural number n_{0} such that $m_{s_{n}}<\frac{\epsilon}{2}$ and for all $\mathrm{m}, \mathrm{n}>\mathrm{n}_{0}$. Therefore, it follows that

$$
M_{s x_{n}, x_{n}, x_{m}} \leqslant \lambda\left[m_{s_{n-1}}+m_{s_{n-1}}\right]<\lambda\left[\frac{\epsilon}{2}+\frac{\epsilon}{2}\right]<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \text { for all } n, m>n_{0}
$$

which implies that

$$
M_{s x_{n}, x_{n}, x_{m}}-m_{s x_{n}, x_{n}, x_{m}}<\epsilon \text { for all } n, m>n_{0} .
$$

Thus, $\left\{x_{n}\right\}$ is an M_{s}-Cauchy sequence in X. Since X is complete, there exists $u \in X$ such that

$$
\lim _{n \rightarrow \infty} m_{s}\left(x_{n}, x_{n}, u\right)-m_{s x_{n}, x_{n}, u}=0 .
$$

Now, we show that u is a fixed point of T in X. For any natural number n we have,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} m_{s}\left(x_{n}, x_{n}, u\right)-m_{s x_{n}, x_{n}, u}=0 & =\lim _{n \rightarrow \infty} m_{s}\left(x_{n+1}, x_{n+1}, u\right)-m_{s x_{n+1}, x_{n+1}, u} \\
& =\lim _{n \rightarrow \infty} m_{s}\left(T x_{n}, T x_{n}, u\right)-m_{s} T x_{n}, T x_{n}, u \\
& =m_{s}(T u, T u, u)-m_{s} T u, T u, u .
\end{aligned}
$$

This implies that $m_{s}(T u, T u, u)-m_{s u, u, T u}=0$, and that is $m_{s}(T u, T u, u)=m_{s u, u, T u}$. Now, assume that

$$
m_{s}(T u, T u, u)=m_{s}(T u, T u, T u) \leqslant 2 \lambda m_{s}(u, u, T u)=2 \lambda m_{s}(T u, T u, u)<m_{s}(u, u, T u)
$$

Thus,

$$
m_{s}(T u, T u, u)=m_{s}(u, u, u) \leqslant m_{s}(T u, T u, T u) \leqslant 2 \lambda m_{s}(u, u, T u)<m_{s}(u, u, T u) .
$$

Therefore, $T u=u$ and thus u is a fixed point of T.
Next, we show that if u is a fixed point, then $m_{s}(u, u, u)=0$. Assume that u is a fixed point of T, then using the contraction (2.2), we have

$$
\begin{aligned}
m_{s}(u, u, u) & =m_{s}(T u, T u, T u) \\
& \leqslant \lambda\left[m_{s}(u, u, T u)+m_{s}(u, u, T u)\right] \\
& =2 \lambda m_{s}(u, u, T u) \\
& =2 \lambda m_{s}(u, u, u) \\
& <m_{s}(u, u, u) \text { since } \lambda \in\left[0, \frac{1}{2}\right)
\end{aligned}
$$

that is, $m_{s}(u, u, u)=0$.

Finally, to prove the uniqueness, assume that T has two fixed points, say $u, v \in X$. Hence,

$$
m_{s}(u, u, v)=m_{s}(T u, T u, T v) \leqslant \lambda\left[m_{s}(u, u, T u)+m_{s}(v, v, T v)\right]=\lambda\left[m_{s}(u, u, u)+m_{s}(v, v, v)\right]=0
$$

which implies that $m_{s}(u, u, v)=0=m_{s}(u, u, u)=m_{s}(v, v, v)$, and hence $u=v$ as required.
In closing, the authors would like to bring to the reader's attention that in this interesting M_{s}-metric space it is possible to add some control functions in both contractions of Theorems 2.1 and 2.2.

Theorem 2.3. Let $\left(X, m_{s}\right)$ be a complete M_{s}-metric space and T be a self mapping on X satisfying the following condition: for all $x, y, z \in X$

$$
\begin{equation*}
m_{s}(T x, T y, T z) \leqslant m_{s}(x, y, z)-\phi\left(m_{s}(x, y, z)\right) \tag{2.3}
\end{equation*}
$$

where $\phi:[0, \infty) \rightarrow[0, \infty)$ is a continuous and non-decreasing function and $\phi^{-1}(0)=0$ and $\phi(\mathrm{t})>0$ for all $\mathrm{t}>0$. Then T has a unique fixed point in X .

Proof. Let $x_{0} \in X$. Define the sequence $\left\{x_{n}\right\}$ in X such that $x_{n}=T^{n-1} x_{0}=T x_{n-1}$ for all $n \in \mathbb{N}$. Note that if there exists an $n \in \mathbb{N}$ such that $x_{n+1}=x_{n}$, then x_{n} is a fixed point for T. Without loss of generality, assume that $x_{n+1} \neq x_{n}$ for all $n \in \mathbb{N}$. Now

$$
\begin{align*}
m_{s}\left(x_{n}, x_{n+1}, x_{n+1}\right) & =m_{s}\left(T x_{n-1}, T x_{n}, T x_{n}\right) \\
& \leqslant m_{s}\left(x_{n-1}, x_{n}, x_{n}\right)-\phi\left(m_{s}\left(x_{n-1}, x_{n}, x_{n}\right)\right) \tag{2.4}\\
& \leqslant m_{s}\left(x_{n-1}, x_{n}, x_{n}\right)
\end{align*}
$$

Similarly, we can prove that $m_{s}\left(x_{n-1}, x_{n}, x_{n}\right) \leqslant m_{s}\left(x_{n-2}, x_{n-1}, x_{n-1}\right)$. Hence, $m_{s}\left(x_{n}, x_{n+1}, x_{n+1}\right)$ is a monotone decreasing sequence. Hence there exists $r \geqslant 0$ such that

$$
\lim _{n \rightarrow \infty} m_{s}\left(x_{n}, x_{n+1}, x_{n+1}\right)=r
$$

Now, by taking the limit as $n \rightarrow \infty$ in the inequality (2.4), we get $r \leqslant r-\phi(r)$ which leads to a contradiction unless $r=0$. Therefore,

$$
\lim _{n \rightarrow \infty} m_{s}\left(x_{n}, x_{n+1}, x_{n+1}\right)=0
$$

Suppose that $\left\{x_{n}\right\}$ is not an M_{s}-Cauchy sequence. Then there exists an $\epsilon>0$ such that we can find subsequences $x_{m_{k}}$ and $x_{n_{k}}$ of $\left\{x_{n}\right\}$ such that

$$
\begin{equation*}
m_{s}\left(x_{n_{k}}, x_{m_{k}}, x_{m_{k}}\right)-m_{s x_{n_{k}}, x_{m_{k}}, x_{m_{k}}} \geqslant \epsilon \tag{2.5}
\end{equation*}
$$

Choose n_{k} to be the smallest integer with $n_{k}>m_{k}$ and satisfies the inequality (2.5).
Hence, $m_{s}\left(x_{n_{k}}, x_{m_{k-1}}, x_{m_{k-1}}\right)-m_{s x_{n_{k}}, x_{m_{k-1}}, x_{m_{k-1}}}<\epsilon$. Now,

$$
\begin{aligned}
\epsilon & \leqslant m_{s}\left(x_{m_{k}}, x_{n_{k}}, x_{n_{k}}\right)-m_{s x_{m_{k}}}, x_{n_{k}}, x_{n_{k}} \\
& \leqslant m_{s}\left(x_{m_{k}}, x_{n_{k-1}}, x_{n_{k-1}}\right)+2 m_{s}\left(x_{n_{k-1}}, x_{n_{k-1}}, x_{n_{k-1}}\right)-m_{s x_{m_{k}},}, x_{n_{k-1}}, x_{n_{k-1}} \\
& \leqslant \epsilon+2 m_{s}\left(x_{n_{k-1}}, x_{n_{k-1}}, x_{n_{k-1}}\right) \\
& <\epsilon
\end{aligned}
$$

as $n \rightarrow \infty$. Hence, we have a contradiction. Without loss of generality, assume that $m_{s x_{n}, x_{n}, x_{m}}=$ $m_{s}\left(x_{n}, x_{n}, x_{n}\right)$. Then we have

$$
\begin{aligned}
0 \leqslant m_{s x_{n}, x_{n}, x_{m}}-m_{s x_{n}, x_{n}, x_{m}} & \leqslant M_{s x_{n}, x_{n}, x_{m}} \\
& =m_{s}\left(x_{n}, x_{n}, x_{n}\right) \\
& =m_{s}\left(T x_{n-1}, T x_{n-1}, T x_{n-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant m_{s}\left(x_{n-1}, x_{n-1}, x_{n-1}\right)-\phi\left(m_{s}\left(x_{n-1}, x_{n-1}, x_{n-1}\right)\right) \\
& \leqslant m_{s}\left(x_{n-1}, x_{n-1}, x_{n-1}\right) \\
& \vdots \\
& \leqslant m_{s}\left(x_{0}, x_{0}, x_{0}\right) .
\end{aligned}
$$

Hence, $\lim _{n \rightarrow \infty} m_{s x_{n}, x_{n}, x_{m}}-m_{s x_{n}, x_{n}, x_{m}}$ exists and finite. Therefore, $\left\{x_{n}\right\}$ is an M_{s}-Cauchy sequence. Since X is complete, the sequence $\left\{x_{n}\right\}$ converges to an element $x \in X$; that is,

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty} m_{s}\left(x_{n}, x_{n}, x\right)-m_{s x_{n}, x_{n}, x} \\
& =\lim _{n \rightarrow \infty} m_{s}\left(x_{n+1}, x_{n+1}, x\right)-m_{s x_{n+1}, x_{n+1}, x} \\
& =\lim _{n \rightarrow \infty} m_{s}\left(T x_{n}, T x_{n}, x\right)-m_{s} T x_{n}, T x_{n}, x \\
& =m_{s}(T x, T x, x)-m_{s} T x, T x, x .
\end{aligned}
$$

Similar to the proof of Theorem 2.2, it is not difficult to show that this implies that, $T x=x$ and so x is a fixed point.

Finally, we show that T has a unique fixed point. Assume that there are two fixed points $u, v \in X$ of T. If we have $m_{s}(u, u, v)>0$, then condition (2.3) implies that

$$
m_{s}(u, u, v)=m_{s}(T u, T u, T v) \leqslant m_{s}(u, u, v)-\phi\left(m_{s}(u, u, v)\right)<m_{s}(u, u, v)
$$

and that is a contradiction. Therefore, $m_{s}(u, u, v)=0$ and similarly $m_{s}(u, u, u)=M_{s}(v, v, v)=0$ and thus $u=v$ as desired.

In closing, is it possible to define the same space but without the symmetry condition, (i.e., $m_{s}(x, x, y) \neq$ $\left.m_{s}(y, y, x)\right)$? If possible, what kind of results can be obtained in such space?

References

[1] T. Abdeljawad, Fixed points for generalized weakly contractive mappings in partial metric spaces, Math. Comput. Modelling, 54 (2011), 2923-2927. 1
[2] T. Abdeljawad, Meir-Keeler α-contractive fixed and common fixed point theorems, Fixed Point Theory Appl., 2013 (2013), 10 pages. 1
[3] T. Abdeljawad, H. Aydi, E. Karapınar, Coupled fixed points for Meir-Keeler contractions in ordered partial metric spaces, Math. Probl. Eng., 2012 (2012), 20 pages. 1
[4] T. Abdeljawad, E. Karapınar, K. Taş, A generalized contraction principle with control functions on partial metric spaces, Comput. Math. Appl., 63 (2012), 716-719. 1
[5] I. Altun, A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl., 2011 (2011), 10 pages. 1
[6] I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, Topology Appl., 157 (2010), 2778-2785. 1
[7] M. Asadi, E. Karapınar, P. Salimi, New extension of p-metric spaces with some fixed-point results on M-metric spaces, J. Inequal. Appl., 2014 (2014), 9 pages. 1
[8] S. G. Matthews, Partial metric topology, Papers on general topology and applications, Flushing, NY, (1992), 183-197, Ann. New York Acad. Sci., 728 (1994). 1
[9] N. Mlaiki, A contraction principle in partial S-metric spaces, Univers. J. Math. Math. Appl., 5 (2014), 109-119. 1, 1.1
[10] N. Mlaiki, Common fixed points in complex S-metric space, Adv. Fixed Point Theory, 4 (2014), 509-524. 1
[11] N. Mlaiki, $\alpha-\psi$-contractive mapping on S-metric space, Math. Sci. Lett., 4 (2015), 9-12.
[12] N. Mlaiki, A. Zarrad, N. Souayah, A. Mukheimer, T. Abdeljawad, Fixed point theorems in M ${ }_{b}$-metric spaces, J. Math. Anal., 7 (2016), 1-9. 1
[13] A. Shoaib, M. Arshad, J. Ahmad, Fixed point results of locally contractive mappings in ordered quasi-partial metric spaces, Sci. World J., 2013 (2013), 8 pages. 1
[14] S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., 11 (2014), 703-711. 1
[15] N. Souayah, A fixed point in partial S_{b}-metric spaces, An. Şt. Univ. Ovidius Constanța, 24 (2016), 351-362.
[16] N. Souayah, N. Mlaiki, A fixed point in S_{b}-metric spaces, J. Math. Comput. Sci., 16 (2016), 131-139. 1
[17] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., 6 (2005), 229-240. 1

[^0]: *Corresponding author
 Email addresses: nmlaiki@psu.edu.sa (N. Mlaiki), nsouayah@ksu.edu.sa (N. Souayah), kamal@psu.edu.sa (K. Abodayeh), tabdeljawad@psu.edu.sa (T. Abdeljawad)

