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Abstract

In this paper, we propose general composite implicit and explicit steepest-descent schemes for hierarchical
fixed point problems of strictly pseudocontractive mappings in a real Hilbert space. These composite
steepest-descent schemes are based on the well-known viscosity approximation method, hybrid steepest-
descent method and strongly positive bounded linear operator approach. We obtain some strong convergence
theorems under suitable conditions. Our results supplement and develop the corresponding ones announced
by some authors recently in this area. (©2016 All rights reserved.
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1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, C' be a nonempty closed convex
subset of H and Pg be the metric projection of H onto C. Let T': C — C be a self-mapping on C. We
denote by Fix(T") the set of fixed points of 7" and by R the set of all real numbers. A mapping A: H — H
is called 4-strongly positive on H if there exists a constant 4 > 0 such that

(Az,z) > 7|, Vo€ H.
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A mapping F' : C' — H is called L-Lipschitz continuous if there exists a constant L > 0 such that
|[Fz — Fy|| < Lllz —yl, Vr,yeC.

In particular, if L =1 then F' is called a nonexpansive mapping; if L € [0,1) then F' is called a contraction.
A mapping T : C' — C' is called k-strictly pseudocontractive (or a k-strict pseudocontraction) if there exists
a constant k € [0,1) such that

|72 — Tyl < |l — ylI? + K|(I - T)a — (I ~ Ty, Va,y € C.

In particular, if £ = 0, then T is a nonexpansive mapping. The mapping T is pseudocontractive if and only
if
(Tx —Ty,z —y) < ||z —y|? Vaz,yecC.

Note that the class of strictly pseudocontractive mappings includes the class of nonexpansive mappings as a
subclass. That is, T' is nonexpansive if and only if T is 0-strictly pseudocontractive. The mapping 7T is also
said to be pseudocontractive if £ = 1. Obviously, the class of strictly pseudocontractive mappings falls into
the one between classes of nonexpansive mappings and pseudocontractive mappings. The class of pseudocon-
tractive mappings is one of the most important classes of mappings among nonlinear mappings. Recently,
many authors have been devoting the study of the problem of finding fixed points of pseudocontractive
mappings; see e.g., [4, [7, [13] and the references therein.

Let F : C' — H be a nonlinear mapping on C'. The variational inequality problem (VIP) associated with
the set C' and the mapping F is stated as follows: find z* € C such that

(Fz*,x —2%) >0, YyeC. (1.1)

The solution set of VIP (1.1)) is denoted by VI(C, F').

The VIP (1.1) was first discussed by Lions [9] and now is well-known; there are a lot of different
approaches towards solving VIP in finite-dimensional and infinite-dimensional spaces, and the research
is intensively continued. The VIP has many applications in computational mathematics, mathematical
physics, operations research, mathematical economics, optimization theory, and other fields; see, e.g., [5,
16l 18, 28]. It is well-known that, if F' is a strongly monotone and Lipschitz continuous mapping on C,
then VIP has a unique solution. In the literature, the recent research work shows that variational
inequalities like VIP (|1.1]) cover several topics, for example, monotone inclusions, convex optimization and
quadratic minimization over fixed point sets; see [I1], [14] 23, 27] for more details.

If we take C' = Fix(T) # ) and A = I — S where T : H — H is one nonexpansive mapping with
fixed points and S : H — H is another nonexpansive mapping (not necessarily with fixed points), then
problem becomes the VIP of finding z* € Fix(T') such that

(I —=8)z*,x—x*) >0, VzeFix(T),

introduced first by Maingé and Moudafi in [I0) [I5], which is called a hierarchical fixed point problem.
Subsequently, this problem is extended to some hierarchical fixed point problems with constraints; see e.g.,
3.

In particular, whenever Fix(S) # (), all elements of Fix(S) are solutions of the last VIP. If S is a p-
contraction (i.e., [|[Sx — Sy| < p|lz —y|| for some p € (0,1)) the set of solutions of the last VIP is a singleton
and it is well-known as a VIP defined over the fixed-point set, which was first introduced by Moudafi [14]
and then developed by several authors [3, 11, 23], 27].

Variational inequalities like the last VIP cover several topics recently investigated in the literature as
monotone inclusions, convex optimization and quadratic minimization over fixed point sets; see e.g., [1, 14,
20, 21] and the references therein.

In 2001, Yamada [25] introduced the following hybrid steepest-descent method for solving the VIP (|1.1)
with C' = Fix(95)

Tyl = (I — AuF)Szy, VYn >0, (1.2)
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where S : H — H is a nonexpansive mapping with Fix(S) # (0, F': H — H is a k-Lipschitzian and 7-strongly
monotone operator with positive constants x,n > 0 (i.e., |[Fz — Fy| < k||lz —y|| and (Fx — Fy,x —y) >
nllz — y||*> Vz,y € H), and 0 < p < i—’g, and then proved that under appropriate conditions, the sequence
{z,} generated by converges strongly to the unique solution of VIP with C' = Fix(95).

In 2010, by combining Yamada’s hybrid steepest-descent method and Marino and Xu’s hybrid viscosity
approximation method [I1], Tian [20] introduced the following general iterative scheme

Tnt1 = anyf(xn) + (I — appuF )Tz, Yn >0,

where T : H — H is a nonexpansive mapping and f : H — H is a contractive mapping with constant
a € (0,1). His results improve and complement the corresponding results of Marino and Xu [I1]. In [21],
Tian also considered the following general iterative scheme

Tnt1 = anYVan + (I —anuF)Tz,, Yn>0,

where T': H — H is a nonexpansive mapping and V : H — H is a Lipschitzian mapping with constant
[ > 0. In particular, the results in [2I] extend Tian’s results [20] from the contractive mapping f to the
Lipschitzian mapping V.

In 2011, Ceng et al. [I] also introduced the following iterative method

Tnt1 = PolanyVa, + (I — apuF)Txy,], Yn >0, (1.3)

where F' : C' — H is a k-Lipschitzian and 7-strongly monotone operator with positive constants «,n > 0,
T : C — C is a nonexpansive mapping, V : C' — H is an [-Lipschitzian mapping with constant { > 0 and
0<p< i—g They proved that, under mild conditions, the sequence {z,} generated by converges
strongly to a point & € Fix(7") which is the unique solution to the VIP

(uF —~AV)Z,p— ) >0, Vp € Fix(T).

It is worth pointing out that they changed the domain of mapping F' and thus imposed the projection Pg
on Tian’s iterative scheme in [21].

In 2011, Ceng et al. [2] introduced one general composite implicit scheme that in an implicit way
generates a net {xt}te(o,min{l, 2-5 y)

Ty

Ty = (I — GtA)Txt + Ht[T.Z't — t(,uFTa:t — ’yf(l't))], (14)

and also proposed another general composite explicit scheme that generates a sequence {z,} in an explicit
way
{ Yn = (I - anNF)Txn + an’Yf(xn)a (1 5)

Tnt1 = (I — BnA)Txy + Buyn, Yn >0,

where z¢ € H is an arbitrary initial guess, F' : H — H is a x-Lipschitzian and n-strongly monotone operator
with positive constants x,n > 0, T : H — H is a nonexpansive mapping, A : H — H is a ¥-strongly positive
bounded linear operator, and f : H — H is an a-contractive mapping with « € (0,1). They proved that,
under appropriate conditions, the net {x;} and the sequence {x, } generated by and , respectively,
converge strongly to the same point # € Fix(T'), which is the unique solution to the VIP

(A-IDz,p—z) >0, VpeFix(T).

Their results supplement and develop the corresponding ones of Yamada [25], Marino and Xu [I1], and Tian
[20].

Very recently, inspired by Ceng et al. [2], Jung [8] introduced one general composite implicit scheme
that generates a net {z;}, (0min{1,2=3}) in an implicit way

Ty = (I — QtA)Tt.let + 0, [tnyxt + (I — tuF)Ttxt], (16)
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and also proposed another general composite explicit scheme that generates a sequence {z,} in an explicit
way

(1.7)

Yn = an7V$n + (I - O[n,U/F)Tn!Tnu
Tnt1 = (I — BnA)Thzpn + Buyn, Yn >0,

where xg € H is an arbitrary initial guess and the following conditions are satisfied:
e T: H— H is a k-strictly pseudocontractive mapping with Fix(T") # 0;
e A is a ¥-strongly positive bounded linear operator on H with ¥ € (1, 2);

e I': H — H is a k-Lipschitzian and n-strongly monotone operator with 0 < pu < Z—Z;

e V: H — H is an [-Lipschitzian mapping with 0 <yl < 7 and 7 = 1 — /1 — u(2n — ux?);

e T, : H— H is a mapping defined by Tyx = Mz + (1 — \)Tx,t € (0,1), for 0 <k < A\ <A< 1 and
limg 0 A¢ = A

e T, : H — H is a mapping defined by T,z = Az + (1 — Ap)Tx for 0 < k < A\, < A < 1 and

o {a,} C0,1], {Bn} C (0,1] and {et}te(o,min{l,f%,:’l}) c (0,1).

Jung [§ proved that, under the weaker control conditions than previous ones, the net {x;} and the
sequence {x,} generated by (1.6)) and (1.7)), respectively, converge strongly to the same point Z € Fix(T),
which is the unique solution to the VIP

(A—Di,p—7) >0, VpeFix(T).

His results extend and improve Ceng et al.’s corresponding ones [2] from the nonexpansive mapping 71" to
the strictly pseudocontractive mapping 1" and from the contractive mapping f to the Lipschitzian mapping
V.

In this paper, we first introduce one general composite implicit steepest-descent scheme for solving a
hierarchical fixed point problem of a k-strictly pseudocontractive mapping T': H — H

Ty = (I — OtA)Ttxt + 9t[V:1:t — t(,uFVZEt — ’)/Ttl't)],

where lim;_,00; = 0 and [ = 1. It is proven that as ¢ — 0, {x;} converges strongly to a point z € Fix(T),
which is the unique solution in Fix(T") to the VIP

(A= V)i,p—7) >0, Vpe Fix(T). (1.8)

On the other hand, we also propose another general composite explicit steepest-descent scheme for
solving a hierarchical fixed point problem for a k-strictly pseudocontractive mapping 7' : H — H

Yn = an’YTnl'n + (I - O‘n/lF)V-Tna
Tn+1 = (I - ,BnA)TnCUn + Bnyn, Yn >0,
where {a,} C [0,1], {8,} C (0,1] and [ = 1. It is proven that under mild conditions, {x,} converges
strongly to the same point & € Fix(T"), which is the unique solution in Fix(7") to the VIP ({1.8).

The above general composite steepest-descent schemes are based on the well-known viscosity approxi-
mation method (see e.g., [14, 23]), hybrid steepest-descent method (see, e.g., [24] 25]) and strongly positive
bounded linear operator approach [IT]. Our results supplement and develop the corresponding ones an-
nounced by some authors recently in this area, e.g., Ceng et al. [2] and Jung [§].
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2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space whose inner product and norm are
denoted by (-,-) and || - ||, respectively. Let C' be a nonempty closed convex subset of H. We write z,, — z
to indicate that the sequence {z,} converges weakly to z and =, — x to indicate that the sequence {z,}
converges strongly to x. Moreover, we use wy, () to denote the weak w-limit set of the sequence {z,}, i.e.,

wy(zyn) :={x € H : z,, — x for some subsequence {z,,} of {z,}}.

The metric (or nearest point) projection from H onto C' is the mapping Po : H — C which assigns to
each point z € H the unique point Pox € C satisfying the property

le — Poa|| = inf ||z —y|| =: d(=,C).
yeC

The following properties of projections are useful and pertinent to our purpose.

Proposition 2.1 ([6]). For given x € H and z € C':

(i) z=Pox & (x—2z,y—2) <0, YyeC;
(i) z=Poxr & |z —z2|> <llz—yl* —ly— 2% VyeC;
(ili) (Pox — Pey,x —y) > |[Pcx — Pey|?, Yy € H.

Consequently, Po is nonexpansive and monotone.
We need some facts and tools in a real Hilbert space H which are listed as lemmas below.

Lemma 2.2 ([19]). Let X be a real inner product space. Then there holds the following inequality
lz +yl* < l|2[* + 2{y, & +y), Vr,yeX.

Lemma 2.3 ([19)). Let H be a real Hilbert space. Then the followings hold:

(@) oz —yl? =Nz = yl* - 2(z — y,y) for all 2,y € H;
(b) X+ gl = Ml + ullyll2 — Ml — ol12 for all 2,y € H and Ay € [0,1] with A+ = 1;
(¢) If {xn} is a sequence in H such that x,, — x, it follows that

limsup [z, — |2 = limsup [z, — 2ll? + [z — y[2, ¥y € H.
n—00 n—00
It is clear that, in a real Hilbert space H, T': C' — C is k-strictly pseudocontractive if and only if the
following inequality holds:

1—-k
(Tz =Ty, —y) <|lz =yl = ——= (I = D)z = (I = T)y|*, Vx,yeC.

This immediately implies that if T is a k-strictly pseudocontractive mapping, then I — T is %—inverse
strongly monotone; for further detail, we refer to [I12] and the references therein. It is well-known that the
class of strict pseudocontractions strictly includes the class of nonexpansive mappings and that the class of
pseudocontractions strictly includes the class of strict pseudocontractions.

Lemma 2.4 ([12, Proposition 2.1]). Let C' be a nonempty closed convex subset of a real Hilbert space H
and T : C'— C be a mapping.

(1) If T is a k-strictly pseudocontractive mapping, then T satisfies the Lipschitzian condition

1+k
lz—yll, Vz,yeC.

T — Tyl <
IT2— Tyl < 1
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(ii) If T is a k-strictly pseudocontractive mapping, then the mapping I — T is semiclosed at 0, that is, if
{zn} is a sequence in C such that v, — % and (I —T)x, — 0, then (I —T)z = 0.

(iii) If T is k-(quasi-)strict pseudocontraction, then the fixed point set Fix(T') of T is closed and convex so
that the projection Ppiy(r) is well-defined.

Lemma 2.5 ([26]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C — C' be

a k-strictly pseudocontractive mapping. Let vy and & be two nonnegative real numbers such that (y+0)k < 7.
Then
V(@ —y) +0(Tz - Tyl < (y+ )z —yll, Vz,yeC.

Lemma 2.6 ([6l demiclosedness principle]). Let C' be a nonempty closed convex subset of a real Hilbert
space H. Let S be a nonexpansive self-mapping on C with Fix(S) # (0. Then I — S is demiclosed. That is,
whenever {x,} is a sequence in C weakly converging to some x € C and the sequence {(I — S)x,} strongly
converges to some y, it follows that (I — S)x =vy. Here I is the identity operator of H.

Lemma 2.7. Let F': C — H be a monotone mapping. In the context of the variational inequality problem
the characterization of the projection (see Proposition 2.1] (i)) implies

ue VI(C,F) < wu=PFPo(u—AFu), X>0.

Let C be a nonempty closed convex subset of a real Hilbert space H. We introduce some notations. Let
A be a number in (0,1] and let x> 0. Associating with a nonexpansive mapping T : C' — C, we define the
mapping T : C — H by
T ¢ := Ta — \uF(Tx), Yz eC,

where F' : C' — H is an operator such that, for some positive constants «,n > 0, F' is x-Lipschitzian and
n-strongly monotone on C'; that is, F' satisfies the conditions:

|Fz — Fy| < sllz —yll and (Fz—Fy.z—y) >nlz -y
for all z,y € C.

Lemma 2.8 ([24, Lemma 3.1]). T* is a contraction provided 0 < y < i—g; that is,

1T =Tyl < (1= Ar)llz —yll, Va,yeC,

where T =1 — /1 — pu(2n — px?) € (0,1].
Lemma 2.9 ([22, Lemma 2.1]). Let {a,} be a sequence of nonnegative real numbers satisfying
an+1 < (1 —wp)ap + wpdp + 1, Y0 >0,
where {wn}, {0n} and {r,} satisfy the following conditions:
(i) {wn} C[0,1] and Y 7 wy = 00;

(ii) either imsup, oo 0p < 0 or > 7 (wy|dy| < co;

(iii) 7 >0 for alln >0, and > o7 | ry < 00.
Then, lim,,_, a, = 0.

Lemma 2.10 ([I1]). Assume that A is a 7y-strongly positive bounded linear operator on H with 0 < p <
JAI=L. Then |IT — pA] < 1— p5.

Let LIM be a Banach limit. According to time and circumstances, we use LIM,a,, instead of LIMa for
every a = {a,} € [*°. The following properties are well-known:



L.-C. Ceng, C.-F. Wen, J. Nonlinear Sci. Appl. 9 (2016), 6274-6293 6280

(i) for all n > 1, a, < ¢, implies LIM,a,, < LIM,,cy;
(ii) LIMyap+n = LIM,a, for any fixed positive integer N;
(iii) liminf, s a, < LIMya, < limsup,,_, . a, for all {a,} € [*°.
The following lemma was given in [I7, Proposition 2]).
Lemma 2.11 ([I1]). Let a € R be a real number and let a sequence {an} € > satisfy the condition
LIM,,a, < a for all Banach limit LIM. If limsup,,_, . (a@n+1 — an) < 0, then limsup,,_, a, < a.
3. Main results
Let H be a real Hilbert space. Throughout this section, we always assume the following;:
e T: H — H is a k-strictly pseudocontractive mapping with Fix(T") # 0);
e F': H — H is a k-Lipschitzian and n-strongly monotone operator with 0 < pu < i—’;;

e A is a 7-strongly positive bounded linear operator on H with 7 € (1,2);

V : H — H is an [-Lipschitzian mapping with constant [ > 0;

0 <9l <7with7=1-/1-p(2n— pukx2);

e T, : H— H is a mapping defined by Tyz = Mz + (1 — M\)Tz,t € (0,1), for 0 <k < X\ <A< 1and
limy 0 Ay = A

T, : H — H is a mapping defined by T,z = Az + (1 — \p)Tx for 0 < kK < A\, < A < 1 and

limy, oo Ay = A;
o {a,} C[0,1], {B,} C (0,1] and {Gt}te(o’min{l,%}) c (0,1).

It can be readily seen from Lemma that T3 and T, are nonexpansive. Moreover, it is clear that
Fix(T) = Fix(T}) = Fix(T},).

In this section, we introduce the first general composite implicit steepest-descent scheme that generates
a net {xt}te(o,min{l,f‘—j}) in an implicit manner:

It = (I — HtA)Tt:z;t + Ht[Va:t — t(/Lvat — ’)/Ttl't)], (31)

where V' : H — H is nonexpansive with [ = 1 and 0 < v < 7. We prove the strong convergence of {z;} as
t — 0 to a fixed point Z of T' (i.e., & € Fix(T')), which is a unique solution to the VIP

(A=V)z,p—x) >0, VpeFix(T). (3.2)
For arbitrarily given xqg € H, we also propose the second general composite explicit steepest-descent

scheme, which generates a sequence {x,} in an explicit way:

{ Yn = O YInTy + (I - anMF)Vl'nv (3'3)

‘TTL+1 = (I - /B’VLA)T’N‘TTL + /Bnynu vn Z 07

and establish the strong convergence of {z,} as n — oo to a fixed point & of T' (i.e., & € Fix(T)), which is
also the unique solution to the VIP (i3.2)).
Now, for ¢ € (0, min{1, %}), and 6; € (0, ||A||~Y], consider a mapping Q; : H — H defined by

Qix = (I — 0 A)Tix + 0, [Ve — t(uFVe —yTix)], Vo e H.
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It is easy to see that @y is a contractive mapping with constant 1 — 6;(5 — 1 +¢(7 —+)). Indeed, by Lemmas

2.8 and [2.10], we have

Qe — Quyll = (I — 0:A)Thx + 0,[(I — tpF)Va + tyvTix] — (I — 0,A) Ty — 6:[(1 — tuF)Vy + tvThyl||
<~ 0. A)The — (I — 6 A)Tuyll + 0| (I — tuF)Va + tyTyx) — (I — tuF)Vy + tvTo)|
< (16| Tow — Tyll + 011 — tuF)Vae — (I — tuF)Vy| + 9| Tex — Try||]
< (1 =0)llz =yl + 6:[(1 = t7) |2 = yll + tylle = yll]
=1 =67)llz =yl + 0:(1 = t(r — 7))l = yll
=1 =0y =1+ t(r =)z —yll.

Since 7y € (1,2), 7 —~ >0, and

2—7% 2 —
0 <t < min{l, 7}S )
T—7 T
it follows that
0<F_y_1+t(7—_7) < 17
which together with 0 < §; < [|A||7! < 1 yields

0<1-6,(y—1+4+t(r—7v)) <1

Hence Q; : H — H is a contractive mapping. By the Banach contraction principle, J; has a unique fixed
point, denoted by x¢, which uniquely solves the fixed point equation .

We summary the basic properties of {z;}. The argument techniques in [7] and [23] are extended to
develop the new argument ones for these basic properties by virtue of Lemma[2.8] We include the argument
process for the sake of completeness.

Proposition 3.1. Let [ =1 and {z;} be defined via (3.1). Then

(i) {z} is bounded for t € (0, min{1, 2 — 7})
(i) limy_ ||z — Tyxe|| = O provided lim;_,o 6, = 0;

(iii) 2 : (0, min{1, 2 — 7}) — H is locally Lipschitzian provided 6; : (0, min{1 — (0, | A[|7Y] is locally

Llpschztzzcm, and A : (0, mm{l }) [k, A] is locally Lipschitzian;

[27))

(iv) z; defines a continuous path from (0, mln{l 7}) into H provided 0y : (0, min{1, z_fz}) — (0, A 7Y

is continuous, and A : (0, min{1 [k:,)\] is continuous.

7)) -

Proof. (i) Let p € Fix(T'). Utilizing Fix(T) = Fix(7};) and Lemmas and from the nonexpansivity
of T; and V we get

lze — pll = [[(I = 6:A)Tywe + 0,((I — tpF)Vay + tyTyxy) — p|
= (I = 0 A)Thxy — (I — 0; A)Tip + 0:((L — tpuF)Vay + tyTixy) — 0, Ap||
< (I = 0:A) oy — (I = 6 A)Tipl| + 04| (1 — tpF)Vay + tvTiwy) — Apl|
< (L= 03| Thwe — Tip|| + 64[|(I — tpF )V — (I — tpF)Vp + t(vTywy — pF'Vp) + Vp — Ap|
< (L =03 — pll + 0|1 — tpF)Vay — (I — tuF)Vpl| + t|vTiwe — pFVp| + [[(V — A)pl]]
< (1= 0y)llwe — pll + Oe[l| (1 — tpF)Vay — (I — tuF)Vp||
+ t(Y|Tewe — Tepll + [[(vI = pEV)pl]) + [(V = A)pl]
< (1 =0 llze = pll + 0:[(1 = t7)|lze — pll + t(¥llwe — pll + [[(7] — wEV)pl)) + [[(V = A)pll]
=[1 =0y = 1+ t(r =)zt = pll + O: (| (VI = pFV)pll + [I(V — A)pl]).
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So, it follows that

[(V = A)pll + ¢l (v — pFV)p||
¥=1+tr—7)

< IV = A)pll + (v = pEV)pl|

< 1

NV = Apll + (5] = pEV)pl|

< 71

o —pll <

Hence {z;} is bounded. Since T' is k-strictly pseudocontractive, by Lemma (i) we know that T is
Lipschitzian, ||[Tz; — p|| < %Hx —yl| for all x,y € H. So, by Lipschitz continuity of the mappings V, T, T},
and F' we deduce that {Va:}, {Tx:}, {Tixe }, and {FVx;:} are bounded.

(ii) By the definition of {z;}, we have

lxy — Tyl = ||(I — 0.A) Ty + 0, (I — tuF)Vay + tyTyxy) — Tiay||
=0, — ATyzy + (I — tuF )V, + tyTiay||
= 0,||Vay — ATixy + t(YTpxy — pFVay)||
< O||Vay — ATixe|| + t|yTiwe — pF V|| =0 ast — 0

by the boundedness of {V}, {Tix:} and {F'Vx} in the assertion (i).

(iii) Let t,to € (0, min{1, 3:1/ ). Noting that

|Thws — Tooio | < | Tyxe — Tyzeo || + | Teweg — Tiomto | < N6 — @0l + 1A — Aol — T |5
we calculate

|z — x40 || = ||(I — 0:.A)Thxy + 0,( — tpF )V, + tyTixy)

— (I = O, A) Ty wiy — Oy (L — topuF) Vg, + toyTiyxe,) ||

< (I = 0,A) Ty — (I — Oy ATy |
+ 0:((I — tuF)Vay + tyTixy) — 04y (I — topF )V, + toyTi, e, )|l

< |[(I = 0,A)Tharr — (I — Oy YTy | + ||(I — Oy A)Tye — (I — 04y A) ooz, |
+ 108 = O [[| (1 — tpF)Vay + tyTia|
+ 04, (I = tuF)Vay + tyTywe) — (I — topF) Ve, + toyTiyxt, ) ||

< 0 = O || Al Teae || + (1 = O ) | Tewe — T, |
+10; — O, ||( — tpuF)Vay + tyTiae || + O, || (t — to)yTiws + toy(Tiwe — Tioae,)
—(t—to)uFVay+ (I —topF)Vay — (I — topF)Vay,||

<0 — O [ Al Tee || + (1 — O V)| Tewe — Tho s ||
+ 10t = Oro|[[[Vae|| + (V[ Tewe|| + pl| FV )] + O (V| Tee || + pl EV e[t — 2o
+ toy|Teze — Tigeo || + (1 — toT) ||z — 24 |l]

<10 — O || A Tewe || 4+ (1 = Oeo V) (e — 2o | + [Ae — Mo ||t — T4 [])
+10¢ = O [IIVae|| + (V| Towe|| + | FV )] + O (Y| Tee || + ol EV |||t — to
+ tov(l|ze — zeo || + [Ae = Aeolllzeg — T [|) + (1 — toT)|[2e — 240 ||]

< 16¢ = Oso || Al Tee || 4+ (1 = Ot V) (12t — 2o | + [Ae = Ao ||t — T [|)
+ 100 = O [[IVae|l + t(v[| Teae || + pl [ EVael)] + O (V| Tewe|| + pll EV )]t — tol
+ (1 =to(T =)zt — zeo || + 1A = Mol |22y — T [])]

= 100 = O [l Al | Tize || + (1 = Ou (7 — 1+ to(T — 1)) (2 — a0 || + (A — N l|z2g — T [|)
+ 100 = O [Vl + t(y | Teae | + pl| EVael))] + O (VI Teae || + pl[ FVae[) |t — tol
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= (1 =0, (= 1+to(r = 7)) (17t — 21 [| + [Ae = Mol |1 — T2 ])
108 = O [N A Tywe || + |V | 4 t (Y| Toe|] + pl| FVae|])] 4 O (VI Tee || 4+ pl| FV e ||) |t — tol.

This implies that

AN Tye|| + |V ael| + (| Towe|| + pl| F'V 2]
91‘/0(’7 -1+ tO(T - 7)
(1 =0, (7 — 14 to(T — 7)) |ty — T4, ||

Oty (Y — 1+ to(T — )

Since {Va;}, {112}, and { FVx,} are bounded, 6;: (0, min{1, 3:1 ) = (0, |A|| 71 and A : (0, min{1, g ) —
[k, A] are locally Lipschitzian, we deduce that x; : (0, min{1, %}) — H is locally Lipschitzian.

(iv) From the last inequality in (iii), the result follows immediately. O

Tl + pl FV |
¥ —1+to(t—7)

|zt — 24| < |0 — Oy | + |t — tol

_'_

At = Agg-

We prove the following theorem for strong convergence of the net {z;} as ¢ — 0, which guarantees the
existence of solutions of the variational inequality (3.2)).

Theorem 3.2. Let | =1 and the net {x;} be defined via (3.1). If limy_,00; = 0, then x; converges strongly
to a fived point & of T' ast — 0, which solves the VIP (3.2)). Equivalently, we have Ppiyr)y(I+V — A)Z = .

Proof. We first show the uniqueness of solutions of the VIP (3.2)), which is indeed a consequence of the strong
monotonicity of A — V. In fact, since A is a J-strongly positive bounded linear operator with 5 € (1,2) and
V is a nonexpansive mapping with [ = 1, we know that A — V' is (§ — 1)-strongly monotone with constant
7 —1 € (0,1). Suppose that # € Fix(T) and & € Fix(T') both are solutions to the VIP (3.2)). Then we have

(A=WV)z, 2 —1z) <0, (3.4)
and

(A=V)z, 2 —%) <0. (3.5)
Adding up (3.4) and (3.5) yields

(A-=V)z—(A-V)z, 2 —x) <0.
The strong monotonicity of A — V implies that £ = & and the uniqueness is proved.
Next, we prove that xy — & as t — 0. Observing Fix(T') = Fix(7}), from (3.1)), we write, for given
p € Fix(T),
I —0;A)Tixy — (I — 0. A)Tip + 04 (ty Ty + (I — tpuF)Vay — Vp) +60,(V — A)p
I —0,A)(Tiwe — Tip) + 04[(I — tpF )V, — (I — tuF)Vp + t(yTiwe — pFVp)] + 6,(V — A)p
= (I = 0.A)(Tywe — Tup) + O [(I — tpF)Vay — (I — tpuF)Vp + ty(Tixe — Tip)
+t(yI — pFV)p] + 0,(V — A)p.

Tt — D

= (
=

Then, we have

|z — plI> = (I = 6,A)(Tiwy — Typ), ¢ — p) + O [{(I — tuF)Vay — (I — tuF)Vp, a; — p)
+ ty(Tywe — Tip, v — p) + L((vI — pFV)p,zp — p)] + 0:((V — A)p, 2 — p)
< (1= 03 ||xe — plI* + 6:[(1 — t7) |z — plI? + ty]|z: — pl|?
+ (v — pFV)p,zr — p)l + 0 (V — A)p,z — p)
= [1=0:(3 = 1+ t(r = M)llze — plI* + 0:(H{(7I — uFV)p,x — p) + (V — A)p, x — p))-

Therefore,
1

Y—1+H1—7)

|z — p||* < (t((vI — pFV)p, s — p) + (V — A)p, z: — p)). (3.6)
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Since the net {wt}te(o min{1,2=2}) is bounded (due to Proposition (i)), we know that if {¢,,} is a subsequence

in (0, mm{l z}) such that tn — 0 and zy, — z*, then from (3.6)), we obtain z;, — z*. Let us show that
xz* € Fix(T). "To this end, define S : H — H by Sx— )\x—i—(l—/\)Tsc forall z € H, for 0 <k < X< 1.
Then it is clear that Fix(S) = Fix(T"). Moreover, by Lemma we know that S is nonexpansive. By the
definitions of S and T}, we get
1521, — 2, || < 1Se, — Thy e, | + | Te e, — 1,
= A=)z, = Tag,, || + | Te e, — 4,

A=A
= T e = T | T, = 2,
1—|—>\ 2)¢

W |2e, — Ty, e, ||

So, by Proposition (ii) and A, — X as t, — 0, we have lim,,_,oo(I — S)zy, = 0. Thus, it follows from
Lemma [2.6| that «* € Fix(S). In terms of the definition of S, we obtain z* € Fix(T).
Finally, let us show that z* is a solution of the VIP . As a matter of fact, since
xy = (I — 0, A) Ty + 0,((1 —tpF)Vay + tyTixy),
we have
—Tixy = 0,(V — ATy + 0,(Vay — VT, + t(YTyxy — nF'Vay)).
Since T; is nonexpansive, I — T; is monotone. So, from the monotonicity of I — T}, it follows that, for
p € Fix(T) = Fix(T}),
0<((I Tz — (I —Ty)p, v — p) = (({ — Ti)z, 2 — p)
= 0 ((V — A) Tz, w0 — p) + 0 (Vg — VTiwy, 2 — p) + 0t (Y we — pF'Vay), v — p)
= 0:((V — A)xg, 20 — p) + 0((V — A)Tywe — (V — A)we, 20 — p) + 0:(Vay — VT, x4 — p)
+ 0it{(vTixy — uFVy), z — p).
This implies that
(A=V)ay, 2 —p) < (V= ATy — (V — A)zy, 20 — p) + (Vay — Ve, v — p)
+t{(vTizr — pFVat), xp — p)
<NV = ATy — (V = A)zil[|lze — pll + (Ve — V||| ze — pl]
+ t|vTize — pF V|2 — pl| (3.7)
< (L4 [[ADNT e — el llze — pll + [l — Teae |||z — pl|
+ (V|| Teae|| + pl| FVae]]) ||z — p|
= 2+ AT — @ellllwe — pll + tll (Y Tewell + pll FV )|z — pll-
Now, replacing ¢ in with ¢,, and letting n — oo, noticing the boundedness of {v||T3, x, || + p||FVzy, ||}
and the fact that (73, — I)x, — 0 as n — oo (due to Proposition (ii)), we obtain
(A—=V)z*, 2" —p) <0.

That is, z* € Fix(T) is a solution of the VIP (3.2); hence z* = Z by uniqueness. In summary, we have
proven that each cluster point of {z;} (as t — 0) equals . Consequently, z; — Z as t — 0.
The VIP (3.2)) can be rewritten as

(I+V —-Az—z,2—p) >0, VpeFix(T).
Recalling Proposition (i), the last inequality is equivalent to the fixed point equation
Prixry(I +V — A)T = 7.
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Taking F' = %I , #=2and v =1 in Theorem we get the following.

Corollary 3.3. Let Il =1, 0 <y <1 and {x;} be defined by
Ty = (I — GtA)TtJ}t + 01&(‘/%& + t(’)/Ttl't — Vl't»

If limy_,0 0, = 0, then {x;} converges strongly ast — 0 to a fized point & of T, which is the unique solution

of the VIP (3.2)).

Now, we prove the following result in order to establish the strong convergence of the sequence {z,}
generated by the composite explicit steepest-descent scheme (|3.3]).

Theorem 3.4. Letl =1 and {x,} be the sequence generated by the explicit scheme (3.3)), where {a,} and
{Bn} satisfy the following condition:

(C1) {an} C[0,1], {Bn} € (0,1] and o, = 0, B, — 0 as n — co.

Let LIM be a Banach limit. Then
LIM,,((A—V)Z,Z — z,,) <0,

where & = lim;_,g+ x; with x; being defined by
= (I —0:A)Sx + 0, (Vay — t(uF Vi — vSxy)), (3.8)
and S : H — H is defined by Sx = Az + (1 = \)Txz for 0 <k < A< 1.

Proof. First, note that from the condition (C1), without loss of generality, we may assume that 0 < /3, <
| A]|~t for all n > 0.

Let {x;} be the net generated by . Since S is a nonexpansive mapping on H, by Theorem with
T; = S, there exists lim;_,o z; € Fix(S) = Fix(T). Denote it by . Moreover,  is the unique solution of the
VIP (3.2). From Proposition (i) with T; = S, we know that {x:} is bounded and so are the nets {Sx}
and {FVux.}.

Now, let us show that {z,} is bounded. To this end, take p € Fix(T) = Fix(7T,). Simple calculations
show that

Tp+1 — P = (I - /BnA)Tnmn + /Bnyn - P
= (I — B A) Ty + Br(anYTnxn + (I — anuF)Vay,) —p
= (I = B A)Tnwn — (I — B A)T0up + BrlanYTnzn + (I — anpuF)Va, —Vp) + B,(V — A)p

= (I = BnA)(Tnwn — Tnp) + Bul(I — anpF)Van — (I — anuF)Vp + an(YThan — pFVp)]
+ Bu(V — A)p

= (I — BRA)Thxy — Top) + Bul(I — anpuF )V, — (I — anuF)Vp + apy(Thx, — Thp)
+ an(yI = pFV)pl + (V= A)p,

which together with Lemmas and implies that

|21 —pll < (1 = BnA)(Tnzn — Tup)|| + Bulll(I — anpuF)Van — (I — anpF)Vpl| + || Thazn — Top||
+ anl|(v — pFV)pll] + Ball[(V — A)p||
< (1= BN Tnwn — Topll + Bul(1 — anT)l|2n — pll + anyl|lzn — pll + anll(v] — pFV)p|]
+ Bull(V — A)p||
< (1= BuY)lzn = pll + Bul(l — an(r = ¥))llzn — pll + anl[(vL — pFV)pll] + Bul(V — A)p||
=[1=Ba(¥ = 14+ an(r = Y)llzn — pll + Bulll(V = A)pl| + an||(v] — pFV)p|]
= [1 - ﬁn(’_Y -1+ an(T - 7))]”3371 —p”
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[(V — A)pl| +anH(71 pE'V)pl|

< max{||z, — pl, STt an(—7) }
(V = A)pll + an||(vI — pFV)p||

-1 }
(V= A)pll +||(vI — pFV)p|| }
y-1 '

< max{}n — |, !

|
< max{|ln - p|,

By the induction

(V= Apl + (0] = pFV)
51

This implies that {x,} is bounded and so are {Tx,}, {Thxn}, {FVan},{Vz,}, and {y,}. Thus, utilizing

the control condition (C1), we get

rl }, Vn>0.

len — pll < max{]lzo — p|, !

lXnt1 — Tnznl = Bullyn — ATpzn|| = 0 as n — oo,

and
1St — Tnarl| < [[Sze — S| + [[Swn — Toaon || + ([ Than — zpt |
<z — znll + A = Malllzn — Tap|| + | Thwn — Tpa || (3.9)

= ||xt - xn” + en,

where e, = |A = M\pll|zn — Txp || + | T0nxn — Znt1]] = 0 as n — co. Also observing that A is strongly positive,
we have

(Axy — Axp, 2 — ) = (A(xy — 20), 26 — 20) > 7|2 — 20| (3.10)
Furthermore, by (3.8)), we have

Ty — Tpy1 = (I — 0,A)Sxy + 0, (tySxy + (I — tpF)Vay) — xpy
=T —-60A)Sxy — (I — 0t A)xpi1 + O(tySxy + (I — tuF )V — Axpgq)
=(I—-0:A)Sxt — (I —0tA)xps1 + (I —tpF)Vay — (I —tuF )V,
+t(ySzy — pFVanyr) + (V — A)xpia].

Applying Lemma [2.2] we have

2t — &1l < (I = 0:4)Swp — (I = O A)xpia|* + 20, ((I — tpF)Va

— (I = tpF)\Vapi1, 2 — Tpyr)
+ 204t (ySxp — pFVapi1, 20 — Tpg1) + 20:((V — A)xpg1, T — Tpyr)

<(1- Ht’_y)ZHSxt — mn+1\|2 +20,(Vay — Vepi1, 2 — Tnt1)
= 204tp(FVxy — FV 1, 20 — Tngr) + 20it||vSxy — pFVaa||||zs — 2nga|
+20,((V — A)xpi1, 04 — Tpy1) (3.11)

< (1= 09)2 Szt — T ||> + 200(Vy — Va1, x4 — Tng1) ‘
+ 20t p|| FVay — FVanga|lllay — onall + 200t |vSze — pFVanall|ze — 2p |
+20,((V — A)zpi1, e — Tpta)

= (1= 09)||Szs — i ||* + 20:(Vay — Va1, 26 — Tng1)
+ 206t (ul| FVay — FVanga| + [|[vSze — pFVapl)||ze — wnall
+ 20, ((V — A)xpy1, T4 — Tpy1).
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Utilizing and in , we obtain
|l — @ ||

<(1- Qt”y)QHSﬂct — a;n+1H2 +20,(Vay — Vapi1, 2 — Tptt)
+ 20, (pkl|we — Tnsa || + [|[vSze — pFVEnga ||z — 2|
+20,((V — A)zpt1, T — Tnt1)

< (1= 03)2(lwr — @nll + €n)® + 20:(Vay — Vani1, 2 — Tppa)
+ 20,0 (pssl|wy — ana || + |vSze — pEFVanl))ze — znga || + 20:((V = A)zngr, 3¢ — npa)

= (077 = 200)7llwe — ol + llze — zall® + (1 = 6:7)* 2llze — zallen + €3)
+20(Var — Vangr, @ — o) + 20t (pkl|ve — ona || + [y Sz — pFVanga|)llar — 2nga |
+20,((V — A)xpt1, T — Tnt1)

< (677 — 20,)(Axy — Az, — x0) + ||zt — 2o |2 + (1 — 0:7)2 (2|12 — 0 ||en + €2)
+200(Vay — Vapir, o — Tpga) + 206t (pk|lze — || + [[vSze — pFVapia|)|ze — 2nsal]

(3.12)
+20,((V — A)xpi1, T — Tpy1)
= 97?77<A«Tt — Az, 1t — ) + |70 — anQ + (1 - 9t’7)2(2H$t — Znllen + 6121)
+ 20 (Vs — Va1, o — 1) + 206t (ukl|ze — 21 || + 7Szt — pF Vi |)||oe — 2pet |
+ 20, [((V — A)zpt1,xt — Tpg1) — (Axy — Az, 20 — xp)]
= 073 ( Ay — xp), w0 — x) + |2 — 20]|* + (1= 0:7)° 2ll2e — zallen + €3)
+ 200 (Vay — Vapir, o — Tpga) + 206t (pk|lze — oo || + [[vSze — pFVapia|)|ze — 2nsal]
+20,[((V — Az, xt — 2pg1) +{(V — A)zpyr — (V — A)xy, 20 — Tpy1)
— (A(zt — ), 0t — )]
= 015277<A(37t = Tn), Ty — Tn) + |2 — anQ + (1 - 9t§)2(2”1’t — Znllen + e%)
+ 20it(pksllze — Tnall + [vSze — pFVanial)l|ze — zpa |
+20,[(V — A)zy, 2 — pt1) + (A(xy — pg1), @ — Tpg1) — (A(xy — 2p), 2 — )]
Applying the Banach limit LIM to , together with lim,,_,o, e, = 0, we have
LIM,, |2 — @pp1 || < O29LIM,, (A(2y — 20), 2 — 20) + LIM,, ||z — 202
+ 20 LIM,, (uk ||z — pg1 || + |7Sze — pEVap 1| |2 — 2psa || (3.13)
+ 260, [LIM,, ((V — A)xy, 2p — xpy1) + LIM, (A(xp — Zpt1), T — Tpg1)
— LIM, (A(xy — ), 2 — Tp)].
Using the property LIM,a,, = LIM,a,+1 of the Banach limit in , we obtain
LIM, (A = V)ay, 2y — xp) = LIMp (A — V)2y, 4 — Tpg1)
< %LIMMA(@ — Ip), Ty — Tn)
1 2 2
+ 2—9t[LIMont — xp || — LIM,, ||z — 2pt1]|7]
(3.14)

LI (a2t — | + I1ySe — BV gz — 2
+ LIM, (A(zt — pt1), 2t — Tpt1) — LIMy (A(xy — ), 20 — )
0.7

= gLIMMA(:Ut — Ip), Tt — Tn)
UM (st — gl + I1ySie — EV gl — 2 |

Since
O {A(ze — ), 2 — ) < O||All|| 2 — anQ < GtHAHKQ —0 ast—0, (3.15)
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where ||x; — x| + ||[vSzr — uFVa,| < K,
thae — zna1|* = 0 and  t|ySzy — pEVani |||z — Tpaal — 0 ast — 0, (3.16)

we conclude from (3.14))-(3.16)) that
LIM,, ((A—V)Z, & — zy,) < limsupLIM,,((A — V)xy, z; — x4,)

t—0
. 0y
< lim sup—LIM, (A(z; — zp), ¢ — Tn)
t—0 2

+ lim SélptLIMn(MHivt = Tppall + 7Sz — pFVania|)llee — znl
t—
= 0.
This completes the proof. O

Now, using Theorem we establish the strong convergence of the sequence {x,} generated by the
general composite explicit steepest-descent scheme (3.3)) to a fixed point Z of T' (i.e., € Fix(T")), which is
also the unique solution of the VIP (3.2)).

Theorem 3.5. Letl =1 and {x,} be the sequence generated by the explicit scheme (3.3)), where {a,} and
{Bn} satisfy the following conditions:

(C1) {an} C[0,1], {Bn} C (0,1] and oy, — 0, By, — 0 as n — oo;
(C2) 32520 n = oo

If {x,,} is weakly asymptotically reqular (i.e., xpi1 — xn — 0), then {x,} converges strongly to & € Fix(T),
which is the unique solution of the VIP (3.2)).

Proof. First, note that from the condition (C1), without loss of generality, we may assume that 0 < a,, <
min{1, z_fz} and 0 < 3, < ||A|~! for all n > 0. In this case, we obtain 0 < 3,(¥ — 1 + an(7 — 7)) < 1 for
all n > 0.

Let x; be defined by , that is,

Ty = (I — QtA)Sxt + Ht(th — t(,uFth — ’ySmt)),

for t € (0, min{1, EZJ}), where Sz = Az+(1-\)Tz for 0 < k < A < 1, and limy_,¢ z; := & € Fix(S) = Fix(T)
(due to Theorem . Then z is the unique solution of the VIP (i3.2).
We divide the rest of the proof into several steps.

Step 1. We see that

| [ = pEV)pl| + [[(V = A)pH}
) ,_7 _ 1 Y
for all p € Fix(T) as in the proof of Theorem Hence {x,} is bounded and so are {Tx,}, {Thxn},
{FVan}, {Van}, and {yn}.

Step 2. We show that limsup,,_,. ((V — A)Z, x, — &) < 0. To this end, put

[2n = pl| < max{|[zo — p Vn >0

an = ((A=V)Z,Z —x,), VYn>0.

Then, by Theorem we get LIM,,a,, < 0 for any Banach limit LIM. Since {x,} is bounded, there exists
a subsequence {zy; } of {z,} such that

lim Sup(an-‘rl - an) = hm Sup(anj+1 - anj)
n—oo J—00
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and x,, — v € H. This implies that x,,, 41 — v since {x,} is weakly asymptotically regular. Therefore, we
have

w— lm (z —2p.41) =w— lim (T — 2,.) = (T — v),
Jj—o0 J j—o0 J

and so

lim Sup(an—I—l - an) = lim <(A - V):IN,’, (53 - xnj-‘rl) - (‘% - xnj» = 0.
n—00 J—00

Then, by Lemma we obtain limsup,, ,.. a, < 0, that is,

limsup((V — A)Z, z, — Z) = limsup((A — V)Z,z — x,) < 0.

n—oo n—oo

Step 3. We show that lim,,_, ||z, — Z|| = 0. Indeed, by using (3.3)) and 7,,Z = &, we have

| Tns1 — jHQ = (I = BnA)(Thnzn — Tp&) + Bul(l — canpuF )Wy — (I — anpF)VE+ any(Thrn — Th?)

+on(y] = pFV)] + Bu(V — A)i?

= |(I = BrA)(Thxn — TnZ) + Bu[( — anpuF )V, — (I — anpuF)VE + any(Thx, — ThT))
+ Bulon (] — pFV)E + (V — A)]|”

<\ = BuA) Ty — Tn@) + Bal(I — anptF)Vay — (I — anuF)VE + apy(Tnxn, — Tnd))|?
+ 2Bnlan (V] — pEV)Z, 2ng1 — &) + (V — A)T, Tnyr — T)]

<[ = BnA)(Thzn — TZ)|| + Bu(I(I — canpF)Van — (I — anuF)VE|
+ Y| Town — T2 |))? + 26u[an|| (VT = pFV)E|||2ns1 — & + (A = V)E, & — 2n11)]

<1 = BN Thzn — TnZll + Bu((1 — anT)l|2n — Z|| + Y| Tnn — THCEH)]2
+ 2Bp[an||(v] = pFV)Z | |2ng1 — 2] + (A = V)2, 2 — zp41)]

<[ = BaN e = &) + Bal(1 = anT)llzn — 2| + cnyllzn — )]
+ 2Bn[on||(v] — pFV)E|||2pt1 — || + (A = V)T, — Tnt1)]

— 1= Bul3 — 1+ an(r — )P —
+ 2Buloml| (7] — pFVVElllnss — 7 + (A = V)E, & — 2nya)]

<1 =By = 1+ an(m = )llzn — 2|
+ 2Bnlonl|(V = pEV)Z||2ng1 — ]| + (A= V)Z, 2 — 2ny1)]

< [1= B3 = 1+ an(T = )llzn — 2
T 2Bl (V] — wFV)Elllmss — 2 + (A = V)E, & — ny1)]

= [1 =87 = 1+ an(m = )llzn — 2[?

_ 2
+Bn('y—1+an(7—v))~ﬁ_1+an(7_7)
+((A=V)2,& — 2pp1)]

= (1= wn)llzn = Z|* + wndn,

[an||(V] = pFV)Z |||z — Z|

where w, = 5,(¥ — 1 + ap(7 — 7)) and

2

Op =
'7_1"‘0471(7—_’7)

lanl|(V = pEV)E( (241 — 2] + (A = V)T, & — 2ng1)]-

It can be readily seen from Step 2 and conditions (C1) and (C2) that w, — 0, > .2 w, = oo and
limsup,,_,, 6, < 0. By Lemma with 7, = 0, we conclude that lim,_, ||z, — Z| = 0. This completes
the proof. O
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Corollary 3.6. Letl =1 and {x,} be the sequence generated by the explicit scheme . Assume that the
sequences {can} and {B,} satisfy the conditions (C1) and (C2) in Theorem B.5| If {z,} is asymptotically
reqular (i.e., Tnt1 — xn — 0), then {zy} converges strongly to & € Fix(T'), which is the unique solution of
the VIP (3.2).

Putting p = 2, F = 11 and taking v € [0,1) (due to 7 = 1) in Theorem we obtain the following.

Corollary 3.7. Let I =1 and {x,} be generated by the following iterative scheme:

Yn = O‘nryTnxn + (1 - an)V:Ena
Tnt1 = (I — BnA)Thxpn + Buyn, Vn>0.

Assume that the sequences {an} and {B,} satisfy the conditions (C1) and (C2) in Theorem[3.5 If {zn} is
weakly asymptotically reqular (i.e., xpi1 — xy — 0), then {x,} converges strongly to & € Fix(T'), which is
the unique solution of the VIP (3.2]).

Putting «,, = 0 for all n > 0 in Corollary [3.7 we get the following.

Corollary 3.8. Let | =1 and {x,} be generated by the following iterative scheme:
Tnt1 = (I — BnA)Thxn + BV, VYn>0.

Assume that the sequence {B,} satisfies the conditions (C1) and (C2) in Theorem [3.5) with a, = 0 for all
n > 0. If {x,} is weakly asymptotically regular (i.e., xpy1 — x, — 0), then {x,} converges strongly to
Z € Fix(T), which is the unique solution of the VIP (3.2).

Remark 3.9. If {ay},{B,} in Corollary [3.6/and {\,} in T,, satisfy conditions (C2) and

(C3) Y02 lant1 —an| <ooand Y 07 |Brs1 — Bnl| < 00; or

Onp—Qnp41
Qnt1

6” _ﬁn+1 —

(C4) D02 plams1—an| <oo and limg, e ﬁf—il: 1 or, equivalently, lim,, .o T

0; or,

=0, and lim,_, s

(C5) >0y lant1 — an| < oo and |Bug1 — Bn] < 0(Bnt1) + Ony P opeg0n < 00 (the perturbed control
condition);

(C6) > nio A1 — An| < oo,

then the sequence {x,} generated by ({3.3)) is asymptotically regular.
Now we give only the proof in the case when {ay,}, {8,} and {\,} satisfy the conditions (C2), (C5) and
(C6). By Step 1 in the proof of Theorem there exists a constant M > 0 such that

[#n = Tapl| < M, pl|FVan|l + 5| Taanl| < M and ||A[|[|Thzal + [lyall < M,
for all n > 0. Next, we notice that

||Tn$n - Tnflxnflu < ”Tnxn - Tnxnfln + HTnl‘nfl - Tnflxnfln
< ”xn - xn—l” + |>\n - )\n—1|||xn—1 - Txn—l”
< |lzn = xp—1|| + |An = Ap—1| M.

So we obtain, for all n > 0,

Hyn - yn—l” = H’)’an(Tnxn - Tn—lxn—1> + (an - an—l)('}’Tn—lxn—l - ,U/Fvwn—l)
+ (I — anuF )WV, — (I — anpuF )V, 1|
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< yan||Thzn — Tn-1Tn-1l + |an — a1l [V T—12n—1 — pEVEn_1||
+ (I = anpuF)Vay — (I — appF )V, |

< voan(l|zn = zn-a |l + A = An—1[M) + |o — ana | (V[ Th-12n-1 || + gl FV2p-1])
+ (1 = an7)|[zn — 2n |

< (1= an(t =) Ulzn = n-all + [An = A1 M) + [, — 1| M,

and hence

[Znt1 — znll = (1 = BnA)Than + Buyn — (I — Bn-1A)Tn—1Zn-1 — Ba—1¥Yn—1|

< (I = BuA)(Thzn — Tn12p-1)||
+18n = Ba A Trn—1zn—1ll + Bullyn — Yn—1ll +1Bn — Bn-alllyn—1ll

< (1 =B Tazn — Ta—1zn-1|l + Ba[(1 — an(T — 7)) (|2n — 21|
+[An = A1 |M) + |an — an—1[M] + [Bn = Ba—1 [(I Al Tn—12n-1l + lyn—11])

< (1= BaY)(lzn = -1l + [An = A1 |M) + Bu[(1 — an(T — 7)) ([[2n — 21| (3.17)
+ [An = An—1|M) + | — an—1|M] + [Bn — Bn-1|M

< (1 =BuWzn — zn-all + [An — A1 | M
+ Bullzn = n—1ll + [An = An1|M + [an — a1 [ M + [By — Bn—1|M

= (1= Bu(y = D)z — zn-1ll + [Bn — Ba—1|M + 2[An — X1 | M + |, — a1 |M

< (1 =8u(y = D)|len — zpn—1|| + (0(Bn) + on—1)M + |, — ctp—1|M + 2|Xy, — A1 | M.

By taking an+1 = ||Znt1 — znll, wn = Bn(¥ — 1), wndn = Mo(B,), and r,, = (|ay, — ap—1| + opn—1 + 2|Ay, —
An—1|)M, from (3.17) we have

ap+1 < (1 — wp)an + wndy + 1.

Consequently, utilizing the conditions (C2), (C5), (C6) and Lemma we obtain

nh—>Holo [#n+1 — @all = 0.

In view of this observation, we have the following.

Corollary 3.10. Let I = 1 and {x,} be the sequence generated by the explicit scheme , where the
sequences {an},{Bn}, and {\,} satisfy the conditions (C1), (C2), (C5) and (C6) (or the conditions (C1),
(C2), (C3) and (C6), or the conditions (C1), (C2), (C4) and (C6)). Then {x,} converges strongly to
& € Fix(T), which is the unique solution of the VIP (3.2).

4. Concluding remarks

We introduced and analyzed one general composite implicit steepest-descent scheme and another general
composite explicit steepest-descent scheme for solving the hierarchical fixed point problem of a k-strictly
pseudocontractive mapping 7' : H — H in a real Hilbert space H by virtue of the general composite implicit
and explicit schemes for a nonexpansive mapping 7' : H — H (see [2]) and the general composite implicit and
explicit ones for a strict pseudocontraction T : H — H (see [§]). Our Theorems and Corollaries
supplement and develop Theorems 3.1 and 3.2 of [2] and Theorems 3.1-3.3 and Corollary 3.5 of [§]
in the following aspects.

(i) Ceng et al.’s general composite implicit scheme for a nonexpansive mapping 7' : H — H (see (3.1)
in [2]) and Jung’s general composite implicit one for a strict pseudocontraction 7' : H — H (see (3.1) in
[8]) are extended to develop the general composite implicit scheme for hierarchical fixed point problem
of a strict pseudocontraction 7' : H — H. Moreover, Ceng et al.’s general composite explicit scheme
for a nonexpansive mapping 7' : H — H (see (3.5) in [2]) and Jung’s general composite explicit one for a
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strict pseudocontraction (see (3.3) in [§]) are extended to develop the general composite explicit one
for hierarchical fixed point problem of a strict pseudocontraction T : H — H.

(ii) Our general composite implicit scheme is very different both from the general composite implicit
one (3.1) in [2] and from the general composite implicit one (3.1) in [§] because the general composite implicit
one x; = (I — 0, A)Txy + 04 [Txy — t(uFTxy — vf(ze))] (see (3.1) in [2]) and the general composite implicit
one x¢ = (I — 0 A) Ty + Oty Ve + (I — tpuF)Tiay] (see (3.1) in [8]) are replaced by our general composite
implicit one zy = (I — 6, A)Tyxy + 0, [Vay — t(uFVay — yTixy)]. In the meantime, our general composite
explicit scheme is very different both from the general composite explicit one (3.5) in [2] and from the
general composite explicit one (3.3) in [8] because the first iterative step y, = (I — appuF)Tzy + anyf(zn)
of (3.5) in [2] and the first iterative one y,, = ap YV, + (I — apuF) Tz, of (3.3) in [§] are replaced by the
first iterative step v, = apnyYThxn + (I — apuF )V, in our general composite explicit scheme ({3.3]).

(iii) The hierarchical fixed point problem of a strict pseudocontraction T': H — H in our Theorems
B2 3-4} [3-5] and Corollaries [3.3] [3.10]is more general and more subtle than the hierarchical fixed point one of
a nonexpansive mapping 7' : H — H in [2] Theorems 3.1 and 3.2] and the hierarchical fixed point problem
of a strictly pseudocontractive mapping T': H — H in [8, Theorems 3.1-3.3 and Corollary 3.5]. It is worth
pointing out that the mapping A — I in the hierarchical fixed point problems in [2, Theorems 3.1 and 3.2]
and [8, Theorems 3.1-3.3 and Corollary 3.5] is extended to the mapping A —V in our hierarchical fixed point
problem , where V : H — H is a nonexpansive mapping.

(iv) The range 0 < yoo < 7 = p(n — “Qi?) in [2] and the one 0 < 7l < 7 = 1 — /1 — pu(2n — pux?) in
[8] are relaxed to the case of range 0 < v < 7 = 1 — /1 — pu(2n — px?) with [ = 1. Moreover, the range
0 <t < min{1, 72__71} with o € (0,1) in [2, Theorems 3.1] and the one 0 < ¢t < min{1, TQ::;’Z} in [8, Theorem

3.1] are relaxed to the case of range 0 < ¢ < min{1, 2=2} with [ = 1.
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