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Abstract
We present an alternating direction scheme for the separable constrained convex programming problem. The predictor

is obtained via solving two sub-variational inequalities in a parallel wise at each iteration. The new iterate is obtained by a
projection type method along a new descent direction. The new direction is obtained by combining the descent directions using
by He [B.-S. He, Comput. Optim. Appl., 42 (2009), 195–212] and Jiang and Yuan [Z.-K. Jiang, X.-M. Yuan, J. Optim. Theory
Appl., 145 (2010), 311–323]. Global convergence of the proposed method is proved under certain assumptions. We also report
some numerical results to illustrate the efficiency of the proposed method. c©2017 all rights reserved.
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1. Introduction

Let A ∈ Rl×n, B ∈ Rl×m be given matrices, b ∈ Rl be a given vector, and f : X → Rn, g : Y → Rm be
given monotone operators. We consider the following variational inequality problem: Find u ∈ Ω such
that

(u ′ − u)>F(u) > 0, ∀ u ′ ∈ Ω, (1.1)

with block-separated structure

u =

(
x

y

)
, F(u) =

(
f(x)
g(y)

)
and

Ω = {(x,y) : x ∈ X,y ∈ Y,Ax+By = b} .
(1.2)

It has several applications in network economics, transportation equilibrium problems and regional sci-
ence, see, for example, [8, 11–14, 20] and the references therein.

By attaching a Lagrange multiplier vector λ ∈ Rl to the linear constraint Ax+ By = b, the problem
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(1.1)-(1.2) can be written in terms of finding w ∈W such that

(w ′ −w)>Q(w) > 0, ∀ w ′ ∈W, (1.3)

where

w =

 x

y

λ

 , Q(w) =

 f(x) −A>λ
g(y) −B>λ
Ax+By− b

 , W = X× Y×Rl. (1.4)

The problem (1.3)-(1.4) is referred to as structured variational inequalities (in short, SVI).
The alternating direction method (ADM) for solving the structured problem (1.3)-(1.4) was proposed

by Gabay and Mercier [13] and Gabay [12]. They decomposed the original problem into a series of
subproblems with lower scale. This method appears to be one of the most powerful methods. For ADM
with logarithmic-quadratic proximal regularization we quoted references [1–5, 15, 24, 25, 28]. To make
the ADM more efficient and practical some strategies have been studied, for more details, one can refer
to [6, 7, 9, 16, 17, 22, 23, 25, 27].

He et al. [17] proposed a modified PADM as follows: For given (xk,yk, λk) ∈ X× Y× Rl, the new
iterative (xk+1,yk+1, λk+1) is obtained via the following steps.

Step 1. Solve the following variational inequality to obtain xk+1:

(x ′ − xk+1)>
{
f(xk+1) −A>

[
λk −Hk(Ax

k+1 +Byk − b)
]
+ Rk(x

k+1 − xk)
}
> 0, (1.5)

for all x ′ ∈ X.

Step 2. Solve the following variational inequality to obtain yk+1:

(y ′ − yk+1)>{g(yk+1) −B>[λk −Hk(Ax
k+1 +Byk+1 − b)] + Sk(y

k+1 − yk)} > 0, (1.6)

for all y ′ ∈ Y.

Step 3. Update λk via
λk+1 = λk −Hk(Ax

k+1 +Byk+1 − b),

where {Rk}, {Hk}, {Sk} are sequences of both lower and upper bounded symmetric positive matrices.
A sequence of positive matrices {Hk} is said to be both lower and upper bounded if

inf
k
{λk : λk is the smallest eignevalue of matrix Hk} = λmin > 0

and
sup
k

{λk : λk is the largest eignevalue of matrix Hk} = λmax < +∞.

The main disadvantage of the method in [17] is that solving (1.6) requires the solution of (1.5). To overcome
this difficulty, He [18] proposed the following algorithm: For a given wk = (xk,yk, λk) ∈ X× Y×Rl, the
predictor (x̃k, ỹk, λ̃k) is obtained via solving the following variational inequalities:

(x ′ − x)T (f(x) −AT [λk −H(Ax+Byk − b)]) > 0,

(y ′ − y)T (g(y) −BT [λk −H(Axk +By− b)]) > 0,

λ̃k = λk −H(Ax̃k +Bỹk − b),

where H ∈ Rl×l is symmetric positive definite. And the new iterate wk+1(αk) = (xk+1,yk+1, λk+1) is
given by:

wk+1(αk) = w
k −αkG

−1M(wk − w̃k),
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where

G =

 A>HA 0 0
0 B>HB 0
0 0 H−1

 .

In 2010, Jiang and Yuan [23] proposed a new parallel descent-like method for solving a class of varia-
tional inequalities with separate structures by using the same predictor as He’s method [18] and the new
iterate wk+1(αk) = (xk+1,yk+1, λk+1) is given by:

wk+1(αk) = PW[wk −αkG
−1d(wk, w̃k)],

where

d(wk, w̃k) =

 f(x̃k) −AT λ̃k +ATH(A(xk − x̃k) +B(yk − ỹk))
g(ỹk) −BT λ̃k +BTH(A(xk − x̃k) +B(yk − ỹk))

Ax̃k +Bỹk − b

 .

Inspired by the above cited works and by the recent work going on this direction, we propose a
descent alternating direction method for SVI. Each iteration of the above method contains a prediction
and a correction, the predictor is obtained via solving two subvariational inequalities at each iteration and
the new iterate is obtained by a projection type method along a new descent direction. The new direction
is obtained by combining the descent directions using by He [18] and Jiang and Yuan [23]. Our results
can be viewed as significant extensions of the previously known results.

2. Iterative method

This section states some preliminaries that are useful later. The first lemma provides some basic
properties of projection onto Ω.

Lemma 2.1. Let G be a symmetry positive definite matrix and Ω be a nonempty closed convex subset of Rl, we
denote by PΩ,G(.) the projection under the G-norm, that is,

PΩ,G(v) = argmin{‖v− u‖G : u ∈ Ω}.

Then, we have the following inequalities.

(z− PΩ,G[z])
>G(PΩ,G[z] − v) > 0, ∀ z ∈ Rl, v ∈ Ω,

‖PΩ,G[u] − PΩ,G[v]‖G 6 ‖u− v‖G, ∀ u, v ∈ Rl,
‖u− PΩ,G[z]‖2

G 6 ‖z− u‖2
G − ‖z− PΩ,G[z]‖2

G, ∀ z ∈ Rl,u ∈ Ω. (2.1)

We make the following standard assumptions.
Assumption A. f is monotone with respect to X and g is monotone with respect to Y,
Assumption B. The solution set of SVI, denoted by W∗, is nonempty.

We propose the following alternating direction method for solving SVI:

Algorithm 2.2.

Step 0. The initial step: Given ε > 0, β1 > 0,β2 > 0 (β1 + β2 > 0) and w0 = (x0,y0, λ0) ∈ X× Y×Rl. Set
k = 0.

Step 1. Prediction step: Compute w̃k = (x̃k, ỹk, λ̃k) ∈ X× Y×Rl by solving the following variational inequali-
ties:

(x ′ − x)T (f(x) −AT [λk −H(Ax+Byk − b)] + R(x− xk)) > 0, ∀x ′ ∈ X, (2.2)

(y ′ − y)T (g(y) −BT [λk −H(Axk +By− b)] + S(y− yk)) > 0, ∀y ′ ∈ Y, (2.3)

λ̃k = λk −H(Ax̃k +Bỹk − b). (2.4)

Step 2. Convergence verification: If max{‖xk − x̃k‖∞, ‖yk − ỹk‖∞, ‖λk − λ̃k‖∞} < ε, then stop.
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Step 3. Correction step: The new iterate wk+1(αk) = (xk+1,yk+1, λk+1) is given by:

wk+1(αk) = PW[wk −αkG
−1d(wk, w̃k)], (2.5)

where

αk =
ϕk

(β1 +β2)‖wk − w̃k‖2
G

, (2.6)

ϕk = ‖wk − w̃k‖2
G + (λk − λ̃k)T (A(xk − x̃k) +B(yk − ỹk)), (2.7)

d(wk, w̃k) = β1D(wk, w̃k) +β2G(w
k − w̃k),

D(wk, w̃k) =

 f(x̃k) −AT λ̃k +ATH(A(xk − x̃k) +B(yk − ỹk))
g(ỹk) −BT λ̃k +BTH(A(xk − x̃k) +B(yk − ỹk))

Ax̃k +Bỹk − b


and

G =

 R+ATHA 0 0
0 S+BTHB 0
0 0 H−1

 .

Set k := k+ 1 and go to Step 1.

Remark 2.3. By using as special case of our method, we can obtain some alternating direction methods,
for example:

• If β1 = 0,β2 = 1 and R = S = 0, we obtain the method proposed by He [18].

• If β1 = 1,β2 = 0 and R = S = 0, we obtain the method proposed by Jiang and yuan [23].

Remark 2.4. It is easy to check that w̃k = (x̃k, ỹk, λ̃k) is solution of SVI if and only if
xk − x̃k = 0,

yk − ỹk = 0,

λk − λ̃k = 0.

Hence, the stopping criterion adopted here is reasonable: if it is satisfied with a small ε, we can regard
the current iterate as an approximate solution.

In the next theorem, we show that αk is lower bounded away from zero and it is useful for the
convergence analysis.

Theorem 2.5. For given wk ∈ X× Y×Rl, let w̃k be generated by (2.2)-(2.4), then we have the following

ϕk >
2 −
√

2
2
‖wk − w̃k‖2

G (2.8)

and

αk >
2 −
√

2
2

. (2.9)

Proof. It follows from (2.7) that

ϕk = ‖wk − w̃k‖2
G + (λk − λ̃k)T (A(xk − x̃k) +B(yk − ỹk))

= ‖xk − x̃k‖2
R + ‖Axk −Ax̃k‖2

H + ‖yk − ỹk‖2
S + ‖Byk −Bỹk‖2

H + ‖λk − λ̃k‖2
H−1

+ (λk − λ̃k)T (A(xk − x̃k) +B(yk − ỹk)).

(2.10)
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By using the Cauchy-Schwarz inequality, we have

(λk − λ̃k)T (A(xk − x̃k)) > −
1
2

(√
2‖A(xk − x̃k)‖2

H +
1√
2
‖λk − λ̃k‖2

H−1

)
(2.11)

and

(λk − λ̃k)T (B(yk − ỹk)) > −
1
2

(√
2‖B(yk − ỹk)‖2

H +
1√
2
‖λk − λ̃k‖2

H−1

)
. (2.12)

Substituting (2.11) and (2.12) into (2.10), we get

ϕk >
2 −
√

2
2

(
‖Axk −Ax̃k‖2

H + ‖Byk −Bỹk‖2
H + ‖λk − λ̃k‖2

H−1

)
+ ‖xk − x̃k‖2

R + ‖yk − ỹk‖2
S

>
2 −
√

2
2

(
‖Axk −Ax̃k‖2

H + ‖Byk −Bỹk‖2
H + ‖λk − λ̃k‖2

H−1

)
+

2 −
√

2
2

(
‖xk − x̃k‖2

R + ‖yk − ỹk‖2
S

)
>

2 −
√

2
2
‖wk − w̃k‖2

G.

Therefore, it follows from (2.6) and (2.8) that

αk >
2 −
√

2
2

and this completes the proof.

3. Basic results

In this section, we prove some basic properties, which will be used to establish the sufficient and
necessary conditions for the convergence of the proposed method.

Lemma 3.1. For given wk = (xk,yk, λk) ∈ X × Y × Rl, let w̃k be generated by (2.2)-(2.4). Then for any
w∗ = (x∗,y∗, λ∗) ∈W∗, we have

(wk −w∗)>G(wk − w̃k) > ‖wk − w̃k‖2
G + (λk − λ̃k)>

(
A(xk − x̃k) +B(yk − ỹk)

)
(3.1)

and
(wk+1(αk) − w̃

k)>D(wk, w̃k) > (wk+1(αk) −w
k)>G(wk − w̃k) + ‖wk − w̃k‖2

G. (3.2)

Proof. By setting x ′ = x∗ in (2.2), we get

(x∗ − x̃k)>
{
f(x̃k) −A>λ̃k −ATHA(xk − x̃k) +ATH

(
A(xk − x̃k) +B(yk − ỹk)

)
− R(xk − x̃k)

}
> 0. (3.3)

Similarly, substituting y ′ = y∗ in (2.3), we obtain

(y∗ − ỹk)>
{
g(ỹk) −B>λ̃k −BTHB(yk − ỹk) +BTH(A(xk − x̃k) +B(yk − ỹk)) − S(yk − ỹk)

}
> 0. (3.4)

Since (x∗,y∗, λ∗) is a solution of SVI, x̃k ∈ X and ỹk ∈ Y, we have

(x̃k − x∗)>(f(x∗) −A>λ∗) > 0,

(ỹk − y∗)>(g(y∗) −B>λ∗) > 0,

and
Ax∗ +By∗ − b = 0.
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Using the monotonicity of f and g, we obtain x̃k − x∗

ỹk − y∗

λ̃k − λ∗

> f(x̃k) −A>λ̃k

g(ỹk) −B>λ̃k

Ax̃k +Bỹk − b

 >

 x̃k − x∗

ỹk − y∗

λ̃k − λ∗

> f(x∗) −A>λ∗

g(y∗) −B>λ∗

Ax∗ +By∗ − b

 > 0. (3.5)

Adding (3.3), (3.4) and (3.5), we get

(w∗ − w̃k)>G(wk − w̃k) = (x∗ − x̃k)>(R(xk − x̃k) +A>HA(xk − x̃k)) + (y∗ − ỹk)>(S(yk − ỹk)

+B>HB(yk − ỹk)) + (λ∗ − λ̃k)>(Ax̃k +Bỹk − b)

6 (x∗ − x̃k)>A>H
(
A(xk − x̃k) +B(yk − ỹk)

)
+ (y∗ − ỹk)>B>H

(
A(xk − x̃k) +B(yk − ỹk)

)
= −(Ax̃k +Bỹk − b)>H

(
A(xk − x̃k) +B(yk − ỹk)

)
= −(λk − λ̃k)>

(
A(xk − x̃k) +B(yk − ỹk)

)
,

(3.6)

where the last equality follows from (2.4). It follows from (3.6) that

(wk −w∗)>G(wk − w̃k) > ‖wk − w̃k‖2
G + (λk − λ̃k)>

(
A(xk − x̃k) +B(yk − ỹk)

)
and the first assertion of this lemma is proved.

Similarly as in (3.3) and (3.4), we have

(xk+1 − x̃k)>
{
R(xk− x̃k) − f(x̃k) +A>λ̃k+ATHA(xk− x̃k) −ATH

(
A(xk − x̃k) +B(yk − ỹk)

)}
6 0 (3.7)

and

(yk+1 − ỹk)T
{
S(yk − ỹk) − g(ỹk) +B>λ̃k +BTHB(yk − ỹk) −BTH(A(xk − x̃k) +B(yk − ỹk))

}
6 0. (3.8)

It follows from (3.7) and (3.8) that xk+1 − x̃k

yk+1 − ỹk

λk+1 − λ̃k

> (R+ATHA)(xk − x̃k) − f(x̃k) +A>λ̃k −ATH
(
A(xk − x̃k) +B(yk − ỹk)

)
(S+B>HB)(yk − ỹk) − g(ỹk) +B>λ̃k −BTH(A(xk − x̃k) +B(yk − ỹk))

H−1(λk − λ̃k) − (Ax̃k +Bỹk − b)

 6 0,

which implies
(wk+1(αk) − w̃

k)>(G(wk − w̃k) −D(wk, w̃k)) 6 0.

By simple manipulation, we obtain

(wk+1(αk) − w̃
k)>D(wk, w̃k) > (wk+1(αk) − w̃

k)>G(wk − w̃k)

= (wk+1(αk) −w
k)>G(wk − w̃k) + ‖wk − w̃k‖2

G

and the second assertion of this lemma is proved.

The following theorem provides a unified framework for proving the convergence of the new algo-
rithm.

Theorem 3.2. Let w∗ ∈W∗,wk+1(αk) be defined by (2.5), and

Θ(αk) := ‖wk −w∗‖2
G − ‖wk+1(αk) −w

∗‖2
G,

then

Θ(αk) > ‖wk −wk+1(αk) −αk(β1 +β2)(w
k − w̃k)‖2

G

+ 2αk(β1 +β2)ϕk −α
2
k(β1 +β2)

2‖wk − w̃k‖2
G.

(3.9)
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Proof. Since w∗ ∈W∗ and wk+1(αk) = PW[wk −αkG
−1d(wk, w̃k)], it follows from (2.1) that

‖wk+1(αk) −w
∗‖2
G 6 ‖wk −αkG−1d(wk, w̃k) −w∗‖2

G − ‖wk −αkG−1d(wk, w̃k) −wk+1(αk)‖2
G. (3.10)

Using the definition of Θ(αk) and (3.10), we get

Θ(αk) > ‖wk −wk+1(αk)‖2
G + 2αk(wk+1(αk) −w

k)Td(wk, w̃k) + 2αk(wk −w∗)Td(wk, w̃k). (3.11)

It follows from (3.5) that

(w̃k −w∗)>D(wk, w̃k) > (w̃k −w∗)>

 A>H
(
A(xk − x̃k) +B(yk − ỹk)

)
B>H

(
A(xk − x̃k) +B(yk − ỹk)

)
0


= (Ax̃k +Bỹk − b)>H

(
A(xk − x̃k) +B(yk − ỹk)

)
= (λk − λ̃k)>

(
A(xk − x̃k) +B(yk − ỹk)

)
.

Thus,

(wk −w∗)>D(wk, w̃k) > (wk − w̃k)>D(wk, w̃k) + (λk − λ̃k)>
(
A(xk − x̃k) +B(yk − ỹk)

)
. (3.12)

Applying (3.1) and (3.12) to the last term on the right side of (3.11), we obtain

Θ(αk) > ‖wk −wk+1(αk)‖2
G + 2αk(wk+1(αk) −w

k)>d(wk, w̃k)

+ 2αk{β1(w
k − w̃k)>D(wk, w̃k) + (β1 +β2)(λ

k − λ̃k)>
(
A(xk − x̃k) +B(yk − ỹk)

)
+β2‖wk − w̃k‖2

G}

= ‖wk −wk+1(αk)‖2
G + 2αkβ1(w

k+1(αk) − w̃
k)>D(wk, w̃k)

+ 2αkβ2(w
k+1(αk) −w

k)>G(wk − w̃k)

+ 2αk(β1 +β2)(λ
k − λ̃k)>

(
A(xk − x̃k) +B(yk − ỹk)

)
+ 2αkβ2‖wk − w̃k‖2

G.

(3.13)

Applying (3.2) to the second term in the right side of (3.13) and using the notation of ϕk in (2.7), we get

Θ(αk) > ‖wk −wk+1(αk)‖2
G + 2αk(β1 +β2)(w

k+1(αk) −w
k)>G(wk − w̃k)

+ 2αk(β1 +β2)
[
‖wk − w̃k‖2

G + (λk − λ̃k)>
(
A(xk − x̃k) +B(yk − ỹk)

) ]
= ‖wk −wk+1(αk) −αk(β1 +β2)(w

k − w̃k)‖2
G −α2

k(β1 +β2)
2‖wk − w̃k‖2

G + 2αk(β1 +β2)ϕk

and the theorem is proved.

From the computational point of view, a relaxation factor γ ∈ (0, 2) is preferable in the correction. We
are now in a position to prove the contractive property of the iterative sequence.

Theorem 3.3. Let w∗ ∈ W∗ be a solution of SVI and let wk+1(γαk) be generated by (2.5). Then wk and w̃k are
bounded, and

‖wk+1(γαk) −w
∗‖2
G 6 ‖wk −w∗‖2

G − c‖wk − w̃k‖2
G, (3.14)

where
c :=

γ(2−γ)(2−
√

2)2

4 > 0.

Proof. It follows from (3.9), (2.8), and (2.9) that

‖wk+1(γαk) −w
∗‖2
G 6 ‖wk −w∗‖2

G − 2γαk(β1 +β2)ϕk + γ
2α2
k(β1 +β2)

2‖wk − w̃k‖2
G

= ‖wk −w∗‖2
G − γ(2 − γ)(β1 +β2)αkϕk

6 ‖wk −w∗‖2
G −

γ(2−γ)(2−
√

2)2

4 ‖wk − w̃k‖2
G.
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Since γ ∈ (0, 2), we have

‖wk+1(αk) −w
∗‖G 6 ‖wk −w∗‖G 6 · · · 6 ‖w0 −w∗‖G,

and thus, {wk} is a bounded sequence.
It follows from (3.14) that ∞∑

k=0

c‖wk − w̃k‖2
G < +∞,

which means that
lim
k→∞ ‖wk − w̃k‖G = 0. (3.15)

Since {wk} is a bounded sequence, we conclude that {w̃k} is also bounded.

Now, we are ready to prove the convergence of the proposed method.

Theorem 3.4. The sequence {wk} generated by the proposed method converges to some w∞ which is a solution of
SVI.

Proof. It follows from (3.15) that

lim
k→∞ ‖xk − x̃k‖R = 0, lim

k→∞ ‖yk − ỹk‖S = 0 (3.16)

and

lim
k→∞ ‖λk − λ̃k‖H−1 = lim

k→∞ ‖Ax̃k +Bỹk − b‖H = 0. (3.17)

Moreover, (2.2) and (2.3) imply that

(x− x̃k)T (f(x̃k) −AT λ̃k) > (xk − x̃k)TR(x− x̃k)

+ (x− x̃k)T
(
ATHA(xk − x̃k) −ATH

(
A(xk − x̃k) +B(yk − ỹk)

))
and

(y− ỹk)T (g(ỹk) −BT λ̃k) > (yk − ỹk)TS(y− ỹk)

+ (y− ỹk)T
(
BTHB(yk − ỹk) −BTH

(
A(xk − x̃k) +B(yk − ỹk)

))
.

We deduce from (3.16) that  lim
k→∞(x− x̃k)T {f(x̃k) −AT λ̃k} > 0, ∀x ∈ X,

lim
k→∞(y− ỹk)T {g(ỹk) −BT λ̃k} > 0, ∀y ∈ Y.

(3.18)

Since {wk} is bounded, it has at least one cluster point. Let w∞ be a cluster point of {wk} and the
subsequence {wkj} converges to w∞, since W is closed set, we have w∞ ∈ W. It follows from (3.17) and
(3.18) that 

lim
j→∞(x− xkj)T {f(xkj) −ATλkj} > 0, ∀x ∈ X,

lim
j→∞(y− ykj)T {g(ykj) −BTλkj} > 0, ∀y ∈ Y,

lim
j→∞(Axkj +Bykj − b) = 0

and consequently 
(x− x∞)T {f(x∞) −ATλ∞} > 0, ∀x ∈ X,

(y− y∞)T {g(y∞) −BTλ∞} > 0, ∀y ∈ Y,
Ax∞ +By∞ − b = 0,

which means that w∞ is a solution of SVI.
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Now we prove that the sequence {wk} converges to w∞. Since

lim
k→∞ ‖wk − w̃k‖G = 0, and {w̃kj}→ w∞,

for any ε > 0, there exists an l > 0 such that∥∥w̃kl −w∞∥∥
G
<
ε

2
and

∥∥wkl − w̃kl∥∥
G
<
ε

2
. (3.19)

Therefore, for any k > kl, it follows from (3.14) and (3.19) that

‖wk −w∞‖G 6 ‖wkl −w∞‖G 6 ‖wkl − w̃kl‖G + ‖w̃kl −w∞‖G < ε.

This implies that the sequence {wk} converges to w∞ which is a solution of SVI.

4. Preliminary computational results

Let HL,HU, and C be given n×n symmetric matrices. In order to verify the theoretical assertions, we
consider the following optimization problem with matrix variables:

min
{

1
2
‖X−C‖2

F : X ∈ Sn+ ∩B
}

, (4.1)

where
Sn+ =

{
H ∈ Rn×n : H> = H, H � 0

}
and

B =
{
H ∈ Rn×n : H> = H, HL 6 H 6 HU

}
.

The matrices HL and HU are given by:

(HU)jj = (HL)jj = 1, and (HU)ij = −(HL)ij = 0.1, ∀i 6= j, i, j = 1, 2, · · ·,n.

Note that the problem (4.1) is equivalent to the following:

min
{

1
2
‖X−C‖2 +

1
2
‖Y −C‖2

}
,

s.t. X− Y = 0,
X ∈ Sn+, Y ∈ B,

(4.2)

by attaching a Lagrange multiplier Z ∈ Rn×n to the linear constraint X− Y = 0, the Lagrange function of
(4.2) is

L(X, Y,Z) =
1
2
‖X−C‖2 +

1
2
‖Y −C‖2 − 〈Z,X− Y〉,

which is defined on Sn+ ×B×Rn×n. If (X∗, Y∗,Z∗) ∈ Sn+ ×B×Rn×n is a KKT point of (4.2), then (4.2)
can be converted to the following variational inequality: find u∗ = (X∗, Y∗,Z∗) ∈ W = Sn+ ×B×Rn×n

such that 
〈X−X∗, (X∗ −C) −Z∗〉 > 0,
〈Y − Y∗, (Y∗ −C) +Z∗〉 > 0, ∀ u = (X, Y,Z) ∈W,
X∗ − Y∗ = 0.

(4.3)

Problem (4.3) is a special case of (1.3)-(1.4) with matrix variables, where A = In×n, B = −In×n, b = 0,
f(X) = X−C, g(Y) = Y −C, and W = Sn+ ×B×Rn×n.
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For simplification, we take R = rIn×n,S = sIn×n and H = In×n where r > 0 and s > 0 are scalars. In
all tests we take γ = 1.8, β1 = 0.01, β2 = 0.01, C = rand(n), and (X0, Y0,Z0) = (In×n, In×n, 0n×n) as the
initial point in the test, and r = 0.5, s = 5. The iteration is stopped as soon as

max
{
‖Xk − X̃k‖, ‖Yk − Ỹk‖, ‖Zk − Z̃k‖

}
6 10−6.

All codes were written in Matlab. We compare the proposed method with those in [18] and [23]. The
numerical results for problem (4.1) with different dimensions are given in Table 1, which demonstrate
that the proposed algorithm is effective and reliable in practice.

Table 1: Numerical results for the problem (4.1).
Dimension of The proposed method The method in [23] The method in [18]
the problem k CPU (Sec.) k CPU (Sec.) k CPU (Sec.)

100 37 0.63 80 0.95 83 0.81
200 66 3.51 117 6.24 128 6.04
300 100 15.67 178 37.26 183 19.29
400 138 43.19 244 84.21 246 51.71
500 184 100.44 309 188.21 313 159.26
600 224 214.66 384 507.21 397 366.45

5. Conclusions

In this paper, we proposed a new modified parallel alternating direction method for solving struc-
tured variational inequalities. Each iteration of the proposed method includes a prediction step where a
prediction point is obtained by solving two sub-variational inequalities in a parallel wise, and a correction
step where the new iterate is generated by searching the optimal step size along a new descent direction.
Global convergence of the proposed method is proved under mild assumptions.

Acknowledgment

The authors are very grateful to the referees for their careful reading, comments, and suggestions,
which help us improve the presentation of this paper.

References

[1] A. Bnouhachem, On LQP alternating direction method for solving variational inequality problems with separable structure,
J. Inequal. Appl., 2014 (2014), 15 pages. 1

[2] A. Bnouhachem, Q. H. Ansari, A descent LQP alternating direction method for solving variational inequality problems
with separable structure, Appl. Math. Comput., 246 (2014), 519–532.

[3] A. Bnouhachem, H. Benazza, M. Khalfaoui, An inexact alternating direction method for solving a class of structured
variational inequalities, Appl. Math. Comput., 219 (2013), 7837–7846.

[4] A. Bnouhachem, A. Hamdi, Parallel LQP alternating direction method for solving variational inequality problems with
separable structure, J. Inequal. Appl., 2014 (2014), 14 pages.

[5] A. Bnouhachem, M. H. Xu, An inexact LQP alternating direction method for solving a class of structured variational
inequalities, Comput. Math. Appl., 67 (2014), 671–680. 1

[6] G. Chen, M. Teboulle, A proximal-based decomposition method for convex minimization problems, Math. Programming,
64 (1994), 81–101. 1

[7] J. Eckstein, Some saddle-function splitting methods for convex programming, Optim. Methods Softw., 4 (1994), 75–83. 1
[8] J. Eckstein, D. B. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal

monotone operators, Math. Programming, 55 (1992), 293–318. 1



A. Bnouhachem, F. Benssi, A. Hamdi, J. Nonlinear Sci. Appl., 10 (2017), 175–185 185

[9] J. Eckstein, M. Fukushima, Some reformulations and applications of the alternating direction method of multipliers, Large
scale optimization, Gainesville, FL, (1993), 115–134, Kluwer Acad. Publ., Dordrecht, (1994). 1

[10] F. Facchinei, J.-S. Pang, Finite-dimensional variational inequalities and complementarity problems, I and II, Springer
Series in Operations Research, Springer-Verlag, New York, (2003).

[11] M. Fortin, R. Glowinski, Augmented Lagrangian methods, Applications to the numerical solution of boundary value
problems, Translated from the French by B. Hunt and D. C. Spicer, Studies in Mathematics and its Applications,
North-Holland Publishing Co., Amsterdam, (1983). 1

[12] D. Gabay, Applications of the method of multipliers to variational inequalities, Augmented Lagrange Methods: Appli-
cations to the Solution of Boundary-valued Problems, (eds. M. Fortin and R. Glowinski), Studies in Mathematics
and Its Applications, Amsterdam, The Netherlands, 15 (1983), 299–331. 1

[13] D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation,
Comput. Math. Appl., 2 (1976), 17–40. 1

[14] R. Glowinski, P. Le Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM Studies
in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (1989). 1

[15] A. Hamdi, S. K. Mishra, Decomposition methods based on augmented Lagrangians: a survey, Topics in nonconvex
optimization, Springer Optim. Appl., Nonconvex Optim. Appl., Springer, New York, 50 (2011), 175–203. 1

[16] A. Hamdi, A. A. Mukheimer, Modified Lagrangian methods for separable optimization problems, Abstr. Appl. Anal.,
2012 (2012), 20 pages. 1

[17] B.-S. He, L.-Z. Liao, D.-R. Han, H. Yang, A new inexact alternating directions method for monotone variational inequali-
ties, Math. Programming, 92 (2002), 103–118. 1, 1

[18] B.-S. He, Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities, Comput.
Optim. Appl., 42 (2009), 195–212. 1, 2.3, 4, 1

[19] B.-S. He, M. Tao, X.-M. Yuan, Alternating direction method with Gaussian back substitution for separable convex pro-
gramming, SIAM J. Optim., 22 (2012), 313–340.

[20] B.-S. He, H. Yang, Some convergence properties of a method of multipliers for linearly constrained monotone variational
inequalities, Oper. Res. Lett., 23 (1998), 151–161. 1

[21] L. S. Hou, On the O(1/t) convergence rate of the parallel descent-like method and parallel splitting augmented Lagrangian
method for solving a class of variational inequalities, Appl. Math. Comput., 219 (2013), 5862–5869.

[22] Z.-K. Jiang, A. Bnouhachem, A projection-based prediction-correction method for structured monotone variational inequal-
ities, Appl. Math. Comput., 202 (2008), 747–759. 1

[23] Z.-K. Jiang, X.-M. Yuan, New parallel descent-like method for solving a class of variational inequalities, J. Optim. Theory
Appl., 145 (2010), 311–323. 1, 1, 2.3, 4, 1

[24] M. Li, A hybrid LQP-based method for structured variational inequalities, Int. J. Comput. Math., 89 (2012), 1412–1425.
1

[25] M. Tao, X.-M. Yuan, On the O(1/t) convergence rate of alternating direction method with logarithmic-quadratic proximal
regularization, SIAM J. Optim., 22 (2012), 1431–1448. 1

[26] P. Tseng, Alternating projection-proximal methods for convex programming and variational inequalities, SIAM J. Optim.,
7 (1997), 951–965.

[27] K. Wang, L.-L. Xu, D.-R. Han, A new parallel splitting descent method for structured variational inequalities, J. Ind.
Manag. Optim., 10 (2014), 461–476. 1

[28] X.-M. Yuan, M. Li, An LQP-based decomposition method for solving a class of variational inequalities, SIAM J. Optim.,
21 (2011), 1309–1318 1


	Introduction
	Iterative method
	Basic results
	Preliminary computational results
	Conclusions

