Fixed point theorems of nondecreasing order-Ćirić-Lipschitz mappings in normed vector spaces without normalities of cones

Zhilong Lia,b, Shujun Jiangc,*

aSchool of Statistics, Jiangxi University of Finance and Economics, Nanchang, 330013, China.
bResearch Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang, 330013, China.
cDepartment of Mathematics, Jiangxi University of Finance and Economics, Nanchang, 330013, China.

Communicated by R. Saadati

Abstract

We introduce the concept of order-Ćirić-Lipschitz mappings, and prove some fixed point theorems for such kind of mappings in normed vector spaces without assuming the normalities of cones by using upper and lower solutions method, which improve many existing results of order-Lipschitz mappings in Banach spaces or Banach algebras. It is worth mentioning that even in the setting of normal cones, the main results in this paper are still new since the sum of spectral radius or the sum of restricted constants may be greater than or equal to 1. ©2017 all rights reserved.

Keywords: Fixed point, order-Ćirić-Lipschitz mapping, Picard-complete, w-complete.
2010 MSC: 06A07, 47H10.

1. Introduction and preliminaries

Ćirić’s contraction in metric spaces was primitively introduced and studied by Ćirić [3], which generalizes and includes Banach contraction [1], Kannan contraction [7], and Chatterjea contraction [2]. Let (\(X, d\)) be a metric space. Recall that a mapping \(T : X \to X\) is called a Ćirić’s contraction if there exist nonnegative numbers \(q, r, s, t\) with \(q + r + s + 2t < 1\) such that

\[
d(Tx, Ty) \leq qd(x, y) + rd(x, Tx) + sd(y, Ty) + t[d(x, Ty) + d(y, Tx)], \quad \forall x, y \in X.
\]

Note that a Ćirić’s contraction must be a Lipschitz mapping. Thus motivated by [3], we introduce the concept of Ćirić order-Lipschitz mapping in topological vector spaces as follows.

\textbf{Definition 1.1.} Let \(P\) be a cone of a topological vector space \(E\), \(D \subset E\) and \(\leq\) the partial order induced by \(P\). A mapping \(T : D \to E\) is called an order-Ćirić-Lipschitz mapping if there exist \(A_i, B_i : P \to P\) (or nonnegative real numbers \(A_i, B_i (i=1,2,3,4,5)\)) such that for each \(x, y \in D\) with \(y \leq x\),

\[
-B_1(x - y) - B_2(x - Tx)_+ - B_3(y - Ty)_+ - B_4(x - Ty)_+ - B_5(y - Tx)_+ \leq Tx - Ty \\
\leq A_1(x - y) + A_2(x - Tx)_+ + A_3(y - Ty)_+ + A_4(x - Ty)_+ + A_5(y - Tx)_+,
\]

(1.1)

*Corresponding author

Email addresses: \texttt{ljzl771218@sina.com} (Zhilong Li), \texttt{jiangshujuns@sina.com} (Shujun Jiang)

doi:10.22436/jnsa.010.01.02

Received 2016-06-25
where

\[u_+ = \begin{cases} \ u, & \text{if } u \in P, \\ -u, & \text{if } u \in -P, \\ \emptyset, & \text{o.w.} \end{cases} \]

for each \(u \in E \).

In particular when \(A_i u \equiv \emptyset \) (\(i = 2, 3, 4, 5 \)) and \(B_i u \equiv \emptyset \) (\(i = 2, 3, 4, 5 \)), the generalized order-Lipschitz mapping is reduced to an \(\alpha \)-order-Lipschitz mapping considered in [8, 10, 11], where the cone is necessarily assumed to be normal. Recently, without assuming the normality of \(P \), Jiang and Li [6] proved the following fixed point theorem of order-Lipschitz mappings by introducing the concept of Picard-completeness and applying the sandwich theorem in the sense of \(\omega \)-convergence.

Theorem 1.2 ([6]). Let \(P \) be a solid cone of a Banach algebra \((E, \| \cdot \|)\) and \(u_0, v_0 \in E \) with \(u_0 \preceq v_0 \), and \(T: D = [u_0, v_0] \to E \) a nondecreasing \(\alpha \)-order-Lipschitz mapping restricted with vectors (i.e., there exist \(A_i \in P \) and \(A_i = \emptyset \) (\(i = 2, 3, 4, 5 \)) such that \((1.1) \) is satisfied). Assume that \(u_0 \preceq Tu_0, Tv_0 \preceq v_0 \) (i.e., \(u_0 \) and \(v_0 \) are a pair of lower and upper solutions of \(T \)), \(r(A_i) < 1 \) and \(T \) is Picard-complete at \(u_0 \) and \(v_0 \). Then \(T \) has a unique fixed point \(x^* \in [u_0, v_0] \), and \(x_n \xrightarrow{\omega} x^* \) for each \(x_0 \in [u_0, v_0] \), where \(\{x_n\} = O(T, x_0) \) and \(O(T, x_0) \) denotes the Picard iteration sequence of \(T \) at \(x_0 \), i.e., \(x_n = T^n x_0 \) for each \(n \).

In this paper, we shall prove some new fixed point theorems of order-\(\alpha \)-Lipschitz mappings in normed vector spaces without assuming the normalities of cones by using upper and lower solutions method, which improve many existing results of order-Lipschitz mappings in Banach spaces or Banach algebras. It is worth mentioning that even in the setting of normal cones, the main results in this paper are still new since the sum of spectral radius or the sum of restricted constants may be greater than or equal to 1.

Let \(E \) be a topological vector space. A nonempty closed subset \(P \) of \(E \) is a cone if it is such that \(ax + by \in P \) for each \(a, b \geq 0 \) and each \(a, b \geq 0 \), and \(P \cap (-P) = \{0\} \), where \(0 \) is the zero element of \(E \). Each cone \(P \) of \(E \) determines a partial order \(\preceq \) on \(E \) by \(x \preceq y \iff y - x \in P \) for each \(x, y \in X \). For each \(u_0, v_0 \in E \) with \(u_0 \preceq v_0 \), we set \([u_0, v_0] = \{u \in E : u_0 \preceq u \preceq v_0\} \), \([u_0, +\infty] = \{x \in E : u_0 \preceq x\} \) and \((-\infty, v_0] = \{x \in E : x \preceq v_0\} \). A cone \(P \) of \(E \) is solid [4] if \(\text{int}(P) \neq \emptyset \), where \(\text{int}(P) \) denotes the interior of \(P \). For each \(x, y \in E \) with \(y - x \in \text{int}(P) \), we write \(x \ll y \).

Let \((E, \| \cdot \|) \) be a normed vector space. A cone \(P \) of \(E \) is normal [4] if there is a positive real number \(N \) such that \(x, y \in E \) and \(0 \preceq x \preceq y \) implies that \(\|x\| \leq N\|y\| \), and the minimal \(N \) is called a normal constant of \(P \). Note that if \(P \) is non-normal then the sandwich theorem does not hold in the sense of norm-convergence.

Definition 1.3. Let \(P \) be a solid cone of a topological space \(E, \{x_n\} \subseteq E \) and \(D \subseteq E \).

(i) The sequence \(\{x_n\} \) is \(\omega \)-convergent [5, 9] if for each \(\epsilon \in \text{int}(P) \), there is a positive integer \(n_0 \) and \(x \in E \) such that \(x - \epsilon \ll x_n \ll x + \epsilon \) for each \(n \geq n_0 \) (denote \(x_n \xrightarrow{\omega} x \) and \(x \) is called a \(\omega \)-limit of \(\{x_n\} \)).

(ii) The sequence \(\{x_n\} \) is \(\omega \)-Cauchy [6] if for each \(\epsilon \in \text{int}(P) \), there is a positive integer \(n_0 \) such that \(-\epsilon \ll x_n - x_m \ll \epsilon \) for each \(m, n \geq n_0 \), i.e., \(x_n - x_m \xrightarrow{\omega} 0 \) (\(m, n \to \infty \)).

(iii) The space \(E \) is \(\omega \)-complete if each \(\omega \)-Cauchy sequence in \(E \) is \(\omega \)-convergent;

(iv) The subset \(D \) is \(\omega \)-closed [6] if for each \(\{x_n\} \subseteq D \), \(x_n \xrightarrow{\omega} x \) implies \(x \in D \).

Lemma 1.4 ([6, 9]). Let \(P \) be a solid cone of a normed vector space \((E, \| \cdot \|)\) and \(u_0, v_0 \in E \) with \(u_0 \preceq v_0 \). Then

(i) each sequence \(\{x_n\} \subseteq E \) has a unique \(\omega \)-limit;
Lemma 1.5 ([5, 9]). Let \(P \) be a solid cone of a normed vector space \((E, \| \cdot \|) \) and \(x_n \in E \). Then \(x_n \xrightarrow{w} x \) implies \(x_n \xrightarrow{w} y \) and \(z \xrightarrow{w} z \), where \(z \in E \).

Proposition 1.6. Let \(P \) be a normal solid cone of a normed vector space \((E, \| \cdot \|) \). Then \(E \) is \(w \)-complete if and only if it is complete.

Proof. Suppose that \(E \) is complete and \((x_n) \) is a \(w \)-Cauchy sequence of \(E \). By Lemma 1.5 and the normality of \(P \), \((x_n) \) is a Cauchy sequence of \(E \), and hence it is convergent by the completeness of \(E \). Moreover by Lemma 1.5, \((x_n) \) is \(w \)-convergent. This shows \(E \) is \(w \)-complete.

Suppose that \(E \) is \(w \)-complete and \((x_n) \) is a Cauchy sequence of \(E \). By Lemma 1.5, \((x_n) \) is a \(w \)-Cauchy sequence of \(E \), and hence it is convergent by the \(w \)-completeness of \(E \). Moreover by Lemma 1.5 and the normality of \(P \), \((x_n) \) is convergent. This shows \(E \) is complete.

Definition 1.7 ([6]). Let \(P \) be a solid cone of a topological vector space \((E, \| \cdot \|) \), \(D \subset E \), \(x_0 \in D \) and \(T : D \to E \). If the Picard iteration sequence \(O(T, x_0) \) is \(w \)-convergent provided that it is \(w \)-Cauchy, then \(T \) is said to be \(P \)-Picard-complete at \(x_0 \). Moreover, if \(T \) is \(P \)-Picard-complete at each \(x \in D \), then \(T \) is said to be \(P \)-Picard-complete on \(D \).

Remark 1.8. If \(E \) is a \(w \)-complete topological vector space then the mapping \(T : E \to E \) is \(P \)-Picard-complete on \(E \). Consequently, if \(P \) is a normal solid cone of a Banach space \((E, \| \cdot \|) \) then each mapping \(T : E \to E \) is \(P \)-Picard-complete on \(E \) by Proposition 1.6.

Definition 1.9. Let \(P \) be a solid cone of a topological vector space \(E \) and \(D \subset E \). A mapping \(T : D \to E \) is \(w \)-continuous at \(x_0 \in E \) if for each \((x_n) \subset E \), \(x_n \xrightarrow{w} x_0 \) implies \(Tx_n \xrightarrow{w} Tx_0 \). If \(T \) is \(w \)-continuous at each \(x \in D \), then \(T \) is \(w \)-continuous on \(D \).

Lemma 1.10. Let \(P \) be a solid cone of a normed vector space \((E, \| \cdot \|) \) and \(A : E \to E \) a linear bounded mapping with \(A(P) \subset P \). Then \(A \) is \(w \)-continuous on \(E \).

Proof. Let \(x \in E \) and \((x_n) \) be a sequence in \(E \) such that \(x_n \xrightarrow{w} x \). For each \(\epsilon \in \text{int}(P) \), it is clear that \(\frac{\epsilon}{m} \in \text{int}(P) \) for each \(m \), and hence there exists \(n_m \) such that \(-\frac{\epsilon}{m} \leq x_n - x \leq \frac{\epsilon}{m} \) for each \(n \geq n_m \). Note that \(A \) is a linear mapping with \(A(P) \subset P \), then \(-\frac{A\epsilon}{m} \leq Ax_n - Ax \leq \frac{A\epsilon}{m} \) for each \(n \geq n_m \). It is clear that \(\frac{A\epsilon}{m} \xrightarrow{\| \cdot \|} 0(\epsilon \to \infty) \) since \(A \) is bounded, and hence \(\frac{A\epsilon}{m} \xrightarrow{w} 0(\epsilon \to \infty) \) by Lemma 1.5. Moreover, by Lemma 1.4 (iii), we obtain \(Ax_n - Ax \xrightarrow{w} 0 \), i.e., \(A \) is continuous at \(x \).

2. Main results

In this section, we first consider the existence of fixed points of order-Ćirić-Lipschitz mappings.

Theorem 2.1. Let \(P \) be a solid cone of a normed vector space \((E, \| \cdot \|) \), \(x_0 \in E \) and \(T : D = [x_0, +\infty) \to E \) a nondecreasing order-Ćirić-Lipschitz mapping restricted with linear bounded mappings \(A_i : P \to P \ (i = 1, 2, 3, 4, 5) \). Assume that \(x_0 \leq Tx_0 \), \(T \) is Picard-complete at \(x_0 \) and

\[
\tau(A_2 + A_5) < 1, \quad \tau((1 - A_2 - A_5)^{-1}(A_1 + A_3 + A_5)) < 1.
\]

Then \(T \) has a fixed point in \([x_0, +\infty)\).
Proof. Let $B : P \to P$ be an arbitrary linear bounded mapping with $r(B) < 1$, then $I - B$ is invertible, denote the inverse of $I - B$ by $(I - B)^{-1}$. Moreover, it follows from Neumann’s formula that

$$(I - B)^{-1} = \sum_{n=0}^{\infty} B^n = I + B + B^2 + \cdots + B^n + \cdots,$$

(2.2)

which implies that $(I - B)^{-1} : P \to P$ is a linear bounded mapping. It follows from $r(B) < 1$ and Gelfand’s formula that there exist a positive integer n_1 and $\beta \in (r(B), 1)$ such that

$$\|B^n\| \leq \beta^n, \quad \forall n \geq n_1.$$

Thus for each $u \in P$, we get

$$\|B^n u\| \leq \|B^n\| \|u\| \leq \beta^n \|u\|, \quad \forall n \geq n_1,$$

which implies $B^n u \not\to \theta$ for each $u \in P$, and hence by Lemma 1.5,

$$B^n u \not\to \theta, \quad \forall u \in P.$$

(2.3)

Let $x_n = T^n x_0$ for each n. Note that T is nondecreasing on $[x_0, +\infty)$, then it follows from $x_0 \leq Tx_0$ that

$$x_0 \leq x_1 \leq \cdots \leq x_n \leq x_{n+1}, \quad \forall n.$$

(2.4)

By (1.1) and (2.4),

$$\theta \preceq x_{n+1} - x_n = T x_n - T x_{n-1}$$

$$\preceq A_1(x_n - x_{n-1}) + A_2(x_{n+1} - x_n) + A_3(x_{n+1} - x_n) + A_4(x_n - x_n) + A_5(x_{n+1} - x_{n-1})$$

$$= A_1(x_n - x_{n-1}) + A_2(x_{n+1} - x_n) + A_3(x_n - x_{n-1}) + A_5(x_{n+1} - x_n) + A_5(x_n - x_{n-1}), \quad \forall n,$$

and so

$$\theta \preceq (I - A_2 - A_3)(x_{n+1} - x_n) \preceq (A_1 + A_3 + A_5)(x_n - x_{n-1}), \quad \forall n.$$

(2.5)

Note that $(I - A_2 - A_3)^{-1} : P \to P$ is a linear bounded mapping by $r(A_2 + A_3) < 1$ and taking $B = A_2 + A_3$ in (2.2). Acting (2.5) with $(I - A_2 - A_3)^{-1}$, we get

$$\theta \preceq x_{n+1} - x_n \preceq A(x_n - x_{n-1}), \quad \forall n,$$

(2.6)

where $A = (I - A_2 - A_3)^{-1}(A_1 + A_3 + A_5)$. Clearly, $(I - A)^{-1}$ is also a linear bounded mapping since $r(A) < 1$ by (2.1). Taking $B = A$ in (2.2), by (2.6), we have

$$\theta \preceq x_m - x_n = \sum_{i=n}^{m-1} (x_{i+1} - x_i) \preceq \sum_{i=n}^{m-1} A^i(x_1 - x_0)$$

$$= A^n \sum_{i=0}^{m-1} A^i(x_1 - x_0) \preceq A^n (I - A)^{-1}(x_1 - x_0), \quad \forall m > n.$$

(2.7)

Taking $B = A$ and $u = (I - A)^{-1}(x_1 - x_0)$ in (2.3), it follows that

$$A^n (I - A)^{-1}(x_1 - x_0) \not\to \theta (n \to \infty),$$

which together with (2.7) and Lemma 1.4 (iii) implies that

$$x_m - x_n \not\to \theta (m > n \to \infty),$$

(2.8)
Proof. Let \(T \) be a solid cone of a normed vector space \((E, \| \cdot \|) \), \(y_0 \in E \) and \(T : D = (-\infty, y_0] \to E \) a nondecreasing order-\(\text{Čirić-Lipschitz} \) mapping restricted with linear bounded mappings \(A_i : P \to P \) \((i = 1, 2, 3, 4, 5)\). Assume that \(Ty_0 \leq y_0 \), \(T \) is Picard-complete at \(y_0 \) and
\[
\theta \leq \theta \leq (1 - A_2 - A_3)(T y_0 - x^*) \leq \theta.
\]
Acting the above inequality with \((1 - A_2 - A_3)^{-1}\), we have \(\theta \leq T y_0 - x^* \leq \theta \), i.e., \(x^* = T y_0 \).

Theorem 2.2. Let \(P \) be a solid cone of a normed vector space \((E, \| \cdot \|) \), \(y_0 \in E \) and \(T : D = (-\infty, y_0] \to E \) a nondecreasing order-\(\text{Čirić-Lipschitz} \) mapping restricted with linear bounded mappings \(A_i : P \to P \) \((i = 1, 2, 3, 4, 5)\). Assume that \(Ty_0 \leq y_0 \), \(T \) is Picard-complete at \(y_0 \) and
\[
\theta(A_3 + A_4) < 1, \quad r((1 - A_3 - A_4)^{-1}(A_1 + A_2 + A_4)) < 1.
\]
Then \(T \) has a fixed point in \((-\infty, y_0]\).

Proof. Let \(y_n = T^n y_0 \) for each \(n \). Note that \(T \) is nondecreasing on \((-\infty, y_0]\), then it follows from \(Ty_0 \leq y_0 \) that
\[
y_{n+1} \leq y_n \leq \cdots \leq y_1 \leq y_0, \quad \forall \ n.
\]
Set \(\mathcal{A} = (1 - A_3 - A_4)^{-1}(A_1 + A_2 + A_4) \), then \(r(\mathcal{A}) < 1 \) by \((2.13)\). In analogy to \((2.7)\), \((1.1)\) and \((2.14)\), we obtain
\[
\theta \geq y_n - y_m = \sum_{i=n}^{m-1} (y_i - y_{i+1}) \leq \sum_{i=n}^{m-1} \mathcal{A}^{-1} (y_0 - y_1) = \mathcal{A}^n \sum_{i=0}^{m-1} \mathcal{A}^{-1} (y_0 - y_1) \leq \mathcal{A}^n (1 - \mathcal{A})^{-1} (y_0 - y_1), \quad \forall \ m > n.
\]
Taking \(B = \mathcal{A} \) and \(u = (I - \mathcal{A})^{-1} (x_1 - x_0) \) in \((2.3)\), it follows that
\[
\mathcal{A}^n (I - \mathcal{A})^{-1} (x_1 - x_0) \not\overset{\theta}{\to} (n \to \infty),
\]
which together with (2.15) and Lemma 1.4 (iii) implies that
\[y_n - y_m \xrightarrow{w} 0 \ (m > n \to \infty). \] (2.16)
Thus by the Picard-completeness of \(T \) at \(y_0 \), there exists \(y^* \in E \) such that
\[y_n \xrightarrow{w} y^*. \] (2.17)
In analogy to (2.9), (2.10), and (2), we obtain
\[Ty^* \leq y^* \leq y_n, \ n = 0, 1, 2, 3, \cdots. \] (2.18)
By (1.1), (2.14), and (2.18),
\[0 \leq y_{n+1} - Ty^* = Ty_n - Tx^* \leq A_1(y_n - y^*) + A_2(y_n - y_{n+1}) + A_3(y^* - Ty^*) + A_4(y_n - Ty^*) + A_5(y_{n+1} - y^*), \ \forall \ n. \]
Letting \(n \to \infty \) in the above inequality, by (2.16), (2.17), Lemma 1.4 (iii), and Lemma 1.10 we get
\[0 \leq y^* - Ty^* \leq A_3(y^* - Ty^*) + A_4(y^* - Ty^*), \]
and so
\[(I - A_2 - A_5)(y^* - Ty^*) \leq 0. \]
Acting the above inequality with \((I - A_2 - A_5)^{-1} \), we have \(0 \leq y^* - Ty^* \leq 0 \), i.e., \(y^* = Ty^* \).

Remark 2.3. Theorems 2.1 and 2.2 are still valid without assumption of the Picard-completeness of \(T \) at the expense that \(E \) is \(w \)-complete by Remark 1.8.

Proposition 2.4. Let \(P \) be a cone of a normed vector space \((E, \| \cdot \|)\) and \(A_i : P \to P \ (i = 1, 2, 3, 4, 5) \) be linear bounded mappings. If one of the following conditions is satisfied:

(H1) \(A_i(i = 1, 2, 3, 4, 5) \) are mutually commutative (i.e., \(A_iA_j = A_jA_i \) for each \(1 \leq i, j \leq 5 \)), \(r(A_4) = r(A_5) \) and \(\sum_{i=1}^{5} r(A_i) < 1 \);

(H2) \(A_i(i = 1, 2, 3, 4, 5) \) are mutually commutative, there exists \(\varepsilon > 0 \) such that \(r(A_4) - r(A_5) > \varepsilon \) and \(\sum_{i=1}^{5} r(A_i) = 1 + \varepsilon \),

then \(A_i(i = 1, 2, 3, 4, 5) \) satisfy the condition (2.1).

Proof. Suppose that (H1) is satisfied. Since \(A_i(i = 1, 2, 3, 4, 5) \) are mutually commutative, it follows from (H1) that \(r(A_2 + A_5) \leq r(A_2) + r(A_5) < 1 \) and
\[r((I - A_2 - A_5)^{-1}(A_1 + A_3 + A_5)) \leq \frac{r(A_1 + A_3 + A_5)}{1 - r(A_2 + A_5)} \leq \frac{r(A_1) + r(A_3) + r(A_5)}{1 - r(A_2) - r(A_5)} = \frac{r(A_1) + r(A_3) + r(A_4)}{1 - r(A_2) - r(A_5)} < 1, \]
and hence (2.1) holds.

Suppose that (H2) is satisfied. Since \(A_i(i = 1, 2, 3, 4, 5) \) are mutually commutative, it follows from (H2) that
\[r(A_2 + A_5) \leq r(A_2) + r(A_5) \leq \sum_{i=1}^{3} r(A_i) + 2r(A_5) < \sum_{i=1}^{3} r(A_i) + (r(A_4) - \varepsilon + r(A_5)) \leq 1, \]
and
\[r((I - A_2 - A_5)^{-1}(A_1 + A_3 + A_5)) \leq \frac{r(A_1 + A_3 + A_5)}{1 - r(A_2 + A_5)} \leq \frac{r(A_1) + r(A_3) + r(A_5)}{1 - r(A_2) - r(A_5)} < 1, \]
and hence (2.1) holds. \(\square \)
In analogy to Proposition 2.4, we have the following result.

Proposition 2.5. Let P be a cone of a normed vector space $(E, \| \cdot \|)$ and $A_i : P \to P$ ($i = 1, 2, 3, 4, 5$) be linear bounded mappings. If either (H$_1$), or the following condition is satisfied:

(H$_3$) A_i ($i = 1, 2, 3, 4, 5$) are mutually commutative, there exists $\varepsilon \geq 0$ such that $r(A_5) - r(A_4) > \varepsilon$ and
\[\sum_{i=1}^{5} r(A_i) = 1 + \varepsilon, \]
then A_i ($i = 1, 2, 3, 4, 5$) satisfy condition (2.13).

By Remark 1.8, Propositions 2.4 and 2.5, we have the following two corollaries corresponding to Theorems 2.1 and 2.2.

Corollary 2.6. Let P be a solid cone of a normed vector space $(E, \| \cdot \|)$, $x_0 \in E$ and $T : D = [x_0, +\infty) \to E$ a nondecreasing order-\tilde{C}irič-Lipschitz mapping restricted with linear bounded mappings $A_i : P \to P$ ($i = 1, 2, 3, 4, 5$). Assume that $x_0 \preceq Ty_0$ and (H$_2$) is satisfied. If E is w-complete, or T is Picard-complete at x_0, then T has a fixed point in $[x_0, +\infty)$.

Corollary 2.7. Let P be a solid cone of a w-complete normed vector space $(E, \| \cdot \|)$, $y_0 \in E$ and $T : D = (-\infty, y_0] \to E$ a nondecreasing order-\tilde{C}irič-Lipschitz mapping restricted with linear bounded mappings $A_i : P \to P$ ($i = 1, 2, 3, 4, 5$). Assume that $Ty_0 \preceq y_0$ and (H$_3$) is satisfied. If E is w-complete, or T is Picard-complete at y_0, then T has a fixed point in $(-\infty, y_0]$.

In particular when A_i, B_i ($i = 1, 2, 3, 4, 5$) are nonnegative real numbers, we have the following two fixed point results.

Corollary 2.8. Let P be a solid cone of a normed vector space $(E, \| \cdot \|)$, $x_0 \in E$ and $T : D = [x_0, +\infty) \to E$ a nondecreasing order-\tilde{C}irič-Lipschitz mapping restricted with nonnegative real numbers $A_i \geq 0$ ($i = 1, 2, 3, 4, 5$). Assume that $x_0 \preceq Tx_0$ and the following condition is satisfied:

(H$_3^0$) there exists $\varepsilon \geq 0$ such that $\sum_{i=1}^{5} A_i = 1 + \varepsilon$ and $A_4 - A_5 > \varepsilon$.

If E is w-complete, or T is Picard-complete at x_0, then T has a fixed point in $[x_0, +\infty)$.

Corollary 2.9. Let P be a solid cone of a normed vector space $(E, \| \cdot \|)$, $y_0 \in E$ and $T : D = (-\infty, y_0] \to E$ a nondecreasing order-\tilde{C}irič-Lipschitz mapping restricted with nonnegative real numbers $A_i \geq 0$ ($i = 1, 2, 3, 4, 5$). Assume that $Ty_0 \preceq y_0$ and the following condition is satisfied:

(H$_3^0$) there exists $\varepsilon \geq 0$ such that $\sum_{i=1}^{5} A_i = 1 + \varepsilon$ and $A_5 - A_4 > \varepsilon$.

If E is w-complete, or T is Picard-complete at y_0, then T has a fixed point in $(-\infty, y_0]$.

Remark 2.10. Corollaries 2.8 and 2.9 are still valid in Hausdorff topological vector spaces.

Remark 2.11. In Corollaries 2.6–2.9, the sum $\sum_{i=1}^{5} r(A_i)$ or $\sum_{i=1}^{5} A_i$ may be even greater than or equal to 1. Therefore, even in the setting of normal cones, Corollaries 2.6–2.9 are still new.

In particular when P is normal cone of a Banach space $(E, \| \cdot \|)$, we have the following two corollaries by Proposition 1.6 and Remark 1.8.

Corollary 2.12. Let P be a normal cone of a Banach space $(E, \| \cdot \|)$, $x_0 \in E$ and $T : D = [x_0, +\infty) \to E$ a nondecreasing order-\tilde{C}irič-Lipschitz mapping restricted with nonnegative real numbers $A_i \geq 0$ ($i = 1, 2, 3, 4, 5$). Assume that $x_0 \preceq Tx_0$ and (H$_3^0$) is satisfied. Then T has a fixed point in $[x_0, +\infty)$.

Corollary 2.13. Let P be a normal cone of a Banach space $(E, \| \cdot \|)$, $y_0 \in E$ and $T : D = (-\infty, y_0] \to E$ a nondecreasing order-\tilde{C}irič-Lipschitz mapping restricted with nonnegative real numbers $A_i \geq 0$ ($i = 1, 2, 3, 4, 5$). Assume that $Ty_0 \preceq y_0$ and (H$_3^0$) is satisfied. Then T has a fixed point in $(-\infty, y_0]$.
Example 2.14. Let $E = \{1, 2, 3\}$ be endowed with the usual norm $|\cdot|$ and $P = \{x \in \mathbb{R} : x \geq 0\}$. Then $(E, |\cdot|)$ is a Banach space and P is a normal cone of E and the partial order \preceq induced by P is the usual total order \preceq.

Let $T_1 = T_2 = 1$ and $T_3 = 2$, and set $x_0 = 1$. Clearly, $x_0 \preceq Tx_0, \{x_0, +\infty\} = E$ and $T : \{x_0, +\infty\} \to E$ is nondecreasing. Note that $T_1 - T_1 = T_2 - T_2 = T_3 - T_3 = T_2 - T_1 = T_3 - T_2 = 1$, then it suffices to verify that (1.1) is satisfied with $x = 3, y = 1$ and $x = 3, y = 2$. Set $B_i = 0$ ($i = 1, 2, 3, 4, 5$), $A_1 = A_2 = A_3 = A_5 = \frac{1}{6}$ and $A_4 \geq \frac{1}{3}$. Clearly, $\sum_{i=1}^{5} A_i \geq 1$ but (H_3) is satisfied with $\varepsilon = A_4 - \frac{1}{3}$ since $A_4 - A_5 = A_4 - \frac{1}{6} > \varepsilon$. Direct calculation gives that

$$0 < T_3 - T_1 = 1 < \frac{4}{3} \leq \frac{2}{3} + 2A_4 = 2A_1 + 2A_4 = 2A_1 + 2A_2 + 2A_4 + A_5 = A_1(1 - 3)_+ + A_2(3 - T_3)_+ + A_3(1 - T_1)_+ + A_4(3 - T_1)_+ + A_5(1 - T_3)_+,$$

$$0 < T_3 - T_2 = 1 < \frac{7}{6} \leq A_1 + A_2 + A_3 + 2A_4 = A_1(2 - 3)_+ + A_2(3 - T_3)_+ + A_3(2 - T_2)_+ + A_4(3 - T_2)_+ + A_5(2 - T_3)_.$$

Thus T has a fixed point in E by Corollary 2.12 (in fact, $x = 1$ is a fixed point of T).

However, for each $A \in [0, 1)$ we get $T_3 - T_2 = 1 > A = A(3 - 2)$, and hence none of the results of [6, 8, 10, 11] concerned with order-Lipschitz mappings is applicable here. On the other hand, for each $q, r, s, t \geq 0$ with $q + r + s + 2t < 1$, we have

$$q[3 - 2] + r[3 - T_3] + s[2 - T_2] + t[(3 - T_2) + [2 - T_3]) = q + r + s + 2t < 1 = |T_3 - T_2|,$$

i.e., T is not a Ćirić’s contraction and hence none of the results in [1–3, 7] is applicable here.

Now we come to consider the unique existence of fixed points of order-Ćirić-Lipschitz mappings.

Theorem 2.15. Let P be a solid cone of a normed vector space $(E, \|\cdot\|)$, $x_0, y_0 \in E$ with $x_0 \preceq y_0$ and $T : D = [x_0, y_0] \to E$ a nondecreasing order-Ćirić-Lipschitz mapping restricted with linear bounded mappings $A_i : P \to P$ ($i = 1, 2, 3, 4, 5$). Assume that $x_0 \preceq Tx_0, Ty_0 \preceq y_0, T$ is Picard-complete at x_0 and y_0, and (H_1) is satisfied. Then T has a unique fixed point $x^* \in [x_0, y_0]$, and for each $z_0 \in [x_0, y_0]$, $z_n \xrightarrow{w} x^*$, where $z_n = O(T, z_0)$.

Proof. The existence of fixed points immediately follows from Theorems 2.1 and 2.2 and Propositions 2.4 and 2.5. Note that T is nondecreasing on $[x_0, y_0]$, thus it follows from $x_0 \preceq Tx_0, Ty_0 \preceq y_0$ that

$$x_0 \preceq x_1 \preceq \cdots \preceq x_n \preceq \cdots \preceq y_n \preceq \cdots \preceq y_1 \preceq y_0, \quad \forall \, n.$$ \hspace{1cm} (2.19)

Letting $n \to \infty$ in (2.19), by (2.9), (2.17), and Lemma 1.4 (ii), we get

$$x^* \preceq y^*. \hspace{1cm} (2.20)$$

Thus by (1.1) and (2.19),

$$\theta \preceq y_{n+1} - x_{n+1} \preceq T_y_{n} - T_{x_{n}} \preceq A_1(y_n - x_n) + A_2(y_n - y_{n+1}) + A_3(x_{n+1} - x_n) + A_4(y_n - x_{n+1}) + A_5(y_{n+1} - x_n), \quad \forall \, n.$$ \hspace{1cm} (2.21)

Letting $n \to \infty$ in (2.21), by (2.8), (2.9), (2.17), (2.17), (2.20), Lemma 1.4 (iii), and Lemma 1.10, we get

$$\theta \preceq y^* - x^* \preceq A_1(y^* - x^*) + A_4(y^* - x^*) + A_5(y^* - x^*),$$

and so

$$\left(I - A_1 - A_4 - A_5\right)(y^* - x^*) \preceq \theta.$$ \hspace{1cm} (2.22)
Note that \((I - A_1 - A_4 - A_5)^{-1} : P \to P\) is a linear bounded mapping by \(\sum_{i=1}^{5} r(A_i) < 1\) and taking \(B = A_1 + A_4 + A_5\) in (2.2). Acting (2.22) with \((I - A_1 - A_4 - A_5)^{-1}\), we obtain \(y^* = x^*\).

For each \(z_0 \in [x_0, y_0]\), we have
\[
x_n \preceq z_n \preceq y_n,
\]
which together with (2.9), (2.17), Lemma 1.4 (iii), and \(x^* = y^*\) implies that \(z_n \rightharpoonup x^*\).

Suppose that \(x \in [x_0, y_0]\) is another fixed point of \(T\). Clearly, \(T^nx = x\) for each \(n\) and \(T^nx \rightharpoonup x^*\). Then by Lemma 1.4 (i), \(x = x^*\). This shows \(x^*\) is the unique fixed point of \(T\) in \([x_0, y_0]\).

Remark 2.16. Theorem 1.2 is a particular case of Theorem 2.15 in Banach algebras with \(A_1 \in P\) and \(A_i = \theta\) \((i = 2, 3, 4, 5)\).

Acknowledgment

The work was supported by the National Natural Science Foundation of China (11161022, 11561026, 71462015), the Natural Science Foundation of Jiangxi Province (20142BCB23013, 20143ACB21012, 20151BAB201003, 20151BAB201023), and the Natural Science Foundation of Jiangxi Provincial Education Department (KJLD14034, GJJ150479).

References