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Abstract
In this paper, we introduce a projected algorithm with Meir-Keeler contraction for finding the fixed points of the pseudo-

contractive mappings. We prove that the presented algorithm converges strongly to the fixed point of the pseudocontractive
mapping in Hilbert spaces. c©2017 All rights reserved.
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1. Introduction

In this paper, we assume that H is a real Hilbert space with inner 〈·, ·〉 and norm ‖ · ‖ and C ⊂ H is a
nonempty closed convex set.

Recall that a mapping T : C→ C is said to be pseudocontractive, if

〈Tu− Tu†,u− u†〉 6 ‖u− u†‖2, ∀u,u† ∈ C. (1.1)

It is clear that (1.1) is equivalent to

‖Tu− Tu†‖2 6 ‖u− u†‖2 + ‖(I− T)u− (I− T)u†‖2, ∀u,u† ∈ C. (1.2)

We use Fix(T) to denote the set of fixed points of T . Recall also that a mapping T : C → C is said to be
L-Lipschitzian, if

‖Tu− Tu†‖ 6 L‖u− u†‖, ∀u,u† ∈ C,
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where L > 0 is a constant. If L = 1, T is called nonexpansive.
The interest of pseudocontractions lies in their connection with monotone operators, namely, T is a

pseudocontraction, if and only if the complement I− T is a monotone operator. In the literature, there
are a large number references associated with the fixed point algorithms for nonexpansive mappings and
pseudocontractive mappings. See, for instance, [1–7, 11] and [9, 10, 12–31]. The first interesting result for
finding the fixed points of the pseudocontractive mappings was presented by Ishikawa in 1974 as follows.

Theorem 1.1 (Ishikawa Algorithm, [7]). Let H be a Hilbert space. Let C ⊂ H be a convex compact set. Let
T : C → C be an L-Lipschitzian pseudocontractive mapping with Fix(T) 6= ∅. For any x0 ∈ C, define the sequence
{xn} iteratively by {

yn = (1 −αn)xn +αnTxn,
xn+1 = (1 −βn)xn +βnTyn,

(1.3)

for all n ∈ N, where {βn} ⊂ [0, 1], {αn} ⊂ [0, 1] satisfy the conditions: limn→∞ αn = 0 and
∑∞

n=1 βnαn = ∞.
Then the sequence {xn} generated by (1.3) converges strongly to a fixed point of T .

Remark 1.2. The iteration (1.3) is now referred as the Ishikawa iterative sequence. We observe that C is
compact subset. We know that strong convergence has not been achieved without compactness assump-
tion (a counter example can be found in [3]).

In order to obtain strong convergence for pseudocontractive mappings without the compactness as-
sumption, Zhou [30] coupled the Ishikawa algorithm with the hybrid technique and proved the following
theorem for Lipschitz pseudocontractive mappings.

Theorem 1.3 (Hybrid Ishikawa Algorithm, [30]). Let C be a closed convex subset of a real Hilbert space H and
let T : C → C be a Lipschitz pseudocontraction such that Fix(T) 6= ∅. Suppose that {αn} and {βn} are two real
sequences in (0, 1) satisfying the conditions:

(i) αn 6 βn, for all n ∈N,

(ii) 0 < lim infn→∞ βn 6 lim supn→∞ βn 6 β < 1√
1+L2+1

.

Let the sequence {xn} be generated by

yn = (1 −βn)xn +βnTxn,
zn = (1 −αn)xn +αnTyn,
Cn = {z ∈ C : ‖zn − z‖2 6 xn − z‖2 −βnαn(1 − 2βn −β2

nL
2)‖xn − Txn‖2},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 > 0},
xn+1 = projCn

⋂
Qn

(x0), n ∈N.

(1.4)

Then the sequence {xn} generated by (1.4) converges strongly to projFix(T)(x0).

Further, Yao et al. [16] introduced the hybrid Mann algorithm and obtained the strong convergence
theorem.

Theorem 1.4 (Hybrid Mann Algorithm, [16]). Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C → C be an L-Lipschitz pseudocontractive mapping such that Fix(T) 6= ∅. Let {αn} be a sequence in
(0, 1). Let x0 ∈ H. For C1 = C and x1 = projC1(x0), define a sequence {xn} of C as follows:

yn = (1 −αn)xn +αnTxn,
Cn+1 = {z ∈ Cn : ‖αn(I− T)yn‖2 6 2αn〈xn − z, (I− T)yn〉},
xn+1 = projCn+1(x0), n ∈N.

(1.5)

Assume the sequence {αn} ⊂ [a,b] for some a,b ∈ (0, 1
L+1). Then the sequence {xn} generated by (1.5) converges

strongly to projFix(T)(x0).
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Motivated and inspired by the above results, in this paper we introduce a projected algorithm with
Meir-Keeler contraction for finding the fixed points of the pseudocontractive mappings. We prove that the
presented algorithm converges strongly to the fixed point of the pseudocontractive mapping in Hilbert
spaces.

2. Preliminaries

Recall that the metric projection projC : H→ C satisfies

‖u− projC(u)‖ = inf{‖u− u†‖ : u† ∈ C}.

The metric projection proj is a typical firmly nonexpansive mapping. The characteristic inequality of the
projection is

〈u− projC(u),u† − projC(u)〉 6 0,

for all u ∈ H, u† ∈ C.
Recall that a mapping T is said to be demiclosed, if for any sequence {xn} which weakly converges to

x̃, and if the sequence {T(xn)} strongly converges to x†, then T(x̃) = x†.
It is well-known that in a real Hilbert space H, the following equality holds:

‖ξu+ (1 − ξ)u†‖2 = ξ‖u‖2 + (1 − ξ)‖u†‖2 − ξ(1 − ξ)‖u− u†‖2, (2.1)

for all u,u† ∈ H and ξ ∈ [0, 1].

Lemma 2.1 ([30]). Let H be a real Hilbert space, C a closed convex subset of H. Let T : C → C be a continuous
pseudocontractive mapping. Then

(i) Fix(T) is a closed convex subset of C;

(ii) (I− T) is demiclosed at zero.

For convenient, in the sequel we shall use the following expressions:

• xn ⇀ x† denotes the weak convergence of xn to x†;

• xn → x† denotes the strong convergence of xn to x†.

Let the sequence {Cn} be a nonempty closed convex subset of a Hilbert space H. We define s− LinCn

and w− LsnCn as follows.

• x ∈ s− LinCn, if and only if there exists {xn} ⊂ Cn such that xn → x.

• x ∈ w− LsnCn, if and only if there exists a subsequence {Cni
} of {Cn} and a sequence {yi} ⊂ Cni

such that yi ⇀ y.

If C0 satisfies
C0 = s− LinCn = w− LsnCn,

it is said that {Cn} converges to C0 in the sense of Mosco [10] and we write C0 = M− limn→∞Cn. It is
easy to show that if {Cn} is nonincreasing with respect to inclusion, then {Cn} converges to

⋂∞
n=1Cn in

the sense of Mosco. Tsukada [14] proved the following theorem for the metric projection.

Lemma 2.2 ([14]). Let H be a Hilbert space. Let {Cn} be a sequence of nonempty closed convex subsets of H. If
C0 =M− limn→∞Cn exists and is nonempty, then for each x ∈ H, {projCn

(x)} converges strongly to projC0(x),
where projCn

and projC0 are the metric projections of H onto Cn and C0, respectively.
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Let (X,d) be a complete metric space. A mapping f : X → X is called a Meir-Keeler contraction [8], if
for every ε > 0, there exists δ > 0 such that

d(x,y) < ε+ δ implies d(f(x), f(y)) < ε,

for all x,y ∈ X. It is well-known that the Meir-Keeler contraction is a generalization of the contraction.

Lemma 2.3 ([8]). A Meir-Keeler contraction defined on a complete metric space has a unique fixed point.

Lemma 2.4 ([13]). Let f be a Meir-Keeler contraction on a convex subset C of a Banach space E. Then, for every
ε > 0, there exists r ∈ (0, 1) such that

‖x− y‖ > ε implies ‖f(x) − f(y)‖ 6 r‖x− y‖,

for all x,y ∈ C.

Lemma 2.5 ([13]). Let C be a convex subset of a Banach space E. Let T be a nonexpansive mapping on C, and let f
be a Meir-Keeler contraction on C. Then the following hold:

(i) Tf is a Meir-Keeler contraction on C;

(ii) for each α ∈ (0, 1), (1 −α)T +αf is a Meir-Keeler contraction on C.

3. Main results

In this section, we firstly introduce a projected fixed point algorithm with Meir-Keeler contraction for
pseudocontractive mappings in Hilbert spaces. Consequently, we show the strong convergence of our
presented algorithm.

In the sequel, we assume that H is a real Hilbert space and C ⊂ H is a nonempty closed convex set.
Let T : C → C be an L(> 1)-Lipschitzian pseudocontractive mapping with Fix(T) 6= ∅. Let f : C → C be a
Meir-Keeler contractive mapping. Let {αn} and {βn} be two sequences in [0, 1].

Algorithm 3.1. For x0 ∈ C0 = C arbitrarily, define a sequence {xn} iteratively by
yn = (1 −βn)xn +βnTxn,
Cn+1 = {z ∈ Cn : ‖(1 −αn)xn +αnTyn − z‖ 6 ‖xn − z‖},
xn+1 = projCn+1f(xn), ∀n > 0,

(3.1)

where proj is the metric projection.

Theorem 3.2. If 0 < a < αn 6 βn < b <
1√

1+L2+1
, then the sequence {xn} defined by (3.1) converges strongly

to x† = projFix(T)f(x†).

Remark 3.3. By Lemma 2.1, Fix(T) is a closed convex subset of C. Thus projFix(T) is well-defined. Since
f is a Meir-Keeler contraction of C, we get projFix(T)f is a Meir-Keeler contraction of C by Lemma 2.5.
According to Lemma 2.3, there exists a unique fixed point x† ∈ C such that x† = projFix(T)f(x†).

Proof. We first show by induction that Fix(T) ⊂ Cn for all n > 0.

(i) Fix(T) ⊂ C0 is obvious.

(ii) Suppose that Fix(T) ⊂ Ck for some k ∈N. Then for x∗ ∈ Fix(T) ⊂ Ck, we have from (1.2) that

‖Txn − x∗‖2 6 ‖xn − x∗‖2 + ‖Txn − xn‖2, (3.2)

and

‖Tyn − x∗‖2 = ‖T((1 −βn)I+βnT)xn − x∗‖2

6 ‖(1 −βn)(xn − x∗) +βn(Txn − x∗)‖2 + ‖(1 −βn)xn +βnTxn − Tyn‖2.
(3.3)
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From (2.1) we have that

‖(1 −βn)xn +βnTxn − Tyn‖2 = ‖(1 −βn)(xn − Tyn) +βn(Txn − Tyn)‖2

= (1 −βn)‖xn − Tyn‖2 +βn‖Txn − Tyn‖2

−βn(1 −βn)‖xn − Txn‖2.

(3.4)

Since T is L-Lipschitzian and xn − yn = βn(xn − Txn), by (3.4) we get that

‖(1 −βn)xn +βnTxn − Tyn‖2 6 (1 −βn)‖xn − Tyn‖2 +β3
nL

2‖xn − Txn‖2

−βn(1 −βn)‖xn − Txn‖2

= (1 −βn)‖xn − Tyn‖2 + (β3
nL

2 +β2
n −βn)‖xn − Txn‖2.

(3.5)

By (2.1) and (3.2) we have that

‖(1 −βn)(xn − x∗) +βn(Txn − x∗)‖2 = ‖(1 −βn)(xn − x∗) +βn(Txn − x∗)‖2

= (1 −βn)‖xn − x∗‖2 +βn‖Txn − x∗‖2

−βn(1 −βn)‖xn − Txn‖2

6 (1 −βn)‖xn − x∗‖2 +βn(‖xn − x∗‖2 + ‖xn − Txn‖2)

−βn(1 −βn)‖xn − Txn‖2

= ‖xn − x∗‖2 +β2
n‖xn − Txn‖2.

(3.6)

By (3.3), (3.5) and (3.6) we obtain that

‖Tyn − x∗‖2 6 ‖x− x∗‖2 + (1 −βn)‖xn − Tyn‖2 −βn(1 − 2βn −β2
nL

2)‖xn − Txn‖2. (3.7)

Since βn < b <
1√

1+L2+1
, we derive that

1 − 2βn −β2
nL

2 > 0, ∀n > 0.

This together with (3.7) implies that

‖Tyn − x∗‖2 6 ‖xn − x∗‖2 + (1 −βn)‖xn − Tyn‖2. (3.8)

By (2.1) and (3.8) and noting that αn 6 βn, we have that

‖(1 −αn)xn +αnTyn − x∗‖2 = (1 −αn)‖xn − x∗‖2 +αn‖Tyn − x∗‖2

−αn(1 −αn)‖xn − Tyn‖2

6 ‖xn − x∗‖2 −αn(βn −αn)‖Tyn − x∗‖2

6 ‖xn − x∗‖2,

and hence x∗ ∈ Ck+1. This indicates that
Fix(T) ⊂ Cn,

for all n > 0.
Next, we show that Cn is closed and convex for all n > 0.

(i) It is obvious from the assumption that C0 = C is closed convex.

(ii) Suppose that Ck is closed and convex for some k ∈ N. For z ∈ Ck, we know that ‖(1−αk)xk+αkTyk−
z‖ 6 ‖xk − z‖ is equivalent to

αk‖Tyk − xk‖2 + 2〈Tyk − xk, xk − z〉 6 0.
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So, Ck+1 is closed and convex. By induction, we deduce that Cn is closed and convex for all n > 0. This
implies that {xn} is well-defined.

Next, we prove that
lim
n→∞ ‖xn − u‖ = 0,

for some u ∈ ∩∞n=1Cn and
〈f(u) − u,u− y〉 > 0,

for all y ∈ Fix(T).
Since

⋂∞
n=1Cn is closed convex, we also have that proj⋂∞

n=1 Cn
is well-defined and so proj⋂∞

n=1 Cn
f

is a Meir-Keeler contraction on C. By Lemma 2.3, there exists a unique fixed point u ∈
⋂∞

n=1Cn of
proj⋂∞

n=1 Cn
f. Since Cn is a nonincreasing sequence of nonempty closed convex subset of H with respect

to inclusion, it follows that

∅ 6= Fix(T) ⊂
∞⋂

n=1

Cn =M− lim
n→∞Cn.

Setting un := projCn
f(u) and applying Lemma 2.2, we can conclude that

lim
n→∞un = proj⋂∞

n=1 Cn
f(u) = u.

Now we show that limn→∞ ‖xn − u‖ = 0.
Assume d = limn‖xn − u‖ > 0, then for all ε ∈ (0,d), we can choose a δ1 > 0 such that

lim
n
‖xn − u‖ > ε+ δ1. (3.9)

Since f is a Meir-Keeler contraction, for above ε there exists another δ2 > 0 such that

‖x− y‖ < ε+ δ2 implies ‖f(x) − f(y)‖ < ε, (3.10)

for all x,y ∈ C.
In fact, we can choose a common δ > 0 such that (3.9) and (3.10) hold. If δ1 > δ2, then

lim
n
‖xn − u‖ > ε+ δ1 > ε+ δ2.

If δ1 6 δ2, then from (3.10) we deduce that

‖x− y‖ < ε+ δ1 implies ‖f(x) − f(y)‖ < ε,

for all x,y ∈ C.
Thus, we have that

lim
n
‖xn − u‖ > ε+ δ, (3.11)

and
‖x− y‖ < ε+ δ implies ‖f(x) − f(y)‖ < ε, for all x,y ∈ C. (3.12)

Since un → u, there exists n0 ∈N such that

‖un − u‖ < δ, ∀n > n0. (3.13)

We now consider two possible cases.

Case 1. There exists n1 > n0 such that
‖xn1 − u‖ 6 ε+ δ.

By (3.12) and (3.13), we get that

‖xn1+1 − u‖ 6 ‖xn1+1 − un1+1‖+ ‖un1+1 − u‖
= ‖projCn1+1f(xn1) − projCn1+1f(u)‖+ ‖un1+1 − u‖

6 ‖f(xn1) − f(u)‖+ ‖un1+1 − u‖
6 ε+ δ.
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By induction, we can obtain that
‖xn1+m − u‖ 6 ε+ δ,

for all m > 1, which implies that
lim
n
‖xn − u‖ 6 ε+ δ,

which contradicts with (3.11). Therefore, we conclude that ‖xn − u‖ → 0 as n→∞.

Case 2. ‖xn − u‖ > ε+ δ for all n > n0.
We shall prove that Case 2 is impossible. Suppose Case 2 holds true. By Lemma 2.4, there exists

r ∈ (0, 1) such that
‖f(xn) − f(u)‖ 6 r‖xn − u‖, ∀n > n0.

Thus, we have that
‖xn+1 − un+1‖ = ‖projCn+1f(xn) − projCn+1f(u)‖

6 ‖f(xn) − f(u)‖
6 r‖xn − u‖,

for every n > n0.
It follows that

lim
n
‖xn+1 − u‖ = lim

n
‖xn+1 − un+1‖

6 rlim
n
‖xn − u‖

< lim
n
‖xn − u‖,

which gives a contradiction.
Hence, we obtain that

lim
n→∞ ‖xn − u‖ = 0,

and therefore, {xn} is bounded.
Finally, we prove that u ∈ Fix(T). Observe that

‖xn+1 − xn‖ 6 ‖xn − u‖+ ‖u− un+1‖+ ‖un+1 − xn+1‖
= ‖xn − u‖+ ‖u− un+1‖+ ‖projCn+1f(xn) − projCn+1f(u)‖
6 ‖xn − u‖+ ‖u− un+1‖+ ‖f(xn) − f(u)‖.

Therefore,
lim
n→∞ ‖xn+1 − xn‖ = 0. (3.14)

From xn+1 ∈ Cn+1, we have that

‖(1 −αn)xn +αnTyn − xn+1‖ 6 ‖xn − xn+1‖.

This together with (3.14) implies that
lim
n→∞ ‖Tyn − xn‖ = 0.

Note that
‖xn − Txn‖ 6 ‖xn − Tyn‖+ ‖Tyn − Txn‖

6 ‖xn − Tyn‖+ L‖xn − yn‖
6 ‖xn − Tyn‖+ L(1 −βn)‖xn − Txn‖.

It follows
‖xn − Txn‖ 6

1
1 − (1 −βn)L

‖xn − Tyn‖ 6
1

1 − (1 − a)L
‖xn − Tyn‖ → 0. (3.15)

By Lemma 2.1 and (3.15), we have that u ∈ Fix(T).
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Since xn+1 = projCn+1f(xn), we have that

〈f(xn) − xn+1, xn+1 − y〉 > 0, ∀y ∈ Cn+1.

Since Fix(T) ⊂ Cn+1, we get

〈f(xn) − xn+1, xn+1 − y〉 > 0, ∀y ∈ Fix(T).

We have from xn → u ∈ Fix(T) that

〈f(u) − u,u− y〉 > 0, ∀y ∈ Fix(T).

Thus, u = projFix(T)f(u) = x
†. This completes the proof.

Remark 3.4. It is obvious that (3.1) is simpler than (1.4) and (1.5).

From Theorem 3.2, we can deduce several corollaries.

Corollary 3.5. Let H be a real Hilbert space and C ⊂ H a nonempty closed convex set. Let T : C → C be an
L(> 1)-Lipschitzian pseudocontractive mapping with Fix(T) 6= ∅. Let f : C → C be a ρ-contraction. Let {αn} and
{βn} be two sequences in [0, 1]. If 0 < a < αn 6 βn < b < 1√

1+L2+1
, then the sequence {xn} defined by (3.1)

converges strongly to x† = projFix(T)f(x†).

Corollary 3.6. Let H be a real Hilbert space and C ⊂ H a nonempty closed convex set. Let T : C → C be a
nonexpansive mapping with Fix(T) 6= ∅. Let f : C → C be a Meir-Keeler contractive mapping. Let {αn} and {βn}

be two sequences in [0, 1]. If 0 < a < αn 6 βn < b <
1

1+
√

2
, then the sequence {xn} defined by (3.1) converges

strongly to x† = projFix(T)f(x†).

Corollary 3.7. Let H be a real Hilbert space and C ⊂ H a nonempty closed convex set. Let T : C → C be a
nonexpansive mapping with Fix(T) 6= ∅. Let f : C → C be a ρ-contraction. Let {αn} and {βn} be two sequences
in [0, 1]. If 0 < a < αn 6 βn < b < 1

1+
√

2
, then the sequence {xn} defined by (3.1) converges strongly to

x† = projFix(T)f(x
†).

Algorithm 3.8. For x0 ∈ C0 = C arbitrarily, define a sequence {xn} iteratively by
yn = (1 −βn)xn +βnTxn,
Cn+1 = {z ∈ Cn : ‖(1 −αn)xn +αnTyn − z‖ 6 ‖xn − z‖},
xn+1 = projCn+1(x0), ∀n > 0,

(3.16)

where proj is the metric projection.

Corollary 3.9. Let H be a real Hilbert space and C ⊂ H a nonempty closed convex set. Let T : C → C be
an L(> 1)-Lipschitzian pseudocontractive mapping with Fix(T) 6= ∅. Let {αn} and {βn} be two sequences in
[0, 1]. If 0 < a < αn 6 βn < b < 1√

1+L2+1
, then the sequence {xn} defined by (3.16) converges strongly to

x† = projFix(T)(x0).

Corollary 3.10. Let H be a real Hilbert space and C ⊂ H a nonempty closed convex set. Let T : C → C be a
nonexpansive mapping with Fix(T) 6= ∅. Let {αn} and {βn} be two sequences in [0, 1]. If 0 < a < αn 6 βn < b <

1
1+
√

2
, then the sequence {xn} defined by (3.16) converges strongly to x† = projFix(T)(x0).
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