Revisit of identities for Apostol-Euler and Frobenius-Euler numbers arising from differential equation

Taekyun Kima,b,\textdagger, Gwan-Woo Jangb, Jong Jin Seob,c

aDepartment of Mathematics, College of Science Tianjin Polytechnic University, Tianjin 300160, China.
bDepartment of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea.
cDepartment of Mathematics, Pukyung National University, Busan 608-737, Republic of Korea.

Communicated by Y. J. Cho

Abstract

In this paper, we study differential equation arising from the generating function of Apostol-Euler and Frobenius-Euler numbers. In addition, we revisit some identities of Apostol-Euler and Frobenius-Euler numbers which are derived from differential equations. \copyright 2017 all rights reserved.

Keywords: Nonlinear differential equations, Apostol-Euler numbers, Frobenius-Euler numbers.

1. Introduction

The Apostol-Euler numbers are defined by the generating function to be

\[
\frac{2}{\lambda e^t + 1} = \sum_{n=0}^{\infty} E_{n,\lambda} \frac{t^n}{n!}, \quad (\lambda \neq 0) \quad \text{(see [1, 2])}. \tag{1.1}
\]

From (1.1), we note that

\[
\lambda (E_{\lambda} + 1)^n + E_{n,\lambda} \begin{cases}
2, & \text{if } n = 0, \\
0, & \text{if } n > 0,
\end{cases}
\]

with the usual convention about replacing \(E_{\lambda}^n \) by \(E_{n,\lambda} \). For \(u \in \mathbb{C} \) with \(u \neq 1 \), the Frobenius-Euler numbers are defined by the generating function to be

\[
\frac{1 - u}{e^t - u} = \sum_{n=0}^{\infty} H_n(u) \frac{t^n}{n!}, \quad \text{(see [3–14])}. \tag{1.2}
\]

\dagger Corresponding author

Email addresses: tkkim@kw.ac.kr (Taekyun Kim), jgw5687@naver.com (Gwan-Woo Jang), seo2011@pknu.ac.kr (Jong Jin Seo)
doi:10.22436/jnsa.010.01.18
Received 2016-10-13
Thus, we note that $H_n(-1) = E_n$ are ordinary Euler numbers which are defined by the generating function to be

$$\frac{2}{e^t + 1} = \sum_{n=0}^{\infty} \frac{E_n}{n!}, \quad \text{(see [6–11]).}$$

From (1.1) and (1.2), we note that

$$\frac{2}{\lambda e^t + 1} = \left(\frac{2}{\lambda(1 + \lambda^{-1})}\right) \left(\frac{1 + \lambda^{-1}}{e^t + \lambda^{-1}}\right) = \frac{2}{\lambda + 1} \sum_{n=0}^{\infty} H_n(-\lambda^{-1}) \frac{t^n}{n!}. \quad (1.3)$$

By (1.1) and (1.3), we get

$$E_{n,\lambda} = \frac{2}{\lambda + 1} H_n(-\lambda^{-1}), \quad (n \geq 0).$$

Let k be the positive integer. Then the higher-order Apostol-Euler numbers are defined by the generating function as follows:

$$\left(\frac{2}{\lambda e^t + 1}\right)^k = \sum_{n=0}^{\infty} \frac{E^{(k)}_{n,\lambda}}{n!}, \quad \text{(see [1, 2]).} \quad (1.4)$$

For $u \in \mathbb{C}$ with $u \neq 1$, the higher-order Frobenius-Euler numbers are also given by

$$\left(\frac{1 - u}{e^t - u}\right)^k = \left(\frac{1 - u}{e^t - u}\right) \times \cdots \times \left(\frac{1 - u}{e^t - u}\right) = \sum_{n=0}^{\infty} H^{(k)}_n(u) \frac{t^n}{n!}. \quad (1.5)$$

From (1.1), (1.2), (1.4), and (1.5), we have

$$\sum_{l_1 + \cdots + l_r = n} \binom{n}{l_1, l_2, \ldots, l_r} E_{l_1,\lambda} E_{l_2,\lambda} \cdots E_{l_r,\lambda} = E^{(r)}_{n,\lambda}$$

and

$$\sum_{l_1 + \cdots + l_r = n} \binom{n}{l_1, l_2, \ldots, l_r} H_{l_1}(u) H_{l_2}(u) \cdots H_{l_r}(u) = H^{(r)}_n(u),$$

where $n \geq 0$ and $r \in \mathbb{N}$.

In this paper, we study some differential equations which are derived from the generating function of Apostol-Euler and Frobenius-Euler numbers and we revisit some identities of Apostol-Euler and Frobenius-Euler numbers arising from differential equations.

2. Revisit some identities for Apostol-Euler and Frobenius-Euler numbers

Let

$$F = F(t, \lambda) = \frac{1}{e^t + \lambda}, \quad (\lambda \neq 0).$$

Then we have

$$F^{(1)} = \frac{d}{dt} F(t, \lambda) = -\frac{1}{e^t + \lambda} + \frac{\lambda}{(e^t + \lambda)^2} = -F + F^2. \quad (2.1)$$
From (2.1), we have
\[F^{(2)} = \frac{d}{dt} F^{(1)} = \left(\frac{d}{dt} \right)^2 F(t, \lambda) = F - 3\lambda F^2 + 2\lambda^2 F^3, \]
and
\[F^{(3)} = \left(\frac{d}{dt} \right)^3 F(t, \lambda) = -F + 7\lambda F^2 - 12\lambda^2 F^3 + 6\lambda^3 F^4. \]
Continuing this process, we have
\[F^{(N)} = \left(\frac{d}{dt} \right)^N F(t, \lambda) = \sum_{k=0}^{N} (-1)^{N-k}\lambda^k b_k(N, \lambda) F^{k+1}, \quad (n \in \mathbb{N}). \]
(2.2)

From (2.2), we note that
\[F^{(N+1)} = \left(\frac{d}{dt} \right)^{N+1} F^{(N)} = \frac{d}{dt} \sum_{k=0}^{N} (-1)^{N-k} b_k(N, \lambda) \lambda^k F^{k+1} \]
\[= \sum_{k=1}^{N+1} (-1)^{N-k} b_{k-1}(N, \lambda) \lambda^k F^{k+1} + \sum_{k=0}^{N} (-1)^{N-k} b_k(N, \lambda) (k+1) \lambda^k F^{k+1}. \]
(2.3)

By replacing \(N \) by \(N + 1 \) in (2.2), we get
\[F^{(N+1)} = \sum_{k=0}^{N+1} (-1)^{N-k} b_k(N + 1, \lambda) \lambda^k F^{k+1}. \]
(2.4)

Comparing the coefficients on the both sides of (2.3) and (2.4), we obtain
\[b_0(N, \lambda) = b_0(N + 1, \lambda), \lambda^{N+1}(N + 1)b_N(N, \lambda) = \lambda^{N+1}b_{N+1}(N + 1, \lambda), \]
(2.5)
and
\[\lambda^k b_k(N + 1, \lambda) = \lambda^k b_{k-1}(N, \lambda) + \lambda^k (k+1)b_k(N, \lambda), \quad \text{where} \ 1 \leq k \leq N. \]
(2.6)

By (2.5) and (2.6), we get
\[b_0(N + 1, \lambda) = b_0(N, \lambda) = b_0(N - 1, \lambda) = \cdots = b_1(1, \lambda) = 1, \]
and
\[b_{N+1}(N + 1, \lambda) = (N + 1)b_N(N, \lambda) = (N + 1)N\cdot b_{N-1}(N - 1, \lambda) = \cdots = (N + 1)\cdot 2^{N-1}b_1(1, \lambda) = (N + 1).! \]

Since
\[-F + \lambda F^2 = -b_0(1, \lambda) + \lambda b_1(1, \lambda) F^2. \]

Thus, \(b_0(1, \lambda) = 1 \) and \(b_1(1, \lambda) = 1 \). From (2.6), we note that
\[b_1(N + 1, \lambda) = 2b_1(N, \lambda) + b_0(N, \lambda) \]
\[\vdots \]
\[= 2^N b_1(1, \lambda) + 2^{N-1}b_0(2, \lambda) + \cdots + 2b_0(N - 1, \lambda) + b_0(N, \lambda) \]
\[= \sum_{i_1=0}^{N} 2^{i_1}. \]
Therefore, we obtain the following theorem.

Theorem 2.1. For \(N \in \mathbb{N} \), the following differential equation

\[
F^{(N)} = \left(\frac{d}{dt} \right)^N F(t, \lambda) = \sum_{k=0}^{N} (-1)^{N-k} b_k(N, \lambda) \lambda^k F^{k+1}
\]

has a solution \(F = F(t, \lambda) = \frac{1}{e^t + \lambda} \), where

\[
b_0(N, \lambda) = 1, \quad b_N(N, \lambda) = N!
\]

and

\[
b_k(N, \lambda) = k! \sum_{i_k=0}^{N-k} \cdots \sum_{i_2=0}^{N-i_k-k} \sum_{i_1=0}^{N-i_{k-1}-i_k-k} 2^{i_1} 3^{i_2} \cdots (k+1)^{i_k}, \quad (1 \leq k \leq N).
\]

Now, we observe that

\[
F^{(N)} = \left(\frac{d}{dt} \right)^N F(t, \lambda) = \left(\frac{d}{dt} \right)^N \left(\frac{1}{e^t + \lambda} \right) = \frac{1}{2\lambda} \left(\frac{d}{dt} \right)^N \left(\frac{2}{\lambda^{-1} e^t + 1} \right) = \frac{1}{2\lambda} \left(\frac{d}{dt} \right)^N \sum_{n=0}^{\infty} E_{n, \lambda^{-1}} \frac{t^n}{n!}
\]

and

\[
p^{k+1} = \left(\frac{1}{e^t + \lambda} \right) \times \left(\frac{1}{e^t + \lambda} \right) \times \cdots \times \left(\frac{1}{e^t + \lambda} \right)
\]

\[
= \frac{1}{2^{k+1} \lambda^{k+1}} \left(\frac{2}{\lambda^{-1} e^t + 1} \right) \times \left(\frac{2}{\lambda^{-1} e^t + 1} \right) \times \cdots \times \left(\frac{2}{\lambda^{-1} e^t + 1} \right) = \frac{1}{2^{k+1} \lambda^{k+1}} \sum_{n=0}^{\infty} E_{n, \lambda^{-1}} \frac{t^n}{n!}.
\]

Therefore, we obtain the following theorem.
Theorem 2.2. For $n \geq 0$, $N \in \mathbb{N}$, we have

$$E_{n+N,\lambda} = \sum_{k=1}^{N} (-1)^{N-k} k! 2^{-k} e^{-k} e^{(k+1)} E_{n+N,\lambda} - \sum_{i_k=0}^{N-k} \sum_{i_{k-1}=0}^{N-i_k-k} \ldots \sum_{i_1=0}^{N-i_k-\cdots-i_2-k} 2^{i_1} 3^{i_2} \cdots (k+1)^{i_k} (-1)^N E_{n+N,\lambda} - 1.$$

For $\lambda \neq 0, -1$, by (1.2), we get

$$F^{(N)} = \left(\frac{d}{dt} \right)^N F(t, \lambda) = \frac{1}{1 + \lambda} \left(\frac{1 + \lambda}{e^t + \lambda} \right)^N = \frac{1}{1 + \lambda} \sum_{n=0}^{\infty} H_n(-\lambda) \frac{t^n}{n!}.$$

From (1.5), we can easily derive the following equation:

$$F^{k+1} = \left(\frac{1}{e^t + \lambda} \right) \times \left(\frac{1}{e^t + \lambda} \right) \times \cdots \times \left(\frac{1}{e^t + \lambda} \right) = \left(\frac{1}{1 + \lambda} \right)^{k+1} \sum_{n=0}^{\infty} H_n^{(k+1)}(-\lambda) \frac{t^n}{n!}.$$

Therefore, by Theorem 2.1, (2.7) and (2.8), we obtain the following theorem.

Theorem 2.3. For $n \geq 0$, $N \in \mathbb{N}$, we have

$$H_{n+N}(-\lambda) = \sum_{k=1}^{N} (-1)^{N-k} \left(\frac{\lambda}{1+\lambda} \right)^k H_n^{(k+1)}(-\lambda) \sum_{i_k=0}^{N-k} \sum_{i_{k-1}=0}^{N-i_k-k} \ldots \sum_{i_1=0}^{N-i_k-\cdots-i_2-k} 2^{i_1} 3^{i_2} \cdots (k+1)^{i_k} (-1)^N H_{n+N}(-\lambda),$$

where $\lambda \in \mathbb{C}$ with $\lambda \neq 0, -1$.

Acknowledgment

Dedicated to Professor Y. J. Cho on the occasion of his 65th birthday. The first author is appointed as a chair professor at Tianjin Polytechnic University by Tianjin City in China from August 2015 to August 2019. The present Research has been conducted by the Research Grant of Kwangwoon University in 2017.

References

