A projected fixed point algorithm with Meir-Keeler contraction for pseudocontractive mappings

Yonghong Yao\(^a\), Naseer Shahzad\(^b\),*, Yeong-Cheng Liou\(^c\), Li-Jun Zhu\(^d\)

\(^a\)Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, China.
\(^b\)Department of Mathematics, King Abdulaziz University, P. O. B. 80203, Jeddah 21589, Saudi Arabia.
\(^c\)Department of Information Management, Cheng Shiu University, Kaohsiung 833, Taiwan and Center for General Education, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
\(^d\)School of Mathematics and Information Science, Beifang University of Nationalities, Yinchuan 750021, China.

Received 2016-04-06

Abstract

In this paper, we introduce a projected algorithm with Meir-Keeler contraction for finding the fixed points of the pseudocontractive mappings. We prove that the presented algorithm converges strongly to the fixed point of the pseudocontractive mapping in Hilbert spaces. ©2017 All rights reserved.

Keywords: Projected algorithm, pseudocontractive mapping, fixed point.
2010 MSC: 47H05, 47H10, 47H17.

1. Introduction

In this paper, we assume that \(H\) is a real Hilbert space with inner product \(\langle \cdot, \cdot \rangle\) and norm \(\| \cdot \|\) and \(C \subset H\) is a nonempty closed convex set.

Recall that a mapping \(T : C \rightarrow C\) is said to be pseudocontractive, if

\[
\langle Tu - Tu^\dagger, u - u^\dagger \rangle \leq \|u - u^\dagger\|^2, \quad \forall u, u^\dagger \in C.
\] (1.1)

It is clear that (1.1) is equivalent to

\[
\|Tu - Tu^\dagger\|^2 \leq \|u - u^\dagger\|^2 + \|(I - T)u - (I - T)u^\dagger\|^2, \quad \forall u, u^\dagger \in C.
\] (1.2)

We use \(\text{Fix}(T)\) to denote the set of fixed points of \(T\). Recall also that a mapping \(T : C \rightarrow C\) is said to be \(L\)-Lipschitzian, if

\[
\|Tu - Tu^\dagger\| \leq L\|u - u^\dagger\|, \quad \forall u, u^\dagger \in C,
\]
where \(L > 0 \) is a constant. If \(L = 1 \), \(T \) is called nonexpansive.

The interest of pseudocontractions lies in their connection with monotone operators, namely, \(T \) is a pseudocontraction, if and only if the complement \(I - T \) is a monotone operator. In the literature, there are a large number of references associated with the fixed point algorithms for nonexpansive mappings and pseudocontractive mappings. See, for instance, [1–7, 11] and [9, 10, 12–31]. The first interesting result for finding the fixed points of the pseudocontractive mappings was presented by Ishikawa in 1974 as follows.

Theorem 1.1 (Ishikawa Algorithm, [7]). Let \(H \) be a Hilbert space. Let \(C \subset H \) be a convex compact set. Let \(T : C \to C \) be an \(L \)-Lipschitzian pseudocontractive mapping with \(\text{Fix}(T) \neq \emptyset \). For any \(x_0 \in C \), define the sequence \(\{x_n\} \) iteratively by

\[
\begin{align*}
y_n &= (1 - \alpha_n)x_n + \alpha_n Tx_n, \\
x_{n+1} &= (1 - \beta_n)x_n + \beta_n Ty_n,
\end{align*}
\]

for all \(n \in \mathbb{N} \), where \(\{\beta_n\} \subset [0, 1] \), \(\{\alpha_n\} \subset [0, 1] \) satisfy the conditions: \(\lim_{n \to \infty} \alpha_n = 0 \) and \(\sum_{n=1}^{\infty} \beta_n \alpha_n = \infty \). Then the sequence \(\{x_n\} \) generated by (1.3) converges strongly to a fixed point of \(T \).

Remark 1.2. The iteration (1.3) is now referred as the Ishikawa iterative sequence. We observe that \(C \) is compact subset. We know that strong convergence has not been achieved without compactness assumption (a counterexample can be found in [3]).

In order to obtain strong convergence for pseudocontractive mappings without the compactness assumption, Zhou [30] coupled the Ishikawa algorithm with the hybrid technique and proved the following theorem for Lipschitz pseudocontractive mappings.

Theorem 1.3 (Hybrid Ishikawa Algorithm, [30]). Let \(C \) be a closed convex subset of a real Hilbert space \(H \) and let \(T : C \to C \) be a Lipschitz pseudocontraction such that \(\text{Fix}(T) \neq \emptyset \). Suppose that \(\{\alpha_n\} \) and \(\{\beta_n\} \) are two real sequences in \((0,1)\) satisfying the conditions:

\[
\begin{align*}
(i) & \quad \alpha_n \leq \beta_n, \text{ for all } n \in \mathbb{N}, \\
(ii) & \quad 0 < \lim \inf_{n \to \infty} \beta_n \leq \lim \sup_{n \to \infty} \beta_n \leq \beta < \frac{1}{\sqrt{1+L^2}}.
\end{align*}
\]

Let the sequence \(\{x_n\} \) be generated by

\[
\begin{align*}
y_n &= (1 - \beta_n)x_n + \beta_n Tx_n, \\
z_n &= (1 - \alpha_n)x_n + \alpha_n Ty_n, \\
C_n &= \{z \in C : \|z - z_n\|^2 \leq \|x_n - z\|^2 - \beta_n \alpha_n (1 - 2\beta_n - \beta_n^2 L^2) \|x_n - Tx_n\|^2\}, \\
Q_n &= \{z \in C : \langle x_n - z, x_0 - x_n \rangle \geq 0\}, \\
x_{n+1} &= \text{proj}_{C_n \cap Q_n}(x_0), \quad n \in \mathbb{N}.
\end{align*}
\]

Then the sequence \(\{x_n\} \) generated by (1.4) converges strongly to \(\text{proj}_{\text{Fix}(T)}(x_0) \).

Further, Yao et al. [16] introduced the hybrid Mann algorithm and obtained the strong convergence theorem.

Theorem 1.4 (Hybrid Mann Algorithm, [16]). Let \(C \) be a nonempty closed convex subset of a real Hilbert space \(H \). Let \(T : C \to C \) be an \(L \)-Lipschitz pseudocontractive mapping such that \(\text{Fix}(T) \neq \emptyset \). Let \(\{\alpha_n\} \) be a sequence in \((0,1)\). Let \(x_0 \in H \). For \(C_1 = C \) and \(x_1 = \text{proj}_{C_1}(x_0) \), define a sequence \(\{x_n\} \) of \(C \) as follows:

\[
\begin{align*}
y_n &= (1 - \alpha_n)x_n + \alpha_n Tx_n, \\
C_{n+1} &= \{z \in C : \|z_n - z\|^2 \leq 2\alpha_n \|x_n - z\|^2(1 - \alpha_n (I - T) y_n)\}, \\
x_{n+1} &= \text{proj}_{C_{n+1}}(x_0), \quad n \in \mathbb{N}.
\end{align*}
\]

Assume the sequence \(\{\alpha_n\} \subset [a, b] \) for some \(a, b \in (0, \frac{1}{1+L^2}) \). Then the sequence \(\{x_n\} \) generated by (1.5) converges strongly to \(\text{proj}_{\text{Fix}(T)}(x_0) \).
Motivated and inspired by the above results, in this paper we introduce a projected algorithm with Meir-Keeler contraction for finding the fixed points of the pseudocontractive mappings. We prove that the presented algorithm converges strongly to the fixed point of the pseudocontractive mapping in Hilbert spaces.

2. Preliminaries

Recall that the metric projection \(\text{proj}_C : H \to C \) satisfies

\[
\|u - \text{proj}_C(u)\| = \inf\{\|u - u^\dagger\| : u^\dagger \in C\}.
\]

The metric projection \(\text{proj} \) is a typical firmly nonexpansive mapping. The characteristic inequality of the projection is

\[
(u - \text{proj}_C(u), u^\dagger - \text{proj}_C(u)) \leq 0,
\]

for all \(u \in H, u^\dagger \in C \).

Recall that a mapping \(T \) is said to be demiclosed, if for any sequence \(\{x_n\} \) which weakly converges to \(x \), and if the sequence \(\{T(x_n)\} \) strongly converges to \(x^\dagger \), then \(T(x) = x^\dagger \).

It is well-known that in a real Hilbert space \(H \), the following equality holds:

\[
\|\xi u + (1 - \xi)u^\dagger\|^2 = \xi\|u\|^2 + (1 - \xi)\|u^\dagger\|^2 - \xi(1 - \xi)\|u - u^\dagger\|^2,
\]

for all \(u, u^\dagger \in H \) and \(\xi \in [0, 1] \).

Lemma 2.1 ([30]). Let \(H \) be a real Hilbert space, \(C \) a closed convex subset of \(H \). Let \(T : C \to C \) be a continuous pseudocontractive mapping. Then

(i) \(\text{Fix}(T) \) is a closed convex subset of \(C \);

(ii) \((I - T) \) is demiclosed at zero.

For convenient, in the sequel we shall use the following expressions:

- \(x_n \rightharpoonup x^\dagger \) denotes the weak convergence of \(x_n \) to \(x^\dagger \);
- \(x_n \to x^\dagger \) denotes the strong convergence of \(x_n \) to \(x^\dagger \).

Let the sequence \(\{C_n\} \) be a nonempty closed convex subset of a Hilbert space \(H \). We define \(s = \text{Li}_n C_n \) and \(w - \text{Ls}_n C_n \) as follows.

- \(x \in s - \text{Li}_n C_n \), if and only if there exists \(\{x_n\} \subset C_n \) such that \(x_n \to x \).
- \(x \in w - \text{Ls}_n C_n \), if and only if there exists a subsequence \(\{C_{n_i}\} \) of \(\{C_n\} \) and a sequence \(\{y_i\} \subset C_{n_i} \) such that \(y_i \rightharpoonup y \).

If \(C_0 \) satisfies

\[
C_0 = s - \text{Li}_n C_n = w - \text{Ls}_n C_n,
\]

it is said that \(\{C_n\} \) converges to \(C_0 \) in the sense of Mosco [10] and we write \(C_0 = M - \lim_{n \to \infty} C_n \). It is easy to show that if \(\{C_n\} \) is nonincreasing with respect to inclusion, then \(\{C_n\} \) converges to \(\bigcap_{n=1}^{\infty} C_n \) in the sense of Mosco. Tsukada [14] proved the following theorem for the metric projection.

Lemma 2.2 ([14]). Let \(H \) be a Hilbert space. Let \(\{C_n\} \) be a sequence of nonempty closed convex subsets of \(H \). If \(C_0 = M - \lim_{n \to \infty} C_n \) exists and is nonempty, then for each \(x \in H \), \(\{\text{proj}_{C_n}(x)\} \) converges strongly to \(\text{proj}_{C_0}(x) \), where \(\text{proj}_{C_n} \) and \(\text{proj}_{C_0} \) are the metric projections of \(H \) onto \(C_n \) and \(C_0 \), respectively.
Let \((X, d)\) be a complete metric space. A mapping \(f : X \to X\) is called a Meir-Keeler contraction [8], if for every \(\epsilon > 0\), there exists \(\delta > 0\) such that
\[
d(x, y) < \epsilon + \delta \implies d(f(x), f(y)) < \epsilon,
\]
for all \(x, y \in X\). It is well-known that the Meir-Keeler contraction is a generalization of the contraction.

Lemma 2.3 ([8]). A Meir-Keeler contraction defined on a complete metric space has a unique fixed point.

Lemma 2.4 ([13]). Let \(f\) be a Meir-Keeler contraction on a convex subset \(C\) of a Banach space \(E\). Then, for every \(\epsilon > 0\), there exists \(\tau \in (0, 1)\) such that
\[
x - y \geq \epsilon \implies \|f(x) - f(y)\| \leq \tau\|x - y\|,
\]
for all \(x, y \in C\).

Lemma 2.5 ([13]). Let \(C\) be a convex subset of a Banach space \(E\). Let \(T\) be a nonexpansive mapping on \(C\), and let \(f\) be a Meir-Keeler contraction on \(C\). Then the following hold:

(i) \(Tf\) is a Meir-Keeler contraction on \(C\);

(ii) for each \(\alpha \in (0, 1), (1 - \alpha)T + \alpha f\) is a Meir-Keeler contraction on \(C\).

3. Main results

In this section, we firstly introduce a projected fixed point algorithm with Meir-Keeler contraction for pseudocontractive mappings in Hilbert spaces. Consequently, we show the strong convergence of our presented algorithm.

In the sequel, we assume that \(H\) is a real Hilbert space and \(C \subset H\) is a nonempty closed convex set. Let \(T : C \to C\) be an \(L(>1)\)-Lipschitzian pseudocontractive mapping with \(\text{Fix}(T) \neq \emptyset\). Let \(f : C \to C\) be a Meir-Keeler contractive mapping. Let \(\{\alpha_n\}\) and \(\{\beta_n\}\) be two sequences in \([0, 1]\).

Algorithm 3.1. For \(x_0 \in C_0 = C\) arbitrarily, define a sequence \((x_n)\) iteratively by
\[
\begin{aligned}
y_n &= (1 - \beta_n)x_n + \beta_nTx_n, \\
C_{n+1} &= \{z \in C_n : \|(1 - \alpha_n)x_n + \alpha_nTy_n - z\| \leq \|x_n - z\|\}, \\
x_{n+1} &= \text{proj}_{C_{n+1}}f(x_n), \quad \forall n \geq 0,
\end{aligned}
\]

where \(\text{proj}\) is the metric projection.

Theorem 3.2. If \(0 < a < \alpha_n \leq \beta_n < b < \frac{1}{\sqrt{1 + L^2 + 1}}\), then the sequence \((x_n)\) defined by (3.1) converges strongly to \(x^\dagger = \text{proj}_{\text{Fix}(T)} f(x^1)\).

Remark 3.3. By Lemma 2.1, \(\text{Fix}(T)\) is a closed convex subset of \(C\). Thus \(\text{proj}_{\text{Fix}(T)} f\) is well-defined. Since \(f\) is a Meir-Keeler contraction of \(C\), we get \(\text{proj}_{\text{Fix}(T)} f\) is a Meir-Keeler contraction of \(C\) by Lemma 2.5. According to Lemma 2.3, there exists a unique fixed point \(x^\dagger \in C\) such that \(x^\dagger = \text{proj}_{\text{Fix}(T)} f(x^1)\).

Proof. We first show by induction that \(\text{Fix}(T) \subset C_n\) for all \(n \geq 0\).

(i) \(\text{Fix}(T) \subset C_0\) is obvious.

(ii) Suppose that \(\text{Fix}(T) \subset C_k\) for some \(k \in \mathbb{N}\). Then for \(x^* \in \text{Fix}(T) \subset C_k\), we have from (1.2) that
\[
\|Tx_n - x^*\|^2 \leq \|x_n - x^*\|^2 + \|Tx_n - x_n\|^2,
\]
and
\[
\|Ty_n - x^*\|^2 = \|T((1 - \beta_n)I + \beta_nT)x_n - x^*\|^2 \\
\leq \|T((1 - \beta_n)(x_n - x^*) + \beta_n(Tx_n - x^*))\|^2 + \|(1 - \beta_n)x_n + \beta_nTx_n - Ty_n\|^2.
\]
From (2.1) we have that
\[
\| (1 - \beta_n) x_n + \beta_n T x_n - T y_n \|^2 = \| (1 - \beta_n) (x_n - T y_n) + \beta_n (T x_n - T y_n) \|^2 \\
= (1 - \beta_n) \| x_n - T y_n \|^2 + \beta_n \| T x_n - T y_n \|^2 \\
- \beta_n (1 - \beta_n) \| x_n - T x_n \|^2.
\]
(3.4)
Since T is L-Lipschitzian and $x_n - y_n = \beta_n (x_n - T x_n)$, by (3.4) we get that
\[
\| (1 - \beta_n) x_n + \beta_n T x_n - T y_n \|^2 \leq (1 - \beta_n) \| x_n - T y_n \|^2 + \beta_n L^2 \| x_n - T x_n \|^2 \\
- \beta_n (1 - \beta_n) \| x_n - T x_n \|^2 \\
= (1 - \beta_n) \| x_n - T y_n \|^2 + (\beta_n^2 L^2 + \beta_n - \beta_n) \| x_n - T x_n \|^2.
\]
(3.5)
By (2.1) and (3.2) we have that
\[
\| (1 - \beta_n) (x_n - x^*) + \beta_n (T x_n - x^*) \|^2 = \| (1 - \beta_n) (x_n - x^*) + \beta_n (T x_n - x^*) \|^2 \\
= (1 - \beta_n) \| x_n - x^* \|^2 + \beta_n \| T x_n - x^* \|^2 \\
- \beta_n (1 - \beta_n) \| x_n - T x_n \|^2 \\
\leq (1 - \beta_n) \| x_n - x^* \|^2 + \beta_n (\| x_n - x^* \|^2 + \| x_n - T x_n \|^2) \\
- \beta_n (1 - \beta_n) \| x_n - T x_n \|^2 \\
= \| x_n - x^* \|^2 + \beta_n^2 \| x_n - T x_n \|^2.
\]
(3.6)
By (3.3), (3.5) and (3.6) we obtain that
\[
\| T y_n - x^* \|^2 \leq \| x - x^* \|^2 + (1 - \beta_n) \| x_n - T y_n \|^2 - \beta_n (1 - 2\beta_n - \beta_n^2 L^2) \| x_n - T x_n \|^2.
\]
(3.7)
Since $\beta_n < b < \frac{1}{\sqrt{1 + L^2 + 1}}$, we derive that
\[
1 - 2\beta_n - \beta_n^2 L^2 > 0, \ \forall n \geq 0.
\]
This together with (3.7) implies that
\[
\| T y_n - x^* \|^2 \leq \| x_n - x^* \|^2 + (1 - \beta_n) \| x_n - T y_n \|^2.
\]
(3.8)
By (2.1) and (3.8) and noting that $\alpha_n \leq \beta_n$, we have that
\[
\| (1 - \alpha_n) x_n + \alpha_n T y_n - x^* \|^2 = (1 - \alpha_n) \| x_n - x^* \|^2 + \alpha_n \| T y_n - x^* \|^2 \\
- \alpha_n (1 - \alpha_n) \| x_n - T y_n \|^2 \\
\leq \| x_n - x^* \|^2 - \alpha_n (\beta_n - \alpha_n) \| T y_n - x^* \|^2 \\
\leq \| x_n - x^* \|^2,
\]
and hence $x^* \in C_{k+1}$. This indicates that
\[
F \! \! \text{ix}(T) \subset C_n,
\]
for all $n \geq 0$.

Next, we show that C_n is closed and convex for all $n \geq 0$.
(i) It is obvious from the assumption that $C_0 = C$ is closed convex.
(ii) Suppose that C_k is closed and convex for some $k \in \mathbb{N}$. For $z \in C_k$, we know that
\[
\| (1 - \alpha_k) x_k + \alpha_k T y_k - z \|^2 \leq \| x_k - z \|^2
\]
is equivalent to
\[
\alpha_k \| T y_k - x_k \|^2 + 2 \langle T y_k - x_k, x_k - z \rangle \leq 0.
\]
So, C_{k+1} is closed and convex. By induction, we deduce that C_n is closed and convex for all $n \geq 0$. This implies that $\{x_n\}$ is well-defined.

Next, we prove that
\[
\lim_{n \to \infty} \|x_n - u\| = 0,
\]
for some $u \in \cap_{n=1}^{\infty} C_n$ and
\[
\langle f(u) - u, u - y \rangle \geq 0,
\]
for all $y \in \text{Fix}(T)$.

Since $\cap_{n=1}^{\infty} C_n$ is closed convex, we also have that $\text{proj}_{\cap_{n=1}^{\infty} C_n}$ is well-defined and so $\text{proj}_{\cap_{n=1}^{\infty} C_n} f$ is a Meir-Keeler contraction on C. By Lemma 2.3, there exists a unique fixed point $u \in \cap_{n=1}^{\infty} C_n$ of $\text{proj}_{\cap_{n=1}^{\infty} C_n} f$. Since C_n is a nonincreasing sequence of nonempty closed convex subset of H with respect to inclusion, it follows that
\[
\emptyset \neq \text{Fix}(T) \subset \bigcap_{n=1}^{\infty} C_n = M - \lim_{n \to \infty} C_n.
\]
Setting $u_n := \text{proj}_{C_n} f(u)$ and applying Lemma 2.2, we can conclude that
\[
\lim_{n \to \infty} u_n = \text{proj}_{\cap_{n=1}^{\infty} C_n} f(u) = u.
\]

Now we show that $\lim_{n \to \infty} \|x_n - u\| = 0$.

Assume $d = \lim_{n \to \infty} \|x_n - u\| > 0$, then for all $\epsilon \in (0, d)$, we can choose a $\delta_1 > 0$ such that
\[
\lim_{n \to \infty} \|x_n - u\| = \epsilon + \delta_1. \tag{3.9}
\]
Since f is a Meir-Keeler contraction, for above ϵ there exists another $\delta_2 > 0$ such that
\[
\|x - y\| < \epsilon + \delta_2 \text{ implies } \|f(x) - f(y)\| < \epsilon, \tag{3.10}
\]
for all $x, y \in C$.

In fact, we can choose a common $\delta > 0$ such that (3.9) and (3.10) hold. If $\delta_1 > \delta_2$, then
\[
\lim_{n \to \infty} \|x_n - u\| = \epsilon + \delta_1 = \epsilon + \delta_2.
\]
If $\delta_1 \leq \delta_2$, then from (3.10) we deduce that
\[
\|x - y\| < \epsilon + \delta_1 \text{ implies } \|f(x) - f(y)\| < \epsilon,
\]
for all $x, y \in C$.

Thus, we have that
\[
\lim_{n \to \infty} \|x_n - u\| = \epsilon + \delta, \tag{3.11}
\]
and
\[
\|x - y\| < \epsilon + \delta \text{ implies } \|f(x) - f(y)\| < \epsilon, \quad \text{for all } x, y \in C. \tag{3.12}
\]

Since $u_n \to u$, there exists $n_0 \in \mathbb{N}$ such that
\[
\|u_n - u\| < \delta, \quad \forall n \geq n_0. \tag{3.13}
\]

We now consider two possible cases.

Case 1. There exists $n_1 \geq n_0$ such that
\[
\|x_n - u\| \leq \epsilon + \delta.
\]

By (3.12) and (3.13), we get that
\[
\|x_{n+1} - u\| \leq \|x_{n+1} - u_{n+1}\| + \|u_{n+1} - u\|
\]
\[
= \|\text{proj}_{C_{n+1}} f(x_{n+1}) - \text{proj}_{C_{n+1}} f(u)\| + \|u_{n+1} - u\|
\]
\[
\leq \|f(x_{n+1}) - f(u)\| + \|u_{n+1} - u\|
\]
\[
\leq \epsilon + \delta.
\]
By induction, we can obtain that

$$\|x_{n+m} - u\| \leq \epsilon + \delta,$$

for all $m \geq 1$, which implies that

$$\lim_n \|x_n - u\| \leq \epsilon + \delta,$$

which contradicts with (3.11). Therefore, we conclude that $\|x_n - u\| \to 0$ as $n \to \infty$.

Case 2. $\|x_n - u\| > \epsilon + \delta$ for all $n \geq n_0$.

We shall prove that Case 2 is impossible. Suppose Case 2 holds true. By Lemma 2.4, there exists $r \in (0, 1)$ such that

$$\|f(x_n) - f(u)\| \leq r\|x_n - u\|, \quad \forall n \geq n_0.$$

Thus, we have that

$$\|x_{n+1} - u_{n+1}\| = \|\text{proj}_{C_{n+1}}(x_n) - \text{proj}_{C_{n+1}}(u)\|
\leq \|f(x_n) - f(u)\|
\leq r\|x_n - u\|,$$

for every $n \geq n_0$.

It follows that

$$\lim_n \|x_{n+1} - u\| = \lim_n \|x_{n+1} - u_{n+1}\|
\leq r\lim_n \|x_n - u\|
< \lim_n \|x_n - u\|,$$

which gives a contradiction.

Hence, we obtain that

$$\lim_{n \to \infty} \|x_n - u\| = 0,$$

and therefore, $\{x_n\}$ is bounded.

Finally, we prove that $u \in \text{Fix}(T)$. Observe that

$$\|x_{n+1} - x_n\| \leq \|x_n - u\| + \|u - u_{n+1}\| + \|u_{n+1} - x_{n+1}\|
= \|x_n - u\| + \|u - u_{n+1}\| + \|\text{proj}_{C_{n+1}}(x_n) - \text{proj}_{C_{n+1}}(u)\|
\leq \|x_n - u\| + \|u - u_{n+1}\| + \|f(x_n) - f(u)\|.$$

Therefore,

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0. \quad (3.14)$$

From $x_{n+1} \in C_{n+1}$, we have that

$$\|(1 - \alpha_n)x_n + \alpha_n Ty_n - x_{n+1}\| \leq \|x_n - x_{n+1}\|.$$

This together with (3.14) implies that

$$\lim_{n \to \infty} \|Ty_n - x_n\| = 0.$$

Note that

$$\|x_n - Tx_n\| \leq \|x_n - Ty_n\| + \|Ty_n - Tx_n\|
\leq \|x_n - Ty_n\| + L\|x_n - y_n\|
\leq \|x_n - Ty_n\| + L(1 - \beta_n)\|x_n - Tx_n\|.$$

It follows

$$\|x_n - Tx_n\| \leq \frac{1}{1 - (1 - \beta_n)L}\|x_n - Ty_n\| \leq \frac{1}{1 - (1 - \alpha)L}\|x_n - Ty_n\| \to 0. \quad (3.15)$$

By Lemma 2.1 and (3.15), we have that $u \in \text{Fix}(T)$.
Since $x_{n+1} = \text{proj}_{C_{n+1}} f(x_n)$, we have that
\[
\langle f(x_n) - x_{n+1}, x_{n+1} - y \rangle \geq 0, \quad \forall y \in C_{n+1}.
\]
Since $\text{Fix}(T) \subset C_{n+1}$, we get
\[
\langle f(x_n) - x_{n+1}, x_{n+1} - y \rangle \geq 0, \quad \forall y \in \text{Fix}(T).
\]
We have from $x_n \to u \in \text{Fix}(T)$ that
\[
\langle f(u) - u, u - y \rangle \geq 0, \quad \forall y \in \text{Fix}(T).
\]
Thus, $u = \text{proj}_{\text{Fix}(T)} f(u) = x^\dagger$. This completes the proof.

\textbf{Remark 3.4.} It is obvious that (3.1) is simpler than (1.4) and (1.5).

From Theorem 3.2, we can deduce several corollaries.

\textbf{Corollary 3.5.} Let H be a real Hilbert space and $C \subset H$ a nonempty closed convex set. Let $T : C \rightarrow C$ be an L(> 1)-Lipschitzian pseudocontractive mapping with $\text{Fix}(T) \neq \emptyset$. Let $f : C \rightarrow C$ be a ρ-contraction. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be two sequences in [0, 1]. If $0 < a < \alpha_n \leq \beta_n < b < \frac{1}{1+L^2+1}$, then the sequence $\{x_n\}$ defined by (3.1) converges strongly to $x^\dagger = \text{proj}_{\text{Fix}(T)} f(x^\dagger)$.

\textbf{Corollary 3.6.} Let H be a real Hilbert space and $C \subset H$ a nonempty closed convex set. Let $T : C \rightarrow C$ be a nonexpansive mapping with $\text{Fix}(T) \neq \emptyset$. Let $f : C \rightarrow C$ be a Meir-Keeler contractive mapping. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be two sequences in [0, 1]. If $0 < a < \alpha_n \leq \beta_n < b < \frac{1}{1+\sqrt{2}}$, then the sequence $\{x_n\}$ defined by (3.1) converges strongly to $x^\dagger = \text{proj}_{\text{Fix}(T)} f(x^\dagger)$.

\textbf{Corollary 3.7.} Let H be a real Hilbert space and $C \subset H$ a nonempty closed convex set. Let $T : C \rightarrow C$ be a nonexpansive mapping with $\text{Fix}(T) \neq \emptyset$. Let $f : C \rightarrow C$ be a ρ-contraction. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be two sequences in [0, 1]. If $0 < a < \alpha_n \leq \beta_n < b < \frac{1}{1+\sqrt{2}}$, then the sequence $\{x_n\}$ defined by (3.1) converges strongly to $x^\dagger = \text{proj}_{\text{Fix}(T)} f(x^\dagger)$.

\textbf{Algorithm 3.8.} For $x_0 \in C_0 = C$ arbitrarily, define a sequence $\{x_n\}$ iteratively by
\[
\begin{align*}
 y_n &= (1 - \beta_n)x_n + \beta_nTx_n, \\
 C_{n+1} &= \{z \in C_n : \| (1 - \alpha_n)x_n + \alpha_nTy_n - z \| \leq \| x_n - z \| \}, \\
 x_{n+1} &= \text{proj}_{C_{n+1}}(x_0), \quad \forall n \geq 0,
\end{align*}
\]
where \text{proj} is the metric projection.

\textbf{Corollary 3.9.} Let H be a real Hilbert space and $C \subset H$ a nonempty closed convex set. Let $T : C \rightarrow C$ be an L(> 1)-Lipschitzian pseudocontractive mapping with $\text{Fix}(T) \neq \emptyset$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be two sequences in [0, 1]. If $0 < a < \alpha_n \leq \beta_n < b < \frac{1}{1+L^2+1}$, then the sequence $\{x_n\}$ defined by (3.16) converges strongly to $x^\dagger = \text{proj}_{\text{Fix}(T)}(x_0)$.

\textbf{Corollary 3.10.} Let H be a real Hilbert space and $C \subset H$ a nonempty closed convex set. Let $T : C \rightarrow C$ be a nonexpansive mapping with $\text{Fix}(T) \neq \emptyset$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be two sequences in [0, 1]. If $0 < a < \alpha_n \leq \beta_n < b < \frac{1}{1+\sqrt{2}}$, then the sequence $\{x_n\}$ defined by (3.16) converges strongly to $x^\dagger = \text{proj}_{\text{Fix}(T)}(x_0)$.

\textbf{Acknowledgment}

This article was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah. N. Shahzad acknowledges with thanks DSR for financial support. Yeong-Cheng Liou was supported in part by NSC 101-2628-E-230-001-MY3 and NSC 101-2622-E-230-005-CC3. Li-Jun Zhu was supported in part by NNSF of China (61362033).
References

