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Abstract

In this paper, by the strongly positive linear bounded operator technique, a new generalized Mann-type
hybrid composite extragradient CQ iterative algorithm is first constructed. Then by using the algorithm,
we find a common element of the set of solutions of the variational inequality problem for a monotone,
Lipschitz continuous mapping, the set of zeros of two families of finite maximal monotone mappings and
the set of fixed points of an asymptotically x-strict pseudocontractive mappings in the intermediate sense
in a real Hilbert space. Finally, we prove the strong convergence of the iterative sequences, which extends
and improves the corresponding previous works. (©2016 All rights reserved.
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1. Introduction

Let H be a real Hilbert space with the inner product (-,-) and norm || - ||, I be the identity mapping
on H, C be a nonempty closed and convex subset of H and Pg be the metric projection of H onto C. Let
F(T) be the set of fixed points of T and T~10 be the set of zeros of T.

On the one hand, very recently, Sahu et al. [I5] introduced a new class of mappings, asymptotically
k-strict pseudocontractive mappings in the intermediate sense, which are not necessarily Lipschitzian. Pseu-
docontractions [18] and asymptotically pseudocontractions [19] are its special cases.
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Definition 1.1 ([I5]). Let C be a nonempty subset of a Hilbert space H. A mapping T : C' — C' is said
to be an asymptotically k-strict pseudocontractive mapping in the intermediate sense with sequence {~,} if
there exist a constant x € [0,1) and a sequence {7,} C [0, 00) with li_>m ~n = 0 such that

n—oo

lim sup sup (|77 — T[> — (1 + yu)lle — y|> — sl — Tz — (y — T"y)|”) <0.

n—oo  zxyeC

Throughout this paper, we assume that

Cp 1= max {O, supc (1T — T™y|]> — (1 + )|z — ylI> = K|z = T"z — (y — Tny)‘z)} . (1.1)
x,ye

Then ¢, > 0 for all n € N, ¢, — 0 as n — oo and Definition reduces to the relation
T2z — T|> < A+ v) |z — y||> + &ljlz — Tz — (y — T"Y)||® + ¢n, Va,y € C, n €N, (1.2)
On the other hand, a strongly positive operator is defined as follows.

Definition 1.2. An operator V : H — H is called 7-strongly positive, if there exists a constant 7 > 0 such
that
(Va,z) >7llz|?, ~ VeeH.

By using the strongly positive linear bounded operator technique, Marino and Xu [§] and Qin et al.
[10] approximated the fixed point of a nonexpansive mapping and a non-self strictly pseudo-contraction,
respectively.

In addition, to approximate the zeros of a maximal monotone mapping, Rockafellar [14] introduced the
proximal point method. And then Wei and Tan [16] extended it to the case of two families of finite maximal
monotone mappings.

Furthermore, To find the solution of the classic variational inequality problem in Euclidean space R",
Korpelevich [7] introduced the extragradient method. Yao et al. [I7] proposed a modified Korpelevich’s
method.

Finally, by combining the ideas of the projection method and the outer-approximation method (see [I]),
Iiduka and Takahashi [6] introduced the CQ algorithm. Recently, Nadezhkina and Takahashi [9] introduced
and studied the combined hybrid-extragradient method.

In this paper, motivated and inspired by the above work, by the strongly positive linear bounded opera-
tor technique, we first construct a new generalized Mann-type hybrid composite extragradient CQ iterative
algorithm. Then by using the new algorithm, we find a common element of the set of solutions of the varia-
tional inequality problem for a monotone, Lipschitz continuous mapping, the set of zeros of two families of
finite maximal monotone mappings and the set of fixed points of an asymptotically k-strict pseudocontrac-
tive mappings in the intermediate sense in a real Hilbert space. Finally, we prove the strong convergence of
the iterative sequences, which extends and improves the corresponding previous works, see [0} [7, 9] [16].

2. Preliminaries
Lemma 2.1 ([20]). Let X be a real inner product space. Then we have the following inequality:
2 +yl* < llz| + 2(y,z +y),  Vr,yeX.

Lemma 2.2 ([20]). Let H be a real Hilbert space. For every x,y,z € H and «, 8,7 € [0,1] with a+5+~y =1,
the following equality holds:

laz + By +v2|* = alle|® + Bllyll* + vll2l* — aBllz — y|I* — arllz — 2| = Bylly — =]

Lemma 2.3 ([20]). Let H be a real Hilbert space. Given a nonempty closed convexr subset C' of H, points
xz,y,2 € H and a real number a € R, the set

{veC:ly—vl? <llz — vl + (z0) + a}

is convex (and closed).
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Lemma 2.4 ([5]). (Demiclosedness Principle) Assume that T is a nonexpansive self-mapping of a nonempty
closed convex subset C of a Hilbert space H. If T has a fixed point, then I — T is demi-closed. That is,
whenever {x,} is a sequence in C converging weakly to some v € C (for short x, — x € C), and the
sequence {(I — Tz} converges strongly to some y (for short x, — Txp, — y), it implies that (I —T)z = y.

Lemma 2.5 ([8]). Assume that V : H — H is a 7y-strongly positive linear bounded operator with 0 < p <
IVIFL. Then |- uV]| < 1 4s7.

Lemma 2.6 ([15]). Let C' be a nonempty subset of a Hilbert space H and T : C — C be an asymptotically
K-strict pseudocontractive mapping in the intermediate sense with sequence {y,}. Then

177~ Tyl < = (slle — gl + VI F (L )z~ 9P+ (1 wjen)
for all z,y € C and n € N.

Lemma 2.7 ([15]). Let C be a nonempty subset of a Hilbert space H and T : C — C be a uniformly
continuous asymptotically k-strict pseudocontractive mapping in the intermediate sense with sequence {7y, }.
Let {x,} be a sequence in C such that ||z, — xpy1| — 0 and ||z, — T"zy,|| — 0 as n — oo. Then
|xn, — Tzyp| — 0 as n — oco.

Lemma 2.8 ([I5]). (Demiclosedness principle) Let C' be a nonempty closed convex subset of a Hilbert space
H and T : C — C be a continuous asymptotically r-strict pseudocontractive mapping in the intermediate
sense with sequence {y,}. Then I — T is demiclosed at zero in the sense that if {x,} is a sequence in C
such that x,, = = € C' and lim sup lim sup||z, — T™z,| =0, then (I —T)z = 0.
m—0o0 n—oo

Lemma 2.9 ([I5]). Let C be a nonempty closed convexr subset of a Hilbert space H and T : C — C be a
continuous asymptotically k-strict pseudocontractive mapping in the intermediate sense with sequence {yn}.
Then the set of fixed points of T is closed and convex.

Lemma 2.10. Let H be a real Hilbert space, C' be a nonempty closed convex subset of H, A;, Bj(i =
1,2,...,k;5 = 1,2,...,1) : C — C be two families of finite maximal monotone mappings such that
(Nk_,A;10) ﬂ( 1By 1O) is nonempty. Suppose that S’AkA’“ AL JAkJAk Lo g GBZB’ B o +
a1 JB +a2J52+---+angz with J& = (I + 1 A)™Y, T = (I +7,By)7™Y, am € (0,1), B4 _gam =1, m =
0,1,2,...,l and r, > 0. Then

. ApAp_1--A BB;_1-+-B AR A -Ay ~B|B B
(I)Skkl 1 b= dskkl 1G1111

Tn ) Tn

C — C are all nonexpansive.

(ii) F(SH1 ) = 0k A0 and F(GRP=0P1) = nl_ B o,

n

(111) F(S’;’nikAkfl---AlGBlBl 1 Bl) :F(kaAkflAl)mF(GBlBl 1 Bl)

n

Proof. 1t is easy to get the result. O

3. Iterative algorithm and strong convergence theorem
We construct the following new iterative algorithm and then get the main result.

Theorem 3.1. Let H be a real Hilbert space, C be a nonempty closed convex subset of H, A: C — H be a
monotone and p-Lipschitz continuous mapping, f : H — H be a contraction with the coefficient n € (0,1),
T :C — C be a uniformly continuous asymptotically k-strict pseudocontractive mapping in the intermediate
sense with sequence {v,} and ¢, be defined as in . Let V : H — H be a 7-strongly positive linear
bounded operator, A;, B; (z =1,2,...,k; j = 1 2,...,1): C — C be two families of finite mazximal monotone
mappings such that Q = (NF_; A 10) ( 1O)HVI(C’ A)NF(T) is nonempty and bounded. Suppose that



Y .-Q. Qiu, J.-Z. Chen, L.-C. Ceng, J. Nonlinear Sci. Appl. 9 (2016), 5175-5188 5178

ApAp_ 1A Ap B/Bi_1-B . , _
Sr A = gk gUR A G = gl + ar I+ ag JB 4+ @ JB with T = (T4, 4:) 7,

inj = (I +r,Bj)7Y, am € (0,1), Tt _pam =1, m=0,1,2,...,1 and r, > 0. The sequences {zn}, {yn},
{un} and {z,} are generated by:

ro=x € C,

Yn = Po(xn, — M Azy),

Up = apTp + (1 — an)S,éfAkflmAlGﬁBl’lmBch(a:n — A\ Ayn),

2 = Bpun + onpif(un) + (1 = Bp)l — 0n V)T unp, (3.1)

Cpn={2€C:|zn—2||> < ||zn — 2||*> + 0},
Qn={z€C:{(xy—z,x—x,) >0},

 Znt1 = Po,n@. 7,

where O, = (1 — o (1 + 0= 7)) e + (on(l+ 1 =7) +70)An),

A =sup { e = pI? + 1 1£0) =l + lp = VP s p € 02 < oc
for everyn =0,1,2,--- . If {an}, {Bn}, {on}, { M} and p satisfy the following conditions:
(i
(ii

(iii) oy, € [0,1] and limy, o0y = 0;

)
)
)
)
)
)

0<a, <a<l1;
0<8, <1

(iv) Bn+oupu<1;
(v

(vi

0< K <b<Bp(l—Pn—onp);

F<pu< %;

(vii) 0<p<A,<g<i;

where a,b,p and q are constants, then the following statements hold:
(1) {zn} converges strongly to py = Pox;

(2) {xn} converges strongly to po = Pax, which is the unique solution in Q of the following variational
inequality:
((V = pf)po,p — po) > 0, Vp € Q,

provided that ||z, — zu|| = o(0n) and n + cn + |[un — T"uy||? = o(0n). Equivalently,
Po = PQ(I -V + ,uf)po.

Proof. We shall split the proof into six steps.

Step 1. Q C C,, N Q,, and {x,} is well-defined.
First, we will show Q C C),. Put t,, = Po(xz, — A\ Ayy), for all p € Q, we have
112 *pHQ <z — AnAyn — p”2 — [|n — AnAyn — tn||2
= |lzn — p||2 — |lzn — tn”2 + 22X (AYn, 0 — tn)
= |lzn = plI* = llzn — tal® + 20 ((Ayn — Ap, p — yn)
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+ (AD, p = yn) + (AYn, Yn — tn))
< Hl‘n - p||2 - ||1'n - 75n||2 + 2>\n<v4yn7yn - tn)
= [lzn = plI* = (lzn = ynll* + 2(2n = Yns Yn — tn) + [Yn = tall®) + 220 (AYn, Yo — ) (3.2)
= ||y — pH2 — lzn — yﬂHQ —lyn — th2 + 2(zn — AAYn — Yns tn — Yn)-
Since y, = Po(xy, — A\ Azy) € C and A is p-Lipschitz continuous, we have

(T — MAYn — Ynstn — yn> = < — M ATy = Yn, tn — Yn) + <>\n./4.1‘n —= AnAYn; tn = Yn)
(AnATy — A\ Ayn, tn — Yn) (3-3)
Anpllzn = ynlllltn = ynll-

Submitting (3.3]) into (3.2) and by condition (vii) we have

I/\ IN

[[tn _pH2 < lzn — pH2 — [l@n — ynH2 — llyn — thz + 2Xnpllzn — yulllltn — ynll
< lzn =212 = 1z = yall* = llyn = tall* + Xap (120 = ynll* + lltn — yall?)
= llzn = plI* + Aap = 1) (lzn = ynll* + Itn — yal*)
< lln —plI*.

From (3.1)), (3.4), Lemma [2.10 and the convexity of || - |2, and since p € (N¥_; A='0) N (mgle].—lo), we
have

(3.4)

AL A CA B;B --B
Hun*sz: lan@n + (1 — ay)Sr, S 1G T, pH2

< anllzn —pl? + (1 — an) | Spr g By, p)2

< anllzn = pl? + (1 = ) tn — plI? (3.5)
< |lzn — pH2 + (1 —an)(Aap—1) (Hxn - yn||2 + [t — yn||2)

< Hxn _pHQ'

By virtue of (1.2)), (3.1)), Lemma conditions iv—vii and the definition of T, and since p = T'p, we
obtain

Iz = pI* = [|Bntin + onpef (un) + (1 = o) — 00 V)T " up, — pl|?
= ||Bptin + onpif (un) + (1 = Bn — onp)) T"up + (1 = Bp)I — 00 V)T "up,
— (1= B — o) T"un, — pl|?
< Hﬁnun + o (un) + (1= By — o) Ty — pl?
+2(((1 = Bp)I — 0 V)T"up — (1 = Bp — onpt) T n, 20 — p)
< Bullun = plI? + onpll f(un) = plI* + (1 = B — on) | T up — p|1?
— Ball = B — o) ltm — T2 + 20m{(4] = V)(T™tm — p) + (6T = Vp, 20 — p)
< Bullun = o> + onps(lf (wa) = FO + 1£ ) = pI)* + (1 = B = on) [T u — pl|?
— Bn(1 = Bn — oupt)|[tn — T™un* + 204 (| — V|| T"un — pl|||2n — pll
+ lup = Vpllllzn — pll]

1
< /BnHUn _pH2 + UnM(TIHUn _pH + (1 - n)ﬂ”f(p) _pH)2

+ (1 = Bn — on) | T"up _pH2 — Bn(1 = Bn — onp) |lun — TnunHz
+ ol =) (1T un — pl* + 120 — plI*) + llwp — VpII* + [z — plI]

1 (p) = pII?)

1
< Bullun =l + own(len ~ I+ (1 = 1) =5
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+ (1= Bn = oni)| T un = pl|* = Bu(1 = B — onpt) |lun — T"up >
+onl(n =) (IT"un = plI* + 120 — 2II?) + 0 = VI* + 120 — p[1*)

= (Bn + onpn)|Jun — plI* + %Ilf(p) —plI* + [1 = B — onpt + on(pp = DN tn — pl|?
= Bu(1 = B — onp) [t — T un |1 + o0 (1 + g = )| 20 — pl|* + onllup — Vol?

< (Bn -+ onm)lfun = I + 717 (0) = I = (1 = B = Gup)fum — T
+ (1= B — onp+ on (=N + ) lun = pII* + £llun — Tun||* + cn)
+on(1+ 1 —7)lzn — plI* + onllup — Vpl?

< B+ 0n¥ + (1= Bn — o) (1 + )]llun — plI> + %Hf(p) —pl®
1= B = 07) (5= B =) = T
+ (1= Bu—ou¥)en + on(1+ =) 20 — p|I* + onllup — Vpl®

< (14 ) =PI + 21 0) =l
+ (1= Bn = 0u¥)(5 = Bu(l = Bn — onps))l|un — Ty ? (3.6)

+ (1= Bn —on¥)en + on(l + p— )|z — plI> + onllup — Vp|?
Ol
< (14 ) lun = plI* + ﬁ”f(p) -l
+ (1= Bn— W) (k= Bu(1 = By — onp))lun — Ty |?
+en+on(1+p—7)zn — plI* + onllup — Vp|?
Ol
< (14 ) = 9l + 2 ) — P
+ (1= B — 0nV) (6 — Bn(1 — Bn — onp))[Jun — TnunH2
+cn + Un(l + - 7)||Zn - p”2 + UnHHP - Vp||2
< T+ v)(lzn = pl* + (1 = an)(Anp — 1)(lzn — yall® + [[tn — yall))
a. _
4 £0) = I+ (1= 8 = 0T = Bu1 = B = i) — "

1
+en+ on(L+ p—F)||zn — pII* + onllup — V||

Tnpl _
< (14 )20 = pl” + 1fin\lf(p) —plI* + cn + on(1+ p =) 20 = plI* + onllup — Vo>,

This implies

Onfh

T - plI? + cn + onllup — V2.

(1= on(L+p=F)llzn = pl* < (1 +70)zn —pl* +

By virtue of conditions (iii) and (vi), we conclude

1 |
l—on(l+p—7)

lzn = pII* < llzn — pII* + (on (1 + 1 =7) + )20 = plI?

Ol
+ 1 /) - pl* + e + onllup — Vpl?]
1 _
< lzn — pl* + —[(on(1 41 =) + ) (|20 — pl?

l—on(l4+p—7)
1
T 1) - pI* +llup = Vpll*) + cn]

(3.7)
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1
1- Jn(l +p— 7)
= [lzn — plI* + On,

where 0, = (1 — on(1+ p — 7))71@” + (O (14 1 =) + ) An),

< lan —plI* + [(on(14 1 =) +v) A + cn)

1
B =sup { o = pIP + 1 £0) =0l + lp = Vil? s € 2 <o

By virtue of and the definition of C,,, we have p € C,. So, Q C C,, for every n =0,1,2,---.

Next, through the mathematical induction method, we shall prove that {z,} is well-defined and 2 C
ChnNQy, foralln =0,1,2,---. Forn =0, Qo ={z € C: (xg — 2z, — x9) > 0} = C, hence Q C Cp N Qo.
Suppose that z; is given and Q C C; N Qj for some & € N. Because () is nonempty, we have Cy N @y is
nonempty. It is obvious that C), is closed and @, is closed and convex. Since

Chn={z€C:|zn— fL‘n||2 +2(zp — Xp,xpy —2) + 0, <0} ={2€ C:2x, —2,,2) < ||mn||2 — ||zn|\2 +6,},

by Lemma [2.3] we also have C), is convex. Thus, Cy N Q is a nonempty closed convex subset of C, so
there exists a unique element x4 € Ci N Q) such that x4 = Po,ng, 2. It is obvious that

(Tp+1 — 2,0 —xp11) >0, Vz € CpNQy.
Since 2 C Ci N Qp, we have
(Tho1 — 2,2 —xp31) 20, Vz e

That is, z € Qx+1. Hence Q C Qg41. Therefore, we get 2 C Cri1 N Qgy1., and then Q C C), N Q,, for
every n =0,1,2,---. Therefore, {z,,} is well-defined.

Step 2. {zn}, {yn}, {un}, {zn}, {tn}, {f(un)} and {T"u,} are all bounded.
Let pg = Pox, from Step 1, we have pg €  C C,, N Q. From z,,+1 = Pc,ng,* and the definition of the
metric projection, we have

|Zn+1 — 2zl < llpo — | (3.8)

for every n = 0,1,2,---. Therefore, {z,,} is bounded. By virtue of (3.4)), (3.5) and (3.7), we also obtain
{tn}, {un} and {z,} are also bounded, respectively.

Again from ({3.4), condition (vii) and the boundedness of {z,} and {¢,}, we have

|z = yall? < llzn = yall* + tn — yull?

< _1M (2 = pI2 = It — pI12)

< 755 (lon =l + 1 = )l = o1l =l = 1)
< 755 (e =2+t =l =

< 7= ln = ol + = oDl =l

So, {yn} is bounded. Because
1 Cun) | < 11 (un) = F@) + 1F @] < nllun = pll+ 17 @),
we have {f(u,)} is bounded. By (B.1]), we have
l2n = plI* = [1Bntn + onfef (un) + (1 = Bn)l — 0 V)T u — p|>.
Combining with the boundedness of {u,}, {z,} and {f(uy)}, we obtain that {7"u,} is bounded.
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Step 3. lim ||z, — y,|| =0, lim ||z, —u,|| =0, lim ||z, — 2,/ =0 and lim |z, — Tz,| = 0.
n—00 n—00 n—00 n—00

As Q, ={z € C: (zy — z,x — x,) > 0}, we have (z, — z,& — x,) > 0 for all z € Q,,. And by the
definition of the metric projection, we obtain z,, = Py, z. Because z,+1 = Pc,ng,z € C,, N Q, C @, and

by (3.8]), we have

[2n = || < [lzn1 =[] < [lpo — ]|

for every n =0,1,2,---. Therefore, lim ||z, — z| exists. We have
n—oo

|zn+1 = zall? < llznsr — 2] = [len — 2|,
which implies that
nh_)ngo [Tn41 — @al| = 0.
By zp41 € C), and the definition of C),, we have
2
o = @ns1l? < lan = sl + 0 < (llzn = @asall + VEa)

which yields that
20 — Tpi1ll < Nz — Tpga |l + V/0n.

Hence
l2n — zall < 120 = Zog1ll + |Tng1 — 20l < 2|20 — gt || + Vb

By virtue of condition (iii), we have 6,, — 0. Again from (3.9) and (3.10)), we conclude

lim ||z, — z,|| = 0.
— 00

From (3.6)), we obtain
20 = plI* <0+ 3) (20 — P + (1 = n)Anp = D(llzn = yall® + 60 — yal?))

Onft _
+ ) - I + cn 4+ on(1 4 =) 20 — plI> + onllup — Vo[,

Therefore, we have
1
T2 = a1 )
— (1= o1+ u =)z pll?
@) = I+ et oullip = VoI
— T i [ e =5l = e = plP)
+ (L4 onp+7m = (L= ou(l+p —=7)))llza = p|?

Tt
+1 nllf(p) —pl* + cn + onllup — Vpl?]
1

= T ani —np [+l =l

+ llzn = ) (ln — pll = ll20 — pII)
+ (on(1+ 2 —7) + ) |20 — pl?
Tl
+1 . nllf(p) —plI* + en + aullup — Vpl?]
1

S T —and—rp) |

lzn = ynll® + lltn = yoll* < (1 +70)llzn — pII?

(1 + ) (|27 — pl

(3.9)

(3.10)

(3.11)

(3.12)
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+ lzn = pIDllzn — 2nll + (o0 (1 + 20 =) + 70|20 — pH2
Onlt
+i nllf(p) —pl* + cn + onllup = Vp|?].
From (3.11)), (3.12)), condition (i), (iii), (vii) and the boundedness of {x,} and {z,}, we have
Jim [z, — ynl| = 0, (3.13)
and
nlggo lyn — tnll = 0. (3.14)
By [|zn — ol < llzn — ynll + lyn — tall, (3.13) and (3.14), we get
nh_)nolo |xr, — tn]] = 0. (3.15)

In view of (3.6)), we obtain

Tnpt
lzn = plI* < (14 yn)l&n — plI* + 1finllf(p) —pll?

+ (1 — Bn — Jrﬁ)(” - Bn(l — Bn — Un,u))Hun - T”un||2
+en+ on(14+ =) |20 — plI> + onllup — Vpl*.

By conditions (iv) and (vi), we have (8, + 05,7 < B + o < 1. Therefore, repeating the similar method

in (3.12)), we have
' [+ 302 — pI?
(1 - Bn - Unﬁ)(ﬁn(l - Bn - Un:“/) - "i)
_ On
— (L= ou(L+ =)z — Pl + 725
=1
1
1-— Bn - O'nﬁ)(ﬁn(l - /Bn - O'n,U/) - H)
_ Onpt
+ (on(L+ 1 —=7) + )20 — plI” + T—r 77IIf(p) —pl* + ¢ + onllup — Vpl*].

l|n — TnunHZ <

1£(p) = plI* + cn + oullup — Vpl]

=1

Again from ({3.11)), (3.16)), condition (iii) and the boundedness of {z,} and {z,}, we have

lim |up, — T"uy|| = 0.
n—oo

By (3.1)), we have

[2n = unl| =[|Bntin + onpf (un) + (1 = Bu)I = 00 V)T " tn — un||
=[(1 = Bu)(T™tn — up) + on(puf (un) — VI )|
<1 = BT un — un|l + onllpf(un) = VI uq||.

From (3.17)), (3.18]), condition (iii) and the boundedness of V', { f(uy)} and {T"u,}, we have

lim ||z, — uy,|| = 0.
n—oo

By ||zn — un|| < ||zn — 2nll + |20 — unll, (3.11) and (3.19)), we get

lim |z, — u,|| = 0.
n—oo

[+ 70)(lzn = pll + 120 = pI)[l2n — 2l

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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Furthermore, by Lemma we have

zn — T"wnll <[|2n — unll + lun — T upl| + |T"un — T"2 |

<zn — unl| + [Jun — T"uq || + (’fon — Up| (3.21)

1—-k
+ \/(1 + (1 = K)yn)l|on — unl* + (1 — R)Cn)

From (3.17), (3.20) and (3.21), we get

lim ||z, — T"z,| = 0.
n—o0
Since ||xp41 — znl| = 0, |z — T"xy|| — 0 as n — oo and T is uniformly continuous, by Lemma we
obtain
lim ||z, — Tzy,|| = 0.
n—oo

Step 4. W(x,) C Q, where W(z,,) denotes the set of all the weak limit points of {z,}.

Indeed, since {x,} is bounded, we know that W (z,,) is nonempty. Take u € W (x,) arbitrarily. Then
there exists a subsequence of {z,}, for simplicity, we still denote it by {z,}, such that z,, — u as n — oc.
In the following, we shall prove u € Q. First, we show u € (Nf_;4;10) N (09213510). From (3.4), for all
p € Q, we have

A A 1A B;B;_1--B
l|wn — x| :Hanxn"'(l_an)smk M 1an o 1tn_$n”

AL AL A e
=(1 — a) || SpyE eGP By

This implies that

1
| Sptr g By, | = [ E (3.22)
1— o,
From ({3.20)), (3.22)) and condition (i), we have
Sldi—regBiBiBy - 00 (0 — 00). (3.23)

ApAp_1---A B;B;_1---B ApAp_1-+-A B;B;_{---B
By ||Sr NG T ey — || S |ISe TG T ey — || + |t — x|, (3.15) and ([3.23)),

n n

ApAg_1Ay ~B/Bj_1-B . ApAg_1Ay ~BBi_1-By . .
we get S, FCFTTTM G P, — ¢, — 0. Since t, — w, Sy PTG is nonexpansive and by

ApAj_ 1 As BBy 1B . . . ApAp_ 1Ay ByBy1-B
Lemma we have S, ** VTGN s demiclosed at zero, i.e., u € F(Sy, PRGN,

Again By Lemma we get u € (NF_,4;70) N (ﬂé»:lBj_IO). Secondly, we show u € VI(C, A). Let

T — Av+ Nov, if veC,
o, if vé¢C,

where Ngwv is the normal cone to C at v € C, G(T) is the graph of T" and (v,w) € G(T'). So, we have
w € Tv = Av + Ncv and hence w — Av € Nev (see [13]). From the definition of the normal cone and since
tn, = Po(xn — M Ayy,) € C, we have

(v —tp,w— Av) > 0. (3.24)

From the property of Pc, we have
<xn - )\nAyn - tn; tn - U> 2 07 Vv € C:

and hence
tn — Tn

— tﬂn -
(v N

+ Ay,) > 0. (3.25)
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For simplicity, we assume that {y,} and {¢,} are also subsequences of {y,} and {t,}, respectively.
Because of z, — y, — 0, z,, — t, — 0 and z,, — u, we have y, — u and t, — u. By the monotonicity of A,

(3.24]) and (3.25)), we obtain
(v —tp,w) > (v —t,, Av)

ty, — Ty

> (v — by, Av) — (v — tp, . + Ayn)
= <U — tn,A’U — Atn> + <U - tnaAtn - Ayn> - <U — ln, tn;ixn>
> (v —tn, Aty — Ayn) — (v — tp, t";ix")

Hence, we obtain (v — u,w —0) > 0 as n — oo. Since 7' is maximal monotone, we have 0 € T'u and
hence u € VI(C, A).

Thirdly, we show uw € F(T'). We observe that T is uniformly continuous and lim,_, ||z, — Tz, || = 0.
Hence it is easy to get that lim, « ||zn, — T™z,| = 0 for all m > 1, m € N. From Lemma we have
u € F(T). Sou € and we get W(zy,) C Q.

Step 5. x, — Pox as n — oo.
Suppose z,, — u as n — 0o, where {z,,} is looked as a subsequence of {z,,} for simplicity, from Step 4, we
have u € Q. Let pg = Pqz, from the definition of the metric projection and the weak lower semi-continuity
of || - ||, we have

Ipo — 2l < llu— || < liminfa, — o < limsup|la, — ]| < |lpo — ]|
n—oo n—00
So, we obtain
lim ||z, —z|| = ||u — ||
n—oo
Again from z,, — x — u — z and the Kadec-Klee property (see [12]), we have x,, — x — u — = and hence
Zp — u. Since x, = Pg,r and pg € @ C C, N Q,, C @y, we have

_HpO - an2 = <P0 — Tpy LTp — 1,‘> + <p0 — Tn,T —P0> > <p0 — Tn,T —P0>-
Let n — oo in both sides of the above inequality, we get —||po —u||? > {po —u, x — po) > 0. Hence u = py.

This implies that z,, = pp = Pqx as n — oo.

Step 6. Let pg = Pox, assume additionally that ||z, — z,| = o(0y) and v, + cn + |Jun — T™un||? = o(0n),
we will show pg is the unique solution in 2 to solve the following variational inequality:

(V= uf)po,p—po) >0,  VYpeQ. (3.26)
Equivalently, pg = Po(I —V + pf)po. Indeed, by the definition of V' and f, we have
(V=pf)z =V =pfy,z—y) = (Ve = Vy,x —y) — ulf(x) = fy),z —y) = T = pn) |z —yl*.
This implies that V' — pf is (¥ — pn)-strongly monotone. In the meantime, we obtain
IV = puf)z =V = phyll < Ve = Vyl + plf(@) = F) < (VI + pn)llz =yl

That is, V — uf is (||V|| + un)-Lipschitz continuous. Thus, there exists a unique solution p € € to satisfy
the following variational inequality:

(V—=uf)p,p—p) >0, Vp e Q.
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Equivalently, p = Po(I —V + pf)p. Furthermore, by using another technique in , by virtue of ,
, , Lemma and condition (vi), we obtain
120 = 2II> = 1Bu(un — p) + oups(f(un) = f(p))
+ (1= Ba)T = V) (T up — p) + on(pnf = V)pll?
< 1B (un = p) + onpu(f (un) = f(p))
+ (1= Ba)I = 0uV)(T"uy — p) |
+ 200((nf = V)p, 20 —p)
< [Bullun = pll + onpll f (un) — F(p)]]
+ (1= B = oI T s = pl)* + 200((f = V)P, 20 — D)
< [Bullun = pll + onpnllun — pll + (1 = Bp — on V)| T un — p||
+ 200 ((nf = V)P, 20 — p)

]2

_ _ (3.27)
< [(Bn + an)|un — pll + (1 = Bn — oY) | T"un —P\H2 + 205 ((1nf = V)p, 20 — p)
< (B + o un = plI* + (1 = B = x| T un = pl* + 200 ((1f = V)p, 20 — D)
< (B + o lun = plI* + (1 = B = 0u ML+ )l — pl1? + sllun — T un||* + )
+ 200 ((nf = V)P, 20 — p)
< lun — p”2 + (1= Bn — 0n7) (nllun — pH2
+ Kllun — TnunHQ +¢n) + 200 ((f — V)P, 20 — p)
< len = pl1? + (1 = B — 007)
X (Yn + [t — T"un ||* + cn) (ltn — pl|* + 5 +1)
+ 20, ((wf = V)p, 20 — D),
which yields
1 _
((1f =Vp,p = 2n) < 5—lllwn = plI* = 20 = pI* + (1 = Bn — 007)
n
% (9n + lltn — T™un|? + ) (|Jun — pl|> + # + 1)]
20 = pll = 20 — P
=5 (lzn = pll +llza — pl)
On
_Tn 2
bl Tl ey g o (3.28)
200,
X (un = pl? + 5 +1)
Ty — 2
< 1= 2l g — pi -+ e~ )
+ e + Juy — Ty ||? -
g antentln Ty g o) pl 4 4 1),
On
By means of (3.11)) and (3.17)), i.e., limp, o0 ||@rn — 25| = 0 and limy, o0 ||un —T"uy|| = 0, and by condition
(iii), we can assume that ||z, — 2,|| = o(0n) and v, + ¢ + |Jun — T™uy||?> = o(0y). And since z,, — po as

n — oo, {xn}, {un} and {z,} are bounded, we conclude from that
(V=uf)pp—po) 20,  Vpe,
which together with Minty’s lemma (also see [4]) implies that
(V= nf)po,p—po) 20,  VpeQ

This shows that pg is a solution in Q to the variational inequality (3.26)). By using the uniqueness of
solutions in 2 of the variational inequality (3.26]), we obtain that py = p. This completes the proof. O



Y .-Q. Qiu, J.-Z. Chen, L.-C. Ceng, J. Nonlinear Sci. Appl. 9 (2016), 5175-5188 5187

Remark 3.2.

(1) In Theorem we consider the problem (N¥_; A;710)N (ﬂéleflo) NVI(C, A)NF(T), which is more

general than

ahu et al. [15] and Qiu et al. [11].

(2) In Theorem the strongly positive linear bounded operator is first put into the CQ algorithm, such
that C,, = {z € C : ||zn — 2||* < ||#n — 2||> +0,} holds, and 6, is different from that of other literatures,
e.g. [2, 13, 15].

(3) The strongly positive linear bounded operator technique is first used to approximate the fixed point
of asymptotically k-strict pseudocontractive mapping in the intermediate sense with sequence {7, }.

(4) The proof of Theorem is interesting, e.g., in and , by using two different techniques,
we transfer the nonconvex style into the convex style to complete it, respectively. In and
of the proof of Theorem the method is different from that of Nadezhkina and Takahashi [9] and
Qiu et al. [II]. The proof of Theorem is easier than that of Theorem 3.4 in [§] and Theorem 2.1
in [10], respectively, which need the implicit iteration.
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