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Abstract

New Hermite-Hadamard-type integral inequalities for ¢-MT-preinvex functions are obtained. Our results
in special cases yield some of those results proved in recent articles concerning with the differentiable MT-
convex functions. Some applications to special means and the trapezoidal formula are also considered,
respectively. (©2016 All rights reserved.
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1. Introduction and preliminaries

Let f: I C R — R be a convex function defined on the interval I of real numbers and a,b € I with
a < b. The following inequality

1(252) ok [ e s L2510

referred to as Hermite-Hadamard inequality, is one of the most famous results for convex functions.
Over the last decade, this has been extended in diverse approaches. Some recent results on general-
izations, refinements and new inequalities are involved with the Hermite-Hadamard inequality, please see

[2, 4[5, 9 111, 24], 25] and the references therein.

Let us recall some necessary definitions and preliminary results which are used for further discussion.
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Definition 1.1 ([I]). A set K C R" is said to be invex with respect to the mapping 7 : K x K — R", if
x+tn(y,z) € K for every z,y € K and t € [0, 1].

Notice that every convex set is invex with respect to the mapping n(y,x) = y — x, but the converse is
not necessarily true. For more details please refer to [I} [32].

Definition 1.2 ([17]). Let z € K C R™ and let ¢ : K — R be a continuous function. Then the set K is
said to be ¢-convex at x with respect to ¢, if

T+ ?(y—z) e K, Vr,y e K, A€ [0,1].

For every =,y € K, ¢®(y — x) = y — x, if and only if ¢ = 0 and consequently ¢-convexity reduces to
convexity. It is true that every convex set is also a ¢-convex, but the converse is not necessarily true.

Definition 1.3 ([I6]). The set Ky, C R" is said to be ¢-invex at u with respect to ¢(-), if there exists
¢(-) : K — R and a bifunction 7(-,-) : Kg, x K4, — R", such that

u+ ten(v,u) € Kgp, Yu,ve Kg,, tel0,1].

The ¢-invex set Ky, is also described as ¢n-connected set. Note that the convex set with ¢ = 0 and
n(v,u) =v —u is a ¢-invex set, but the converse is not true (see [16]).

Definition 1.4 ([23]). The function f defined on the invex set K C R" is said to be preinvex with respect
to n, if for every z,y € K and t € [0, 1] we have that

flz+tn(y,x)) < (1 —t)f(z) +tf(y).

The concept of preinvexity is more general than convexity, since every convex function is preinvex with
respect to the mapping n(z,y) = y — x. Further, there exist preinvex functions which are not convex.

Definition 1.5 ([15]). The function f on the ¢-convex set K is said to be ¢-convex with respect to ¢, if
fla+Ae(y—a)) < (1= Nf(x)+Af(y), Yo,y K, A€ 0,1].
The function f is said to be ¢-concave, if and only if —f is ¢-convex.
In [29] (see also [2§]), Tung and Yidirim defined the notion of MT-convex as follows.

Definition 1.6. A function f: I C R — R is said to belong to the class of MT(I), if it is nonnegative and
satisfies the following inequality

Vi 1—t
tr+ (1 —1¢ < —f(z) +
ftz+ (1 -t)y) N AR,
for all z,y € I and ¢t € (0,1). For some interesting and significant integral inequalities concerning with
the MT-convex functions, one can see in the recent papers [14] 21, 27H29]. Tt can be easily observed that

convexity means just Jensen-convex when t = %

f()

In [18], Ozdemir et al. established inequalities for twice differentiable m-convex functions which are
connected with Hermite-Hadamard inequality, and they used the following lemma to prove their results.

Lemma 1.7. Let f : I C R — R be a twice differentiable function on I°, a,b € I with a < b and f" € L|a,b).
Then, the following equality holds:

a b —a)? !
f( );’f(b)bia/a f(aj‘)dl’:(b 5 ) /Ot(lt)f”(ta+(1t)b)dt,
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Note that under the conditions of Lemma, let t =1 — u, then dt = —du and we also have

a b —a)* [!
fel - I _bia/a f(z)dz = b-2) /0 u(l —w)f" (ub + (1 - u)a)du.

2 2

Currently, integral inequalities concerning with different kinds of convex functions remain attractive
topics for many scholars in the field of convex analysis. For further information on the topic, the reader
may refer to [3], 6H8, [10], 12] 13 22], 26, 30} 31] and plenty of references cited therein.

The aim of this article is to establish new Hermite-Hadamard-type inequalities that are associated
with the right-side of Hermite-Hadamard inequality for twice differentiable ¢-MT-preinvex functions which
generalize those results provided for twice differentiable MT-convex functions presented in [20].

2. Main results

As one can see, the definitions of the ¢-convex, preinvex, and MT-convex functions have similar forms.
This observation leads us to generalize these varieties of convexity. Firstly, the so-called ‘¢p-MT-convex’,
may be introduced as follows.

Definition 2.1. The function f defined on the ¢-convex set K4 C R" is said to be ¢-MT-convex, if it is
nonnegative and for all x,y € K4 and t € (0,1) satisfies the following inequality

V1=t Vit
N AN

The concept of the ¢-MT-convex function may be further generalized as in the definition below.

fla+te®(y—a)) < f).

Definition 2.2. The function f defined on the ¢-invex set Ky, C R" is said to be ¢-MT-preinvex, if it is
nonnegative and for all z,y € Ky, and t € (0,1) satisfies the following inequality

; V1=t Vit
fla+ten(y,z)) < 2¢if@%+zﬁf?ﬂw-

To derive main results in this section, we prove the following lemma.

Lemma 2.3. Let K4, C R be a ¢-invex subset with respect to ¢(-) and 1 : K¢y X K¢y CR, a,b € Ky, with
a < aten(b,a) and0 < ¢ < 5. If f : Ky — R is a twice differentiable function and f” € Lla, a+e"*n(b, a)]
we have that

a i a+e*?n(b,a)
f(a)+ f(a+e“n(b,a)) 1 )/+ n(b F()dz

9 o ei¢n(b,a
e T
2 0

Proof. Set
J— [677(2’“)]/0 t(1—t)f" (a+ten(b,a))dt.

Since a,b € Ky, and Ky, is ¢-invex subset with respect to ¢ and 7, for every t € [0,1], we have
a+ te'®n(b,a) € K4,. By integrating by part, it yields that

(b, a2 _ . 1 - ;
J:[ n(b, a)] [t(l t) f/(a+tez¢n(b,a))‘;+/0 2t1f’(a+tez¢n(b,a))dt}

2 ewn(b, a) eid)f](b, a)
_ [en(b, a))? 2t — 1 st (b 2 1 sty o
=IO o @ | s [ e ety
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Let 2 = a + te'n(b, a), then dz = '®n(b, a) dt and we have

_ [eid)n(ba a)]2 f(a) + f(a + 6i¢?7(b, a)) 2 a-‘rewn(b a)
J = 2 [ei®n(b, a)]2 - 90, a>]3/ f(x)dz
fla) + f(a + € (b, a)) 1 atei®n(b,a)
= 2 B €in(b, a) /a f(x)dz,
which is required. .

Remark 2.4. By applying Lemma with ¢ = 0 and 7(b,a) = b — a, we can obtain [I8, Lemma 1] which
may be discovered also in [19)].

With the help of Lemma[2.3] let us begin with the following result involving differentiable ¢-MT-preinvex
function.

Theorem 2.5. Let Ay, € Rg be an open ¢-invex subset with respect to ¢(-) and n : Ag, x Ag, — Ry,
a,b € Ay, witha < a+en(b,a) and 0 < ¢ < 5. Suppose that f : Agy — Rq is a twice differentiable function
and f" € Lla,a+ €n(b,a)]. If |f"| is ¢-MT-preinvez on Ay, and |f"(x)| < M, z € [a,a+ €n(b,a)], then
the following inequality holds:

_ Mrlen(b,a))
- 32 '

2 en(b,a

fla)+ f(a+en(b,a)) 1 ateitn(b.a)
‘ b,a) /a f(z)dz

Proof. Since a + te'?n(b,a) € Ag,, by using Lemma and ¢-MT-preinvex of |f”|, we can obtain that

fla)+ f(a+e“n(b,a)) 1 a+e'®n(b,a)
‘ 2 - eiqﬁn(b’ a) /a f(ﬁ)d$

PRI a2 .
< ["7(26)]/0 t(1—t)|f" (a+ ten(b,a))|dt

en(b,a))* (!
SW/O t(l_o{gw )|+ Nf%lf”@l]dt

gM[e%(b’a)]z/ol [ti(l—t)wr t2(1—1)2 }dt

1
_ Mre?n(b, a))?
32 ’

where Euler Beta function is defined by

e “1,,_ D(@)(y)
ﬂ(:c,y)—/o t*7 11 — )Y 1dt_m, Y,y > 0.

The proof is completed. O

Corollary 2.6. Under the conditions of Theorem 5, if =0 and n(b,a) = b — a, then

fla +f Mr(b—a)?
‘ —a/f ’ 32 '

This is the result given in [20, Theorem 2.1].
Next, by utilizing Lemma [2.3] again, we prove the following result.

Theorem 2.7. Let Ay, C Rg be an open ¢-inver subset with respect to ¢(-) and n : Agy x Agy — Ro,
a,b € Ay, with a < a + en(b,a) and 0 < ¢ < 5. Suppose that f : Ay, — R is a twice differentiable
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function and f" € Lla,a + en(b,a)]. If |f"|9 is ¢-MT-preinver on Ag,, ¢ > 1, pt+¢1 =1 and
|f"(x)] < M, x € [a,a + e*n(b,a)], then we have:

f st etiba) b [T

_ | < Mlen(b,a)? (7
2 e®n(b, a -

q 1
- P 1 1).
Wl (2) s+ 1)

Proof. Since a + te'*n(b,a) € Agy, by applying Lemma and the Holder’s inequality, it follows that

fla) + f(a+e“n(b,a)) 1 ateirn(ba)
‘ 2 ~ eitn(b, a) /a f(z)dz

et a)? ! i
< [77(26)]/0 t(1—1) f”(a+te“¢’n(b,a))‘dt

] oo |

Since |f”]9 is ¢-MT-preinvex function on Ay, and |f”(z)| < M, we have that

/

f"(a+ te'n (b, a)) ‘th} E.

2Vt 21—t
1@+ 17" @)
M1,

Pa+ienta)ar < [ [t @+ o]

[E—

TN

<
Therefore, we have

it 2 i
SW@) Br(p+1,p+1),

f(a) + f(a+e“n(b,a)) 1 atetn(b.a)
‘ 2 " ebn(b,a) /a f(z)dx

where % + % = 1. Hence the theorem is proved. O

Corollary 2.8. Under the conditions of Theorem if =0 and n(b,a) = b— a, then

a2 7\ 1
<O (3) B+ 1p+ 1),

'f(a)_g‘_f(b) N bia/abf(m)dx

This is the result given in [20, Theorem 2.2].
A different approach leads us to the following result.

Theorem 2.9. Suppose that all the assumptions of Theorem[2.7] are satisfied. Then the following inequality
holds:

= M[ewg(b’ = [(p n 1)1(p T 2)] % (D g

Proof. Since a + te'n(b,a) € Agy, by using Lemma and properties of modulus, it yields that

fla) + f(a+e“n(b,a)) 1 a+e¥n(b,a)
2 ~ eidn(b, a) /a f(x)dx

fla) + f(a + ei‘z’n(b, a)) 1 a+e*?n(b,a)
‘ 2 - €i¢?7(b, a) /a f(a:)dm

i a2 !
S[n(;’)]/o t(l—t)

1" (a + te*n(b,a)) ‘dt.
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Now, if we use the following weighted version of Holder’s inequality

‘/If(S)Q(S)h < (/\f )[Ph(s) ) </|g )|7h(s) ) ’ (2.2)

for p > 1, p~' 4+ ¢! = 1, h is nonnegative on I and provided all the other integrals exist and are finite. If
we rewrite the (2.1)) regarding (2.2) with |f”|? is a ¢-MT-preinvex function on Ay, for some fixed ¢ > 1 and
|f"(z)| < M, then we have

1

f(a) + f(a + €i¢)7](b7 a,)) 1 a+e®n(b,a)
‘ ba) /a f(x)dz

2 ~ en(ba
< R [0 ) (a1, a)
2 0
< [e¥n (b, )] [/1(1 - t)ptdt] ’ [ 1 "(a+ te"n(b, a))‘qtdt} !
2 0
w”b a) [ 1—tptdt]

x {/0 L@+ >q}dt};
_ [e#n(b,a)? < 1 )i
2 (p+1)(p+2) )

A3 [ [Fa-obir@e s da - e

: M{6i¢g(b, = [(p + 1)1(p + 2)} % (D %’

where l + l = 1, which completes the proof. O

l\:)\»—‘

Corollary 2.10. Under the conditions of Theorem 9, if =0 and n(b,a) = b — a, then

‘f S —a/f ) = = a>2[(ﬁ+1)1(p+2)r<1>;'

By using a similar way of Theorem we can prove the following theorem.

Theorem 2.11. Suppose that all the assumptions of Theorem[2.7) are satisfied. Then the following inequality
holds:

f(a)+ f(a+e“n(b,a)) 1 ate’n(ba) M [e"n(b, a)]2 1 \; 171
‘ 2 - e'®n(b, a) / f(li)dgg‘ = 21+§ (1 —I—p) B (5

)
q 5)

Proof. Since a + te'*n(b,a) € Agy, by using Lemma and the Holder’s inequality, it follows that

f(a)+ f(a+e?n(b,a) 1 a+ein(b,a)
et a2 ol
< M(Qb)] /0 H1—1)

cEnon( o) [ o

f"(a+ ten (b, a)) ‘dt

f"(a+ te'n (b, a)) ‘th] ’
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Since |f”]? is a ¢-MT-preinvex function on Ay, for some fixed ¢ > 1 and |f”(x)| < M, we have that

1 , a 1 Vi
— 1" (q e“i’ a _ " a4 "
/0<1 07 (a + tein (o, ))1dtg/0<1 t)‘I[VN @I+ g )]

_ Blga+ D@+ B, + I B
2

1

1
< MIB(5,q+ 3)-

Therefore, we deduce that

f(a)+ f(a+e®n(b,a)) 1 a+e?n(b,a)
‘ 2 o €i¢77(b, CL) / f(x)dx

where % + % = 1, which completes the proof. O
Corollary 2.12. Under the conditions of Theorem if =10 and n(b,a) = b — a, then

fla +f (b—a)2 1 111 1
‘ —a/ f(x ‘ NS (1+p) 5‘7(5&4‘5)-

This is the result given in [20, Theorem 2.3].
Theorem 2.13. Under the conditions of Theorem [2.7], we have

f(a) + f(a + €i¢n(b, a)) 1 a+et®n(b,a)
’ 2 - o1 (b, a) / f(z)dx

M (o) )T(1>;[F(p+%)r(q+3) F(p+§)r(q+5)];

- 2 2q—p—1 2 I'p+q+2) I'p+q+2)
Proof. By using Lemma [1.7] and the Holder’s inequality for ¢ > 1, it follows that
ip b a+e'®n(b,a)
f(a) +f(a+e n(,a))_ | 1 / f()dz
2 e'®n(b,a)

i a2 ot .
< ["(Zb)]/o t(1—t) f"(a—i—tewn(b,a))’dt

On the other hand, since |f”|? is a ¢-MT-preinvex function on Ay, and |f”(z)| < M, we know that

[ (a+ te'n(b, a)) ‘th] ’

ool ioan]la< [Lea- g2 tar + irora
(Do) 1 )roe )
:2{ T(p+q+2) Tp+q+2) ]

Therefore, we have

f(a) + f(a+€e“n(b,a)) 1 a+e'¥n(b,a)
’ 2 " (b, a) / f(x)dz

q—1

_ Mle“n(b.a)? (g1
- 2 2qg —p—

Xr(w Jr(ovs) Tl )F( %)]é

I'(p+q+2) I'(p+q+2)
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where % + % = 1, which is required. O

Corollary 2.14. Under the conditions of Theorem if $ =0 and n(b,a) = b — a, then

flay+fo) 1
5 _b—a/a f(z)dz

2 =1 1
< M —a) g—1 a (1)5
- 2 2g—p—1 2

) e

L'(p+q+2) I'(p+q+2)

Theorem 2.15. Let Ay, C Ro be an open ¢-invex subset with respect to ¢(-) and n : Ay, x Agy — Ry,
a,b € Ay, with a < a + en(b,a) and 0 < ¢ < 5. Suppose that f : Agy, — Ro is a twice differentiable
function and f" € Lla,a + €¥n(b,a)]. If |f"|7 is ¢-MT-preinvex on Ag, with ¢ > 1 and |f"(z)] < M,

x € [a,a + e'®n(b,a)], then we have
_ M0 (1Y ()
- 2 6 16

Proof. Since a + te'*n(b,a) € Agy, from Lemma and by using the Holder’s inequality, we have that

fla) + f(a + en(b, a)) 1 a+e'n(b,a)
‘ 2 ~ ein(b, a) /a f(z)d

fla)+ f(a+e®n(b,a)) 1 atei®n(ba)
’ 2 o €i¢?7(b, a) /a f(x)dx

ei¢ a 2 1 .
0L [ )0+ 16, )

0
< [6%(2[)’ Ik [/Ol(t - tz)dt]lé {/Ol(t — )| " (a + ten(b, a))\th] %.

Since |f"] is a ¢p-MT-preinvex function on Ay, and |f”(x)| < M, we have

! " ; ! t(l_t) 1—t " t(l_t)\/7E ]
— a+ te' a —_ a)l? + ———L=— K
| =) s tempafrar < [ [ QU e ol <b>r]dt
wM1

- 16

Therefore, we obtain

L) )

which is required. O

f(a) + f((l + €i¢77(b, a)) 1 a+e'®n(b,a)
‘ 2 - €i¢77(b, a) /a f(I)dx

Corollary 2.16. Under the conditions of Theorem if =10 and n(b,a) = b —a, then

‘f(a)-gf(b) _ bia/abf(x)dx < W(é)l_é <17;>§_

This is the result given in [20, Theorem 2.4]. We continue with the following result.

Theorem 2.17. Suppose that all the assumptions of Theorem [2.15| are satisfied. Then the following in-
equality holds:

i a+e'®n(b,a)
f(a) + fla+e?n(b,a)) 1 )/+ " f(z)dz| <

B M [n(b, a)]” [F(qu )T (g + 3)]3
2 e'n(b, a '

2 I'(2qg + 2)
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Proof. Since a + te®n(b, a) € Ay, from Lemma [2.3| and by using the Holder’s inequality, we have that
én
Pn(p 1 a+e'®n(b,a)
2 e“n(b,a) Ja

ei‘z’ a 2 1 .
§[7ﬁ%ﬂ‘éd—ﬁﬂﬂw+“”“hwmﬂ

W(/Ol 1dt> = [/Ol(t — %)) " (a + te"n(b,a)) \th} %.

Since | f"]? is a ¢p-MT-preinvex function on Ay, and |f”| < M, it yields that

1 ) 1 /1 —
| =) et fae < [ - gfft
1

1
:2J€ (1972 (1= 1) 2 £ (@)|7 + 1773 (1= )27 (b))

IN

(@) +

(B at

1 13 3 .1
M4 _ — — —
<M [ﬁ(q+2,q+2)+ﬁ(q+2,q+2)]

M (g + 3)T(q + 3)
I'(2¢+2)

Therefore, we have
f@) + fla+enba) 1 /“*ew’?(b’“) Fa)da| < M [ei®n(b,a)]* [T(g+ (g + )]
2 en(b,a) J, - 2 '(2q +2)

which is required. O

)

Corollary 2.18. Under the conditions of Theorem if =10 and n(b,a) = b — a, then

fl@+f) 1 ° M(b—a)? [T(g+ HT(q+ 2)]a
2 _ba/af(x)dx‘S 2 [ F(22q+2) 2] ’

Finally we prove the following result.

Theorem 2.19. Suppose that all the assumptions of Theorem [2.15| are satisfied, then we have:
by (b a+e'®n(b,a) MlePn(b 2 11

fla)+ fla+enba) 1 / F)de] < [e9n(b,a)] <1> q55<§,q+}>.

2 e*n(b,a) J, 2 2 2 2

Proof. By using Lemma [2.3] and well-known power-mean inequality, it follows that

fla)+ f(a + €n(b, a)) 1 a+e®n(b,a)
’ 2 o ez’q&,’?(b’ a) /a f(:l?)dl‘
< /0 t(1—1)

- 2

< [ei%(zb’ o)l </01tdt>1—; [/Olt(l — 1)1

Since | f”|? is ¢-MT-preinvex on Ag, and |f”(z)| < M, we have

[ (a+ ten(b, a)) }dt

f"(a+ te'n(b, a)) ‘th] E.

1 ) q 1 1—1¢ Vi
— | (q eng a Y "(a)|2 "1\ g
[ =il eenma|ar< [Can-ar L@+ Sl rop)a
B+ DU+ A+ DO
2

3 1
quﬁ<§,q+§).
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Therefore, we deduce that

A (1 ).

= 2 3973

i a+et®n(b,a)
‘f(a)+f(a+e n(ba) 1 /+ n(b )z ’

2 e®n(b, a)

where % + % = 1, which completes the proof. O
Corollary 2.20. Under the conditions of Theorem if =0 and n(b,a) = b — a, then

JO 0 L[ ] < MO () (L)

2
This is the result given in [20, Theorem 2.5].

3. Applications to special means

We consider the means for arbitrary positive numbers a,b (a # b) as below:
(1) The arithmetic mean: A = A(a,b) = ;a,b e R;
(2) The logarithmic mean: L(a,b) = Wﬁl\al; la| # [b],ab # 0,a,b € R;

(3) The generalized logarithmic mean:

3=

bn+1 _anJrl
} in € Z\{—1,0},a,b € R,a #b.

Lt = [ am T

Now by using the results of Section [2, we give some applications to special means of real numbers.

Proposition 3.1. Let a,b € R, 0 <a <b andn € Z, |n| > 2. Then, for all ¢ > 1

A B — (e, p)] < M= (1)1_; (%) d

2 6 16
w oy o M(b—a)? [T(a+ H(a+3)]7
A7) - Lya] < SO0 TEE DT

and
M(b—a)?1\1-% 13 1
n oy _ rn <2\ " (2 q e -).
A8 - I b < =2 (5) T8 (G )
Proof. The assertion follows from Corollaries 2.16 [2.18 and [2.20| for f(z) = 2", x e R, n € Z, |n| > 2. O

Proposition 3.2. Leta,b € R, 0 < a <b. Then, for all g > 1

|A(a',b71) — L7 (a,b)| < M(b; af <é> o <17r6> %,

M(b — a)? [F(q +Hr(q + g)] ‘
2 I'(2q +2) ’

[A(a’,671) = L7 (a,b)] <

and

|A(a*,b71) — L7 (a,b)| < W(;)l_5q< a4+ ;)

Proof. The assertion follows from Corollaries [2.16} [2.18 and [2.20} for f(z) = % O
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4. Some error estimates for the Trapezoidal formula

Let d be a division a = zp < 1 < -+- < p—1 < &, = b of the interval [a, b] and consider the quadrature
formula

/ f(x)de = T(f,d) + E(f.d), (4.1)

where

i+l — SCz)

n—1
D=3 f () +2f($i+1) (@

for the trapezoidal version and E(f,d) stands for the associated approximation error.

Proposition 4.1. Let f: I CR — R be a twice differentiable function on I° such that " € Li[a,b], where
a,b € I with a < b and |f"|9 is MT-convex on [a,b], where p > 1,p~ ! + ¢~ = 1. Then in [&.1)), for every
division d of [a,b] and |f"(x)] < M, = € [a,b], the trapezoidal error estimate satisfies

1

1 n—
M (7«
Bl <G (5) B0+ 10+ )Y i - )
=0
Proof. By applying Corollary [2.8|to the subinterval [x;, z;11] (¢ =0,1,2,--- ,n — 1) of the division, we have

that
‘f(%’) —flziy) 1 /w”l F(z)da

2 Tiy1 — T

1

M/ n—1
< (§>qﬂ (p+1Lp+1) sz—i—l_xz
=0

2
Hence in (4.1)), we deduce that

n—1

/ Fa)de — T(f,d ' Z { /:m+1 Qe f () +2f(Ii+1) (i1 — 95@)}‘
n—1 Tit1 ) )
S 3 /xl f(.l‘)d.% - f(xz) +2f(xz+1) ($i+1 _ l’z)
1 n—1
< Aj(g)qﬁ P+ Lp+1)) (i1 — i),
=0
which completes the proof. O

Proposition 4.2. Let f: I CR — R be a twice differentiable function on I° such that f"” € Ly[a,b], where
a,b € I with a < b and |f"|? is MT-convex on |a,b], where ¢ > 1. Then in (4.1), for every division d of
[a,b] and |f"(z)| < M, x € [a,b], the trapezoidal error estimate satisfies

<2 (1) () :0$+

Proof. The proof is similar to that of Proposition [£.I] and by using Corollary O

Q=

Proposition 4.3. Let f: I CR — R be a twice differentiable function on I° such that f" € Li[a,b], where
a,b € T with a < b and |f"|? is MT-convex on |a,b], where ¢ > 1. Then in (4.1)), for every division d of
[a,b] and |f"(z)| < M, x € [a,b], the trapezoidal error estimate satisfies

\E(f,d)| < M [T(q+5)T(q + 3)};71221(%“

2 I'(2q +2) v

Proof. The proof is similar to that of Proposition [4.1] and by using Corollary O
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