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Abstract

A variational principle is established for a three-point boundary value problem. The stationary condition
includes not only the governing equation but also the natural boundary conditions. The paper reveals that
not every boundary condition adopts a variational formulation, and the existence and uniqueness of the
solutions of a three-point boundary value problem can be revealed by its variational formulation. c©2016
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1. Introduction

Two-point boundary value problems are widely studied and applied in various fields, while multiple-point
problems are relatively difficult to be solved either numerically or analytically. For example, a differential
equation describing a truss bridge requires multiple boundary conditions. An unsuitable boundary condition
might make the problem ill-posed, though the solution does exist, and this is the reason that existence of
solution was widely studied for three-point boundary problems [1, 10]. It becomes an important issue in
multiple point problems to incorporate a suitable boundary condition into the governing equations. In this
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paper, we study the following nonlinear three-point boundary value problems for a second-order ordinary
differential equation

y′′ + p(x)y′ + q(x)y + r(x)y2 + f(x) = 0, x ∈ [x1, x3], (1.1)

with the following general boundary conditions:

3∑
i=1

kiy(xi) +

3∑
i=1

hiy
′(xi) = α, (1.2)

3∑
i=1

miy(xi) +
3∑

i=1

niy
′(xi) = β, x2 ∈ [x1, x3], (1.3)

where p(x), q(x), f(x) and r(x) are known functions, ki, hi, mi, ni, α and β are constants. When r(x) = 0,
Eq. (1.1) is a linear one.

There are some effective approaches to three-point boundary value problems for a second-order ordinary
differential equation [2, 9, 11]. In this paper, a variational formulation is to be established via the semi-inverse
method [3, 4], and how to suitably incorporate boundary conditions will be discussed.

2. Variational formulation

In case p(x) = 0, without considering the boundary conditions, we have the following variational princi-
ple:

J(y) =

∫ b

a
{1

2
y′2 − 1

2
q(x)y2 − f(x)y − 1

3
r(x)y3}dx. (2.1)

In order to establish a variational formulation for Eq. (1.1) , according to the semi-inverse method [3],
we begin with the following trial-functional:

J(y) =

∫ b

a
{1

2
σ(x)y′2 + F (x, y)}dx,

where σ(x) is an unknown function of x to be further determined, and F is an unknown function of x and
y and/or derivatives of y. There are alternative approaches to construct the trial-functionals, illustrating
examples are available in the review article [5]. The semi-inverse method becomes an effective method for
establishment of variational formulation directly from governing equations [6–8].

The Euler-Lagrange equation of Eq. (2.1) reads

d

dx
[σ(x)y′]− ∂F

∂y
= 0,

or

σ(x)y′′ + σ′(x)y′ − ∂F

∂y
= 0. (2.2)

Eq. (1.1) can be equivalently written as

σ(x)y′′ + σ(x)p(x)y′ + σ(x)q(x)y + σ(x)r(x)y2 + σ(x)f(x) = 0. (2.3)

Comparison of Eq. (2.2) with Eq. (2.3) results in

σ′(x) = σ(x)p(x),

∂F

∂y
= −σ(x)q(x)y − σ(x)r(x)y2 − σ(x)f(x).
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We can identify σ(x) and F (y) as follows

σ(x) = exp{
∫
p(x)dx}, (2.4)

F (x, y) = −1

2
σ(x)q(x)y2 − 1

3
σ(x)r(x)y3 − σ(x)f(x)y.

We, therefore, obtain the following variational formulation for Eq. (1.1):

J(y) =

∫ b

a
{1

2
σ(x)y′2 − 1

2
σ(x)q(x)y2 − 1

3
σ(x)r(x)y3 − σ(x)f(x)y}dx, (2.5)

where σ(x) is called integral factor, and it is defined in Eq. (2.4).

3. Boundary conditions

In order to incorporate the boundary conditions into the variational formulation, we consider the case
r(x) = 0.

We write Eq. (2.5) in the form

J(y) =

∫ x2

x1

{1

2
σ(x)y′2 − 1

2
σ(x)q(x)y2 − σ(x)f(x)y}dx

+

∫ x3

x2

{1

2
σ(x)y′2 − 1

2
σ(x)q(x)y2 − σ(x)f(x)y}dx

+
3∑

i=1

Fi(y(x1), y(x2), y(x3), y
′(x1), y

′(x2), y
′(x3)),

(3.1)

where Fi(i = 1, 2, 3) are introduced to match the boundary conditions of Eq. (1.2) and Eq. (1.3). The
variation of Eq. (3.1) reads

δJ(y) =

∫ x2

x1

{σ(x)y′δy′ − σ(x)q(x)yδy − σ(x)f(x)δy}dx

+

∫ x3

x2

{σ(x)y′δy′ − σ(x)q(x)yδy − σ(x)f(x)δy}dx

+
3∑

i=1

δFi(y(x1), y(x2), y(x3), y
′(x1), y

′(x2), y
′(x3)),

or

δJ(y) =

∫ x2

x1

{σ(x)y′
d

dx
(δy)− σ(x)q(x)yδy − σ(x)f(x)δy}dx

+

∫ x3

x2

{σ(x)y′
d

dx
(δy)− σ(x)q(x)yδy − σ(x)f(x)δy}dx

+

3∑
i=1

δFi(y(x1), y(x2), y(x3), y
′(x1), y

′(x2), y
′(x3)).

Integration by parts results in

δJ(y) =

∫ x2

x1

{−δy d
dx

(σ(x)y′)− σ(x)q(x)yδy − σ(x)f(x)δy}dx

+

∫ x3

x2

{−δy d
dx

(σ(x)y′)− σ(x)q(x)yδy − σ(x)f(x)δy}dx
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+ {σ(x)y′δy}|x=x2
x=x1

+ {σ(x)y′δy}|x=x3
x=x2

+

3∑
i=1

δFi(y(x1), y(x2), y(x3), y
′(x1), y

′(x2), y
′(x3)).

By setting δJ(y) = 0 , we can obtain the following natural boundary conditions:
On x = x1:

δy(x1) : −σ(x1)y
′(x1) +

∂F1

∂y(x1)
+

∂F2

∂y(x1)
+

∂F3

∂y(x1)
= 0,

δy′(x1) :
∂F1

∂y′(x1)
+

∂F2

∂y′(x1)
+

∂F3

∂y′(x1)
= 0.

On x = x2:

δy(x2) :
∂F1

∂y(x2)
+

∂F2

∂y(x2)
+

∂F3

∂y(x2)
= 0, (3.2)

δy′(x2) :
∂F1

∂y′(x2)
+

∂F2

∂y′(x2)
+

∂F3

∂y′(x2)
= 0. (3.3)

On x = x3:

δy(x3) : σ(x3)y
′(x3) +

∂F1

∂y(x3)
+

∂F2

∂y(x3)
+

∂F3

∂y(x3)
= 0,

δy′(x3) :
∂F1

∂y′(x3)
+

∂F2

∂y′(x3)
+

∂F3

∂y′(x3)
= 0. (3.4)

Incorporating the boundary conditions, Eqs. (1.2) and (1.3), we have

∂F1

∂y(x1)
+

∂F2

∂y(x1)
+

∂F3

∂y(x1)
= σ(x1)y

′(x1) =
σ(x1)

h1
[α−

3∑
i=1

kiy(xi)−
3∑

i=2

hiy
′(xi)], (3.5)

∂F1

∂y(x3)
+

∂F2

∂y(x3)
+

∂F3

∂y(x3)
= −σ(x3)y

′(x3) = −σ(x3)

n3
[β −

3∑
i=1

miy(xi) +
2∑

i=1

niy
′(xi)]. (3.6)

The integrability condition for identification of Fi(i = 1, 2, 3) requires

∂

∂y(xi)

∂Fk

∂y(xj)
=

∂

∂y(xj)

∂Fk

∂y(xi)
, (3.7)

∂

∂y′(xi)

∂Fk

∂y′(xj)
=

∂

∂y′(xj)

∂Fk

∂y′(xi)
, (3.8)

∂

∂y(xi)

∂Fk

∂y′(xj)
=

∂

∂y′(xj)

∂Fk

∂y(xi)
, (3.9)

where i, j, k = 1, 2, 3. For example, for j = 1, i = 3 and k = 1, from Eq. (3.7), it requires that

−σ(x1)k3
h1

=
σ(x3)m1

n3
.

To show the identification of Fi(i = 1, 2, 3), we consider a simple case of the boundary conditions:

y′(x1) = α1,

y′(x3) + λy′(x2) = β1. (3.10)

Setting
∂F2

∂y(x1)
=

∂F3

∂y(x1)
= 0,

in Eq. (3.5), F1 can be identified, which reads
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F1 = σ(x1)α1y(x1).

By setting
∂F1

∂y(x3)
=

∂F2

∂y(x3)
= 0,

∂F1

∂y′(x3)
=

∂F2

∂y′(x3)
= 0,

in Eq. (3.6) and Eq. (3.4), respectively, and by using the boundary condition, Eq. (3.10), we have

∂F3

∂y(x3)
= −σ(x3)y

′(x3) = −σ(x3)[β1 − λy′(x2)].

We, therefore, can identify F3 as follows

F3 = −σ(x3)[β1 − λy′(x2)]y(x3).

From Eqs.(3.2) and (3.3), and using the above identified results, we have

∂F2

∂y(x2)
= 0,

∂F2

∂y′(x2)
= − ∂F3

∂y′(x2)
= −σ(x3)λy(x3).

We, therefore, identify F2 as follows

F2 = −σ(x3)λy(x3)y
′(x2).

The variational formulation reads

J(y) =

∫ x2

x1

{1

2
σ(x)y′2 − 1

2
σ(x)q(x)y2 − σ(x)f(x)y}dx

+ σ(x1)α1y(x1)− σ(x3)λy(x3)y
′(x2)− σ(x3)[β1 − λy′(x2)]y(x3).

4. Discussion and conclusions

The integral factor, σ(x), defined in Eq. (2.4), is of great importance, it affects the boundary conditions
of the three-point boundary value problem. The identification of integral boundary in the variational
formulation requires the integrability conditions, that is given in Eqs. (3.7)-(3.9). A variational formulation
reveals the existence and uniqueness of the solutions of a three-point boundary value problem, and it also
suggests some suitable boundary conditions for a practical problem. The present theory can be easily
extended to multiple point boundary value problems.
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