Common best proximity results for multivalued proximal contractions in metric space with applications

Nawab Hussaina,\ast, Abdul Rahim Khanb, Iram Iqbalc

aDepartment of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
bDepartment of Mathematics and Statistics, King Fahd University of Petroleum and Minerals Dhahran, Saudi Arabia.
cDepartment of Mathematics, University of Sargodha, Sargodha, Pakistan.

Communicated by Z. Kadelburg

Abstract

The study of the best proximity points is an interesting topic of optimization theory. We introduce the notion of α_\ast-proximal contractions for multivalued mappings on a complete metric space and establish the existence of common best proximity point for these mappings in the context of multivalued and single-valued mappings. As an application, we derive some best proximity point and fixed point results for multivalued and single-valued mappings on partially ordered metric spaces. Our results generalize and extend many known results in the literature. Some examples are provided to illustrate the results obtained herein. ©2016 All rights reserved.

Keywords: α_\ast-proximal admissible mapping, common best proximity point, multivalued mapping.

1. Introduction and preliminaries

Fixed point theory concerns with some techniques to find a solution of the pattern $T \mathbf{x} = \mathbf{x}$, where T is a self-mapping defined on a subset A of a metric space (X, d). A well-known principle that guarantees a unique fixed point solution is the Banach contraction principle \cite{9}. Over the years, this principle has been generalized
in many ways (see \[5, 7, 15, 28, 29\]). An interesting generalization of the Banach contraction principle is for multivalued mappings and is known as Nadler’s fixed point theorem \[24\]. In 1982, Sessa \[31\] defined the concept of weakly commuting mappings to obtain common fixed point for pair of such mappings. Jungek generalized this idea, first to compatible mappings \[18\] and then to weakly compatible mappings \[19\]. A mapping \(T : A \rightarrow B \) does not necessarily have a fixed point, where \(A \) and \(B \) are nonempty subsets of a metric space \(X \). One can proceed to find an element \(x \in A \) in the sense that the distance \(d(x, Tx) \) is minimum. Fan’s best approximation theorem \[13\] asserts that if \(K \) is a nonempty, compact, and convex subset of a normed space \(X \) and \(T : K \rightarrow X \) is a continuous mapping, then there exists an element \(x \) satisfying the condition \(d(x, Tx) = \inf \{d(y, Tx) : y \in K\} \). A best approximation theorem guarantees the existence of an approximate solution, while a best proximity point theorem provides an approximate solution which is optimal in the sense that there exists an element \(x \) such that \(d(x, Tx) = \inf \{d(x, y) : x \in A \text{ and } y \in B\} \); the element \(x \) is called a best proximity point of \(T \). Moreover, if the mapping under consideration is a self-mapping, then a best proximity point is reduced to a fixed point. The existence of best proximity points is an interesting aspect of optimization theory and it has attracted the attention of many authors (see \[11, 16, 18, 15, 16, 20, 22\] and references therein). Moreover, the best proximity point theorems for several classes of multivalued mappings have been proved in \[11, 14, 30\].

For non-empty subsets \(A \) and \(B \) of the metric space \(X \), the following notions will be used:

\[
\text{dist}(A, B) = \inf \{d(a, b) : a \in A, b \in B\}, \quad D(x, B) = \inf \{d(x, b) : b \in B\},
\]

\[
A_0 = \{a \in A : d(a, b) = \text{dist}(A, B) \text{ for some } b \in B\},
\]

\[
B_0 = \{b \in B : d(a, b) = \text{dist}(A, B) \text{ for some } a \in A\},
\]

\(2^X\) is the set of all nonempty subsets of \(X \), \(CL(X)\) is the set of all nonempty closed subsets of \(X \), \(K(X)\) is the set of all compact subsets of \(X \) for every \(A, B \in CL(X) \), \(H(A, B) = \max \{\sup_{x \in A} D(x, B), \sup_{y \in B} D(y, A)\} \) if the maximum exists and \(H(A, B) = 0 \) otherwise, and let \(\Psi \) be the collection of all non-decreasing functions \(\psi : [0, +\infty) \rightarrow [0, +\infty) \) such that \(\sum_{n=1}^{\infty} \psi^n(t) < +\infty \) for each \(t > 0 \), where \(\psi^n \) is the \(n \)th iterate of \(\psi \).

We present now the necessary definitions and results which will be useful in the sequel.

Definition 1.1. (\[23\].) Let \(A \) and \(B \) be nonempty subsets of a metric space \((X, d) \). A point \(x \) is called a common best proximity point of mappings \(T_i : A \rightarrow B, (i = 1, 2, ..., n) \) if

\[
D(x, T_i x) = \text{dist}(A, B).
\]

Lemma 1.2. (\[5\].) Let \((X, d) \) be a metric space and \(B \in CL(X) \). Then for each \(x \in X \) with \(d(x, B) > 0 \) and \(q > 1 \), there exists an element \(b \in B \) such that

\[
d(x, b) < qd(x, B).
\]

Definition 1.3. (\[6\].) Let \((A, B) \) be a pair of nonempty subsets of a metric space \((X, d) \) with \(A_0 \neq \emptyset \). Then the pair \((A, B) \) is said to have the weak \(P \)-property if and only if for any \(x_1, x_2 \in A \) and \(y_1, y_2 \in B \),

\[
\begin{align*}
\left\{ \begin{array}{l}
\quad d(x_1, y_1) = \text{dist}(A, B) \\
\quad d(x_2, y_2) = \text{dist}(A, B)
\end{array} \right\} \quad \Rightarrow \quad d(x_1, x_2) \leq d(y_1, y_2).
\end{align*}
\]

Definition 1.4. (\[6\].) Let \(A \) and \(B \) be two nonempty subsets of a metric space \((X, d) \). A mapping \(T : A \rightarrow 2^B \setminus \emptyset \) is called \(\alpha \)-proximal admissible if there exists a mapping \(\alpha : A \times A \rightarrow [0, \infty) \) such that

\[
\begin{align*}
\left\{ \begin{array}{l}
\quad \alpha(x_1, x_2) \geq 1 \\
\quad d(u_1, y_1) = \text{dist}(A, B) \\
\quad d(u_2, y_2) = \text{dist}(A, B)
\end{array} \right\} \quad \Rightarrow \quad \alpha(u_1, u_2) \geq 1,
\end{align*}
\]

where \(x_1, x_2, u_1, u_2 \in A, y_1 \in Tx_1 \) and \(y_2 \in Ty_2 \).
Definition 1.5 (6). Let \(A \) and \(B \) be two nonempty subsets of a metric space \((X, d)\). A mapping \(T : A \to CL(B) \) is said to be an \(\alpha-\psi \)-proximal contraction, if there exist \(\psi \in \Psi \) and \(\alpha : A \times A \to [0, \infty) \) such that

\[
\alpha(x, y)H(Tx, Ty) \leq \psi(d(x, y)), \quad \forall x, y \in A. \tag{1.1}
\]

In this paper, we generalize the above mentioned notions for a pair of multivalued and single-valued mappings and define \(\alpha_\ast \)-proximal admissible with respect to \(\eta : A \times A \to [0, \infty) \), \(\alpha \)-proximal admissible with respect to \(\eta : A \times A \to [0, \infty) \) and prove common best proximity point theorems as well as fixed point theorems for these mappings. Our results generalize and improve the results of Ali et al. [6], Jungck ([18], [19]), Samet et al. [29], and Hussain et al. [17].

2. Common best proximity points for multivalued mappings

We begin this section with a definition.

Definition 2.1. Let \(A \) and \(B \) be nonempty subsets of a metric space \((X, d)\) and \(\mathcal{T}_1, \mathcal{T}_2 : A \to 2^B \setminus \emptyset \) be multivalued mappings. The pair \((\mathcal{T}_1, \mathcal{T}_2)\) is \(\alpha_\ast \)-proximal admissible with respect to \(\eta \) if there exist \(\alpha, \eta : A \times A \to [0, \infty) \) such that for \(z_1, z_2, u_1, u_2 \in A \),

\[
\begin{align*}
\alpha(z_1, z_2) &\geq \eta(z_1, z_2) \\
d(u_1, y_1) &\leq \text{dist}(A, B) \\
d(u_2, y_2) &\leq \text{dist}(A, B)
\end{align*}
\]

for all \(y_1 \in \mathcal{T}_1z_1 \) and \(y_2 \in \mathcal{T}_2z_2 \), \(i, j \in \{1, 2\} \). When \(\alpha(z_1, z_2) = 1 \) for all \(z_1, z_2 \in A \), the pair \((\mathcal{T}_1, \mathcal{T}_2)\) is called \(\eta_\ast \)-proximal sub-admissible, and when \(\eta(z_1, z_2) = 1 \) for all \(z_1, z_2 \in A \), the pair \((\mathcal{T}_1, \mathcal{T}_2)\) is called \(\alpha_\ast \)-proximal admissible.

Example 2.2. Consider \(X = \mathbb{R}^2 \) with the usual metric. Suppose \(A = \{(1, x) : 0 \leq x \leq 1\} \) and \(B = \{(0, x) : 0 \leq x \leq 1\} \). Define \(\mathcal{T}_1, \mathcal{T}_2 : A \to 2^B \setminus \emptyset \) by

\[
\begin{align*}
\mathcal{T}_1(1, x) &= \begin{cases}
\{(0, 1)\} & x = 1, \\
\{(0, \frac{x}{2}) : 0 \leq a \leq x\} & \text{otherwise},
\end{cases} \\
\mathcal{T}_2(1, x) &= \begin{cases}
\{(0, \frac{x}{2}) : 0 \leq a \leq x\} & x \in [0, \frac{1}{2}], \\
\{(0, \alpha^2) : 0 \leq a \leq x\} & x \in [\frac{1}{2}, 1],
\end{cases}
\end{align*}
\]

and \(\alpha, \eta : A \times A \to [0, \infty) \) by

\[
\begin{align*}
\alpha((1, x), (1, y)) &= \begin{cases}
\frac{4}{5} & x, y \in \left[0, \frac{1}{2}\right], \\
1/2 & \text{otherwise},
\end{cases} \\
\eta((1, x), (1, y)) &= \frac{3}{4}
\end{align*}
\]

for all \((1, x), (1, y) \in A \times A \). If \(z_1 = (1, x_1) \) and \(z_2 = (1, x_2) \) in \(A \), then \(\alpha(z_1, z_2) \geq \eta(z_1, z_2) \) if \(x_1, x_2 \in \left[0, \frac{1}{2}\right] \). So, \(\mathcal{T}_1z_1 = \{(0, \frac{x}{2}) : 0 \leq a \leq x_1\} \) and \(\mathcal{T}_2z_2 = \{(0, \frac{x}{2}) : 0 \leq a \leq x_2\} \). This shows that \(d(u_1, y_1) = 1 = \text{dist}(A, B) \) and \(d(u_2, y_2) = 1 = \text{dist}(A, B) \) for all \(y_1 \in \mathcal{T}_1x_1 \) and \(y_2 \in \mathcal{T}_2x_2 \), \(i, j \in \{1, 2\} \) if and only if \(u_1, u_2 \in \{(1, \frac{x}{2}) : 0 \leq x \leq \frac{1}{2}\}\). Hence \(\alpha(u_1, u_2) = \frac{4}{5} > \frac{3}{4} = \eta(u_1, u_2) \). Thus the pair \((\mathcal{T}_1, \mathcal{T}_2)\) is \(\alpha_\ast \)-proximal admissible with respect to \(\eta \).

Theorem 2.3. Let \(A \) and \(B \) be two nonempty closed subsets of a complete metric space \((X, d)\) such that \(A_0 \) is non-empty and \(\mathcal{T}, \mathcal{S} : A \to CL(B) \) be continuous multivalued mappings satisfying the following assertions:

1. \(\alpha(z_1, z_2) \geq \eta(z_1, z_2) \Rightarrow H(\mathcal{T}z_1, \mathcal{S}z_2) \leq \psi(d(z_1, z_2)) \);
2. \(\mathcal{T}z, \mathcal{S}z \subseteq B_0 \) for each \(z \in A_0 \) and \((A, B) \) satisfies the weak P-property;
3. \((T, S)\) is \(\alpha_s\)-proximal admissible with respect to \(\eta\);
4. there exists \(z_0, z_1, z_2 \in A_0\), \(y_1 \in T z_0\) and \(y_2 \in S z_0\) such that
\[
d(z_1, y_1) = \text{dist}(A, B), \quad \alpha(z_0, z_1) \geq \eta(z_0, z_1)
\]
and
\[
d(z_2, y_2) = \text{dist}(A, B), \quad \alpha(z_0, z_2) \geq \eta(z_0, z_2).
\]

Then the mappings \(T\) and \(S\) have a common best proximity point.

Proof. By the hypothesis, there exists \(z_0, z_1 \in A_0\) and \(y_1 \in T z_0\) such that
\[
d(z_1, y_1) = \text{dist}(A, B), \quad \alpha(z_0, z_1) \geq \eta(z_0, z_1).
\]
(2.1)

If \(y_1 \in T z_1 \cap S z_1\), then \(z_1\) is the common best proximity point of \(T\) and \(S\). If \(y_1 \notin S z_1\), then from condition \([1]\) we have
\[
0 < d(y_1, S z_1) \leq H(T z_0, S z_1) \leq \psi(d(z_0, z_1)).
\]
For \(q > 1\), it follows from Lemma \([1,2]\) that there exists \(y_2 \in S z_1\) such that
\[
0 < d(y_1, y_2) < q d(y_1, S z_1) \\
\leq q H(T z_0, S z_1) \\
\leq q \psi(d(z_0, z_1)).
\]
(2.2)

As \(y_2 \in S z_1 \subseteq B_0\), there exists \(z_2 \neq z_1 \in A_0\) such that
\[
d(z_2, y_2) = \text{dist}(A, B),
\]
(2.3)
otherwise, \(z_1\) is the common best proximity point of \(T\) and \(S\). As \((A, B)\) satisfies the weak P-property, (2.1) and (2.3) imply that
\[
0 < d(z_1, z_2) \leq d(y_1, y_2).
\]
(2.4)

From (2.2) and (2.4), we have
\[
0 < d(z_1, z_2) \leq q \psi(d(z_0, z_1)).
\]
Since \(\psi\) is non-decreasing, from the above inequality, we have
\[
\psi(d(z_1, z_2)) \leq \psi(q \psi(d(z_0, z_1))).
\]

Put \(q_1 = \frac{\psi(q \psi(d(z_0, z_1)))}{\psi(d(z_1, z_2))}\). As the pair \((T, S)\) is \(\alpha_s\)-proximal admissible with respect to \(\eta\), so, \(\alpha(z_1, z_2) \geq \eta(z_1, z_2)\). Thus, we have
\[
d(z_2, y_2) = \text{dist}(A, B), \quad \alpha(z_1, z_2) \geq \eta(z_1, z_2).
\]
(2.5)

Now, if \(y_2 \in T z_2 \cap S z_2\), then \(z_2\) is the common best proximity point of \(T\) and \(S\). If \(y_2 \notin T z_2\), then from condition \([1]\) we have
\[
0 < d(T z_2, y_2) \leq H(T z_2, S z_1) \leq \psi(d(z_1, z_2)).
\]
For $q_1 > 1$, it follows from Lemma 1.2 that there exists $y_3 \in T z_2$ such that

$$0 < d(y_2, y_3) < q_1 d(y_2, T z_2) \leq q_1 H(S z_1, T z_2) \leq q_1 \psi(d(z_1, z_2)) = \psi(q \psi(d(z_0, z_1))).$$

(2.6)

As $y_3 \in T z_2 \subseteq B_0$, so there exists $z_3 \neq z_2 \in A_0$ such that

$$d(z_3, y_3) = \text{dist}(A, B),$$

(2.7)

otherwise, z_2 is the common best proximity point of T and S. As (A, B) satisfies the weak P-property, (2.5) and (2.7) imply that

$$0 < d(z_2, z_3) \leq d(y_2, y_3).$$

(2.8)

From (2.6) and (2.8), we have

$$0 < d(z_2, z_3) \leq \psi(q \psi(d(z_0, z_1))).$$

Since ψ is strictly increasing, from the above inequality, we have

$$\psi(d(z_2, z_3)) < \psi^2(q \psi(d(z_0, z_1))).$$

Put $q_2 = \frac{\psi^2(q \psi(d(z_0, z_1)))}{\psi(d(z_2, z_3))}$. As the pair (T, S) is α_\ast-proximal admissible with respect to η, so, $\alpha(z_2, z_3) \geq \eta(z_2, z_3)$. Thus, we have

$$d(z_3, y_3) = \text{dist}(A, B), \quad \alpha(z_2, z_3) \geq \eta(z_2, z_3).$$

Now proceeding in the manner described above, we get a sequence $\{z_n\}$ in A_0 and $\{y_n\}$ in B_0 such that for $n \in \mathbb{N}$

$$y_{2n+1} \in T z_{2n} \quad \text{and} \quad y_{2n} \in T z_{2n-1},$$

(2.9)

where

$$d(z_{n+1}, y_{n+1}) = \text{dist}(A, B), \quad \alpha(z_n, z_{n+1}) \geq \eta(z_n, z_{n+1}), \quad \forall n \in \mathbb{N}$$

(2.10)

and

$$d(y_{n+1}, y_{n+2}) < \psi^n(\psi(q \psi(d(z_0, z_1))), \quad \forall n \in \mathbb{N}.$$

(2.11)

As $y_{n+2} \in T z_{n+1} \cup S z_{n+1}$ and $T z_{n+1} \cup S z_{n+1} \subseteq B_0$ for all $n \in \mathbb{N}$, so there exists $z_{n+2} \neq z_{n+1} \in A_0$ such that

$$d(z_{n+2}, y_{n+2}) = \text{dist}(A, B), \quad \forall n \in \mathbb{N}.$$

(2.12)

Since (A, B) satisfies the weak P-property, from (2.10) and (2.12), we have

$$d(z_{n+1}, z_{n+2}) \leq d(y_{n+1}, y_{n+2}), \quad \forall n \in \mathbb{N}.$$

(2.13)

From (2.11) and (2.13), we get

$$d(z_{n+1}, z_{n+2}) < \psi^n(\psi(q \psi(d(z_0, z_1))), \quad \forall n \in \mathbb{N}.$$

Now for $n > m$, we have

$$d(z_n, z_m) \leq \sum_{i=n}^{m-1} d(z_i, z_{i+1}) < \sum_{i=n}^{m-1} \psi^{i-1}(\psi(q \psi(d(z_0, z_1))).$$

Hence $\{z_n\}$ is a Cauchy sequence in A. Similarly, $\{y_n\}$ is a Cauchy sequence in B. Since A and B are closed subsets of a complete metric space (X, d), there exist $z^* \in A$ and $y^* \in B$ such that $z_n \to z^*$ and $y_n \to y^*$ as $n \to \infty$. By taking limit as $n \to \infty$ in equation (2.12), we get that

$$d(z^*, y^*) = \text{dist}(A, B).$$
Since \mathcal{T} and \mathcal{S} are continuous, therefore from (2.9), we get that $y^* \in \mathcal{T} z^* \cap \mathcal{S} z^*$. Hence
\[
\text{dist}(\mathcal{A}, \mathcal{B}) \leq D(z^*, \mathcal{T} z^*) \leq d(z^*, y^*) = \text{dist}(\mathcal{A}, \mathcal{B})
\]
and
\[
\text{dist}(\mathcal{A}, \mathcal{B}) \leq D(z^*, \mathcal{S} z^*) \leq d(z^*, y^*) = \text{dist}(\mathcal{A}, \mathcal{B}).
\]
This implies that $D(z^*, \mathcal{T} z^*) = D(z^*, \mathcal{S} z^*) = \text{dist}(\mathcal{A}, \mathcal{B})$, that is, z^* is a common best proximity point of \mathcal{T} and \mathcal{S}.

\begin{example}
Consider $X, \mathcal{A}, \mathcal{B}, T_1, T_2 : \mathcal{A} \to 2^B \setminus \emptyset$ and $\alpha, \eta : \mathcal{A} \times \mathcal{A} \to [0, \infty)$ as in Example 2.2. Then $\mathcal{A}_0 = \mathcal{A}, \mathcal{B}_0 = \mathcal{B}$, $\text{dist}(\mathcal{A}, \mathcal{B}) = 1$ and $T_1 z, T_2 z \subseteq B_0$ for each $z \in \mathcal{A}_0$. As $\mathcal{A}_0 = \mathcal{A}$ and $\mathcal{B}_0 = \mathcal{B}$, so for $z_1 = (1, x_1), z_2 = (1, x_2) \in \mathcal{A}$, there exist $y_1 = (0, x_1), y_2 = (0, x_2) \in \mathcal{B}$ such that $d(z_1, y_1) = d(z_2, y_2) = \text{dist}(\mathcal{A}, \mathcal{B})$ and $d(z_1, z_2) = |x_1 - x_2| = d(y_1, y_2)$. Hence the pair $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property and the pair (T_1, T_2) is α-proximal admissible map with respect to η (see Example 2.2). Let $\psi(t) = \frac{t}{2}$ for all $t \geq 0$.
Note that $\alpha(z_1, z_2) \geq \eta(z_1, z_2)$ if $x_1, x_2 \in [0, \frac{1}{2}]$. Therefore,
\[
H(T_1 z_1, T_2 z_2) = \frac{|x_1 - x_2|}{2} = \frac{1}{2} |x_1 - x_2| = \psi(d(z_1, z_2)).
\]
Also, for $z_0 = (1, \frac{1}{2}) \in \mathcal{A}_0, y_1 = (0, \frac{1}{4}) \in T_1 x_0$ and $y_2 = (0, \frac{1}{8}) \in T_2 x_0$, we have $z_1 = (1, \frac{1}{4}), z_2 = (1, \frac{1}{8}) \in \mathcal{A}_0$ such that $d(z_1, y_1) = d(z_2, y_2) = 1 = \text{dist}(\mathcal{A}, \mathcal{B}), \alpha(z_0, z_1) = \frac{4}{3} \geq \frac{3}{2} = \eta(z_0, z_1) \text{ and } \alpha(z_0, z_2) = \frac{4}{3} \geq \frac{3}{2} = \eta(z_0, z_2)$. Thus all the conditions of Theorem 2.3 are satisfied and $(1, 1)$ is a common best proximity point of T_1 and T_2.

The case $\eta(z_1, z_2) = 1$, reduces Theorem 2.3 to the following:

\begin{corollary}
Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a complete metric space (X, d) such that \mathcal{A}_0 is non-empty and $T, S : \mathcal{A} \to CL(B)$ be continuous multivalued mappings satisfying the following assertions:
1. $\alpha(z_1, z_2) \geq 1 \Rightarrow H(T z_1, S z_2) = \psi(d(z_1, z_2));$
2. $T z, S z \subseteq B_0$ for each $z \in \mathcal{A}_0$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property;
3. (T, S) is α-proximal admissible;
4. there exist $z_0, z_1, z_2 \in \mathcal{A}_0, y_1 \in T z_0 \text{ and } y_2 \in S z_0$ such that
 \[
d(z_1, y_1) = \text{dist}(\mathcal{A}, \mathcal{B}), \quad \alpha(z_0, z_1) \geq 1
 \]
and
\[
d(z_2, y_2) = \text{dist}(\mathcal{A}, \mathcal{B}), \quad \alpha(z_0, z_2) \geq 1.
\]

Then the mappings T and S have a common best proximity point.

If we take $\alpha(z_1, z_2) = 1$ in Theorem 2.3 then we have the following:

\begin{corollary}
Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a complete metric space (X, d) such that \mathcal{A}_0 is non-empty and $T, S : \mathcal{A} \to CL(B)$ be continuous multivalued mappings satisfying the following assertions:
1. $\eta(z_1, z_2) \leq 1 \Rightarrow H(T z_1, S z_2) \leq \psi(d(z_1, z_2));$
2. $T z, S z \subseteq B_0$ for each $z \in \mathcal{A}_0$ and $(\mathcal{A}, \mathcal{B})$ satisfies the weak P-property;
3. (T, S) is η-proximal subadmissible;
4. there exist $z_0, z_1, z_2 \in \mathcal{A}_0, y_1 \in T z_0 \text{ and } y_2 \in S z_0$ such that
 \[
d(z_1, y_1) = \text{dist}(\mathcal{A}, \mathcal{B}), \quad \eta(z_0, z_1) < 1
 \]
and
\[
d(z_2, y_2) = \text{dist}(\mathcal{A}, \mathcal{B}), \quad \eta(z_0, z_2) < 1.
\]

Then the mappings T and S have a common best proximity point.
In case, $T_1 = T_2,$ Definition 2.1 and Theorem 2.3 is reduced to the following:

Definition 2.7. Let A and B be two nonempty subsets of a metric space (X,d) and $T : A \to 2^B \setminus \emptyset$ be a multivalued mapping. We say that T is α, η-proximal admissible with respect to η if there exist two functions $\alpha, \eta : A \times A \to [0, \infty)$ such that for all $z_1, z_2, u_1, u_2 \in A,$

$$
\begin{align*}
\alpha(z_1, z_2) \geq \eta(z_1, z_2) & \quad \Rightarrow \quad \alpha(u_1, u_2) \geq \eta(u_1, u_2) \\
d(u_1, y_1) = \text{dist}(A, B) & \quad \Rightarrow \quad d(u_2, y_2) = \text{dist}(A, B)
\end{align*}
$$

for all $y_1 \in T z_1$ and $y_2 \in T z_2.$ When $\alpha(z_1, z_2) = 1$ for all $z_1, z_2 \in A,$ T is called a η-proximal sub-admissible.

Theorem 2.8. Let A and B be two nonempty closed subsets of a complete metric space (X,d) such that A_0 is nonempty and $T : A \to CL(B)$ be a continuous multivalued mapping satisfying the following assertions:

1. $\alpha(z_1, z_2) \geq \eta(z_1, z_2) \Rightarrow H(T z_1, T z_2) \leq \psi(d(z_1, z_2));$
2. $T z \subseteq B_0$ for each $z \in A_0$ and (A, B) satisfies the weak P-property;
3. T is α, η-proximal admissible with respect to $\eta;$
4. there exist $z_0, z_1 \in A_0,$ $y_1 \in T z_0$ such that

$$
\begin{align*}
d(z_1, y_1) = \text{dist}(A, B), \quad \alpha(z_0, z_1) \geq \eta(z_0, z_1).
\end{align*}
$$

Then the mapping T has a best proximity point.

If we take $\eta(z_1, z_2) = 1$ in Theorem 2.8, then we have the following:

Corollary 2.9. Let A and B be two nonempty closed subsets of a complete metric space (X,d) such that A_0 is nonempty and $T : A \to CL(B)$ be a continuous multivalued mapping satisfying the following assertions:

1. $\alpha(z_1, z_2) \geq 1 \Rightarrow H(T z_1, T z_2) \leq \psi(d(z_1, z_2));$
2. $T z \subseteq B_0$ for each $z \in A_0$ and (A, B) satisfies the weak P-property;
3. T is α-proximal admissible;
4. there exist $z_0, z_1 \in A_0,$ $y_1 \in T z_0$ such that

$$
\begin{align*}
d(z_1, y_1) = \text{dist}(A, B), \quad \alpha(z_0, z_1) \geq 1.
\end{align*}
$$

Then the mapping T has a best proximity point.

Remark 2.10. The special case of Theorem 2.8 for $\alpha(z_1, z_2) = 1$ can be obtained as in Corollary 2.6.

Remark 2.11. When $\eta(z_1, z_2) = 1$ for all $z_1, z_2 \in A,$ Definition 2.7 reduces to Definition 10 in [6]. As the condition 1 is more general than the inequality (1.1) (see Remark 3.5 in [5]), so Corollary 2.9 extends Theorem 13 in [6].

Remark 2.12. When $A = B,$ Theorem 2.8 is reduced to the Theorem 3.3 in [5].

Remark 2.13. Note that the uniqueness of the common best proximity points of multivalued mappings T and S is not given in Theorem 2.3. Thus, we can present the following problem: Let (X,d) be a complete metric space and $T, S : A \to CL(B)$ be continuous multivalued mappings satisfying all the assertions of Theorem 2.3. Does T and S have a unique common best proximity point? By adding a condition and taking mappings $T, S : A \to K(B),$ we can give a partial answer of this problem as follows:

Theorem 2.14. Let A and B be two nonempty closed subsets of a complete metric space (X,d) such that A_0 is non-empty and $T, S : A \to K(B)$ be continuous multivalued mappings satisfying all the assertions of Theorem 2.3 and also satisfy

H. $\alpha(z_1, z_2) \geq \eta(z_1, z_2)$ for all common best proximity points of T and $S.$
Then the mappings \mathcal{T} and \mathcal{S} have a unique common best proximity point.

Proof. We will only prove the part of uniqueness. Let z_1, z_2 be two common best proximity points of \mathcal{T} and \mathcal{S} such that $z_1 \neq z_2$, then by hypothesis H we have $\alpha(z_1, z_2) \geq \eta(z_1, z_2)$ and $D(z_1, \mathcal{T}z_1) = \text{dist}(\mathcal{A}, \mathcal{B}) = D(z_1, \mathcal{S}z_1) = D(z_2, \mathcal{T}z_2) = D(z_2, \mathcal{S}z_2)$. Since $\mathcal{T}z_1$ and $\mathcal{S}z_2$ are compact, so there exist an element $u_1 \in \mathcal{T}z_1$ and $u_2 \in \mathcal{S}z_2$ such that

$$d(z_1, u_1) = D(z_1, \mathcal{T}z_1)$$

and

$$d(z_2, u_2) = D(z_2, \mathcal{S}z_2).$$

Since the pair $(\mathcal{T}, \mathcal{S})$ satisfies the weak P-property, so we have

$$d(z_1, z_2) = d(u_1, u_2).$$

So by using condition 1 and Lemma 1.2 there exists $q > 1$ such that

$$d(z_1, z_2) = d(u_1, u_2) < qD(u_1, \mathcal{S}z_2)$$

$$< qH(\mathcal{T}z_1, \mathcal{S}z_2)$$

$$< q\psi(d(z_1, z_2))$$

$$< qd(z_1, z_2),$$

which is a contradiction. This implies that $d(z_1, z_2) = 0$, consequently, \mathcal{T} and \mathcal{S} have a unique common best proximity point.

By similar arguments as in Theorem 2.14, we state the following:

Theorem 2.15. Let \mathcal{A} and \mathcal{B} be two nonempty closed subsets of a complete metric space (X, d) such that \mathcal{A}_0 is nonempty and $\mathcal{T} : \mathcal{A} \rightarrow K(\mathcal{B})$ be a continuous multivalued mapping satisfying all the assertions of Theorem 2.8 with condition H, then \mathcal{T} has a unique common best proximity point.

3. Common best proximity points for single-valued mappings

We start with the following definition:

Definition 3.1. Let \mathcal{A} and \mathcal{B} be two nonempty subsets of a metric space (X, d) and $\mathcal{T}_1, \mathcal{T}_2 : \mathcal{A} \rightarrow \mathcal{B}$ be mappings. The pair $(\mathcal{T}_1, \mathcal{T}_2)$ is α-proximal admissible with respect to η if there exist two functions $\alpha, \eta : \mathcal{A} \times \mathcal{A} \rightarrow [0, \infty)$ such that for $z_1, z_2, u_1, u_2 \in \mathcal{A}$,

$$\alpha(z_1, z_2) \geq \eta(z_1, z_2)$$

$$d(u_1, \mathcal{T}_1z_1) = \text{dist}(\mathcal{A}, \mathcal{B})$$

$$d(u_2, \mathcal{T}_2z_2) = \text{dist}(\mathcal{A}, \mathcal{B})$$

$$\Rightarrow \alpha(u_1, u_2) \geq \eta(u_1, u_2).$$

When $\alpha(z_1, z_2) = 1$ for all $z_1, z_2 \in \mathcal{A}$, the pair $(\mathcal{T}_1, \mathcal{T}_2)$ is called η-proximal subadmissible and when $\eta(z_1, z_2) = 1$ for all $z_1, z_2 \in \mathcal{A}$, the pair $(\mathcal{T}_1, \mathcal{T}_2)$ is called α-proximal admissible.

Example 3.2. Consider $\mathcal{X} = \mathbb{R}^2$ with the usual metric. Let $\mathcal{A} = \{(-6, 0), (0, -6), (0, 5)\}$ and $\mathcal{B} = \{(-1, 0), (0, -1), (0, 0), (-1, 1), (1, 1)\}$ be closed subsets of (X, d). Then $d(\mathcal{A}, \mathcal{B}) = 5$, $\mathcal{A}_0 = \mathcal{A}$ and $\mathcal{B}_0 = \mathcal{B}$. Define $\mathcal{T}_1, \mathcal{T}_2 : \mathcal{A} \rightarrow \mathcal{B}$ by

$$\mathcal{T}_1(-6, 0) = (-1, 0),$$

$$\mathcal{T}_1(0, -6) = (0, -1),$$

$$\mathcal{T}_1(0, 5) = (1, 1),$$

$$\mathcal{T}_2(-6, 0) = (0, 0),$$

$$\mathcal{T}_2(0, -6) = (-1, 1),$$

$$\mathcal{T}_2(0, 5) = (1, 1),$$

and $\alpha, \eta : \mathcal{A} \times \mathcal{A} \rightarrow [0, \infty)$ by

$$\alpha(z_1, z_2) = \begin{cases} 1 & \text{if } y_1, y_2 \neq 0, \\ 0 & \text{otherwise}, \end{cases}$$

$$\eta(z_1, z_2) = \frac{1}{2},$$

for all $z_1 = (x_1, y_1), z_2 = (x_2, y_2) \in \mathcal{A}$.\[\Box\]
Note that $\alpha(z_1, z_2) \geq \eta(z_1, z_2)$ if $z_1, z_2 \in \{(0, -6), (0, 5)\}$. For $z_1 = (0, -6)$, $d(u_1, T_1 z_1) = \text{dist}(A, B)$ if $u_1 \in \{(0, -6)\}$ and $d(u_2, T_2 z_1) = \text{dist}(A, B)$ if $u_2 \in \{(0, 5)\}$. This implies that $\alpha(u_1, u_2) = 1 > \frac{1}{2} = \eta(u_1, u_2)$. For $z_2 = (0, 5)$, $d(u_1, T_1 z_1) = \text{dist}(A, B) = d(u_2, T_2 z_1) = \frac{1}{2} = \eta(u_1, u_2)$. Thus the pair (T_1, T_2) is α-proximal admissible with respect to η.

By Theorem 2.3, we immediately obtain the following result.

Theorem 3.3. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that A_0 is nonempty and let $T, S : A \rightarrow B$ be continuous mappings satisfying the following assertions for all $z_1, z_2 \in A$:

1. $\alpha(z_1, z_2) \geq \eta(z_1, z_2) \Rightarrow d(T z_1, S z_2) \leq \psi(d(z_1, z_2))$;
2. $T(A_0), S(A_0) \subseteq B_0$ and (A, B) satisfies the weak P-property;
3. (T, S) is α-proximal admissible with respect to η;
4. there exist $z_0, z_1, z_2 \in A_0$ such that

$$d(z_1, T z_0) = \text{dist}(A, B), \quad \alpha(z_0, z_1) \geq \eta(z_0, z_1)$$

and

$$d(z_2, S z_0) = \text{dist}(A, B), \quad \alpha(z_0, z_2) \geq \eta(z_0, z_2).$$

Then the mappings T and S have a common best proximity point.

The case $A = B = X$ reduces Definition 3.1 and Theorem 3.3 into the following:

Definition 3.4. Let (X, d) be a metric space and $T_1, T_2 : X \rightarrow X$ be mappings. The pair (T_1, T_2) is α-admissible with respect to η if there exist functions $\alpha, \eta : X \times X \rightarrow [0, \infty)$ such that for all $z_1, z_2 \in X$,

$$\alpha(z_1, z_2) \geq \eta(z_1, z_2) \Rightarrow \alpha(T_1 z_1, T_2 z_2) \geq \eta(T_1 z_1, T_2 z_2).$$

When $\alpha(z_1, z_2) = 1$ for all $z_1, z_2 \in X$, the pair (T_1, T_2) is called η-subadmissible and when $\eta(z_1, z_2) = 1$ for all $z_1, z_2 \in X$, the pair (T_1, T_2) is called α-admissible.

Remark 3.5. Definition 3.4 generalizes the concepts of compatibility and weak compatibility by Jungck [18] and [19]. Every weakly compatible pair is α-admissible with respect to η. Indeed, let (T_1, T_2) be weakly compatible pair. Then $T_1 (T_2 z) = T_2 (T_1 z)$ for all z belonging to $C(T_1, T_2)$ as the set of all coincidence points of mappings T_1 and T_2. Define

$$\alpha(z_1, z_2) = \begin{cases} 1 & \text{if } z_1, z_2 \in C(T_1, T_2), \\ 0 & \text{otherwise}, \end{cases}$$

and $\eta(z_1, z_2) = \frac{1}{2}$ for all $z_1, z_2 \in X$.

Then $\alpha(z_1, z_2) > \eta(z_1, z_2)$ if $z_1, z_2 \in C(T_1, T_2)$. Since (T_1, T_2) is weakly compatible pair, so for all $z_1, z_2 \in C(T_1, T_2)$, we have $T_1 (T_2 z_1) = T_1 (T_2 z_2) = T_2 (T_1 z_1)$ and $T_1 (T_2 z_2) = T_2 (T_1 z_2) = T_2 (T_2 z_2)$. This implies that $T_1 z_1, T_2 z_2 \in C(T_1, T_2)$. Hence $\alpha(T_1 z_1, T_2 z_2) = 1 > \frac{1}{2} = \eta(T_1 z_1, T_2 z_2)$, that is, the pair (T_1, T_2) is α-admissible with respect to η. But the converse is not true which is clear from the following:

Example 3.6. Consider $X = \mathbb{R}$ with the usual metric. Define $T_1, T_2 : X \rightarrow X$ by

$$T_1(z) = z^3, \quad T_2(z) = \frac{z^2}{4}$$

and $\alpha, \eta : X \times X \rightarrow [0, \infty)$ by

$$\alpha(z_1, z_2) = \begin{cases} 2 & \text{if } z_1, z_2 \geq 0, \\ 0 & \text{if } z_1, z_2 < 0, \end{cases} \quad \eta(z_1, z_1) = \frac{1}{4}$$

for all $z_1, z_2 \in X$. Note that $\alpha(z_1, z_2) \geq \eta(z_1, z_2)$ when $z_1, z_2 \geq 0$. This implies that $\alpha(T_1 z_1, T_2 z_2) = 2 > \frac{1}{2} = \eta(T_1 z_1, T_2 z_2)$. Hence the pair (T_1, T_2) is α-admissible with respect to η. On the other hand, the coincidence points of T_1 and T_2 are 0 and $\frac{1}{2}$ such that $T_1 (T_2 \left(\frac{1}{2}\right)) \neq T_2 (T_1 \left(\frac{1}{2}\right)) = \left(\frac{1}{4}\left(\frac{1}{4}\right)^2\right)^2$. Thus, the pair (T_1, T_2) is not weakly compatible.
Theorem 3.7. Let \((X,d)\) be a complete metric space and \(T,S:X \to X\) be continuous mappings satisfying the following assertions for all \(z_1,z_2 \in X:\)

1. \(\alpha(z_1,z_2) \geq \eta(z_1,z_2) \Rightarrow d(Tz_1,Sz_2) \leq \psi(d(z_1,z_2));\)
2. \((T,S)\) is \(\alpha\)-admissible with respect to \(\eta;\)
3. there exist \(z_0,z_1 \in X\) such that \(\alpha(z_0,Tz_0) \geq \eta(z_0,Tz_0)\) and \(\alpha(z_1,Sz_1) \geq \eta(z_1,Sz_1).\)

Then the mappings \(T\) and \(S\) have a common fixed point.

Taking \(\eta(z_1,z_2) = 1\) in Theorem 3.7 we get the following:

Corollary 3.8. Let \((X,d)\) be a complete metric space and \(T,S:X \to X\) be continuous mappings satisfying the following assertions for all \(z_1,z_2 \in X:\)

1. \(\alpha(z_1,z_2) \geq 1 \Rightarrow d(Tz_1,Sz_2) \leq \psi(d(z_1,z_2));\)
2. \((T,S)\) is \(\alpha\)-admissible;
3. there exist \(z_0,z_1 \in X\) such that \(\alpha(z_0,Tz_0) \geq 1\) and \(\alpha(z_1,Sz_1) \geq 1.\)

Then the mappings \(T\) and \(S\) have a common fixed point.

Remark 3.9. When \(T_1 = T_2 = T\) in Definition 3.4 we get Definition 2.1 in [28] and in case \(T = S,\) (with the help of Remark 3.5 in [5]), Corollary 3.8 generalizes Theorem 2.1 in [29].

When \(T_1 = T_2 = T,\) Definition 3.1 and Theorem 3.3 are reduced to Definition 8 in [15] and the following result, respectively.

Theorem 3.10. Let \(A\) and \(B\) be two nonempty closed subsets of a complete metric space \((X,d)\) such that \(A_0\) is nonempty and \(T : A \to B\) be a continuous mapping satisfying the following assertions for all \(z_1,z_2 \in A:\)

1. \(\alpha(z_1,z_2) \geq \eta(z_1,z_2) \Rightarrow d(Tz_1,Tz_2) \leq \psi(d(z_1,z_2));\)
2. \(T(A_0) \subseteq B_0\) and \((A,B)\) satisfies the weak \(P\)-property;
3. \(T\) is \(\alpha\)-proximal admissible with respect to \(\eta;\)
4. there exist \(z_0,z_1 \in A_0\) such that

\[
d(z_1,Tz_0) = \text{dist}(A,B), \quad \alpha(z_0,z_1) \geq \eta(z_0,z_1).
\]

Then \(T\) has a best proximity point.

Remark 3.11. The special cases of Theorems 3.3 and 3.10 for \(\eta(z_1,z_2) = 1\) and \(\alpha(z_1,z_2) = 1\) can be obtained as in Corollaries 2.5 and 2.6.

4. Generalization

In this section we generalize the results of Sections 2 and 3 for a sequence of mappings.

Definition 4.1. Let \(A\) and \(B\) be two nonempty subsets of a metric space \((X,d)\) and \(\{T_i : A \to 2^B \setminus \emptyset\}_{i=1}^{\infty}\) be a sequence of multivalued mappings. The sequence \(\{T_i\}\) is \(\alpha_s\)-proximal admissible with respect to \(\eta\) if there exist functions \(\alpha,\eta : A \times A \to [0,\infty)\) such that for \(z_1,z_2,u_1,u_2 \in A,\)

\[
\begin{align*}
\alpha(z_1,z_2) &\geq \eta(z_1,z_2) \\
d(u_i,y_i) &= \text{dist}(A,B) \quad \text{for all } y_i \in T_i z_1 \text{ and } u_i \in T_i z_2, \text{ and for all } i,j \in \mathbb{N}. \quad \text{When } \alpha(z_1,z_2) = 1 \text{ for all } z_1,z_2 \in A, \text{ the sequence } \{T_i\} \text{ is called } \eta_s\text{-proximal sub-admissible and when } \eta(z_1,z_2) = 1 \text{ for all } z_1,z_2 \in A, \text{ the sequence } \{T_i\} \text{ is called } \alpha_s\text{-proximal admissible.}
\end{align*}
\]
Theorem 4.2. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that A_0 is nonempty and $\{T_i : A \rightarrow CL(B)\}_{i=1}^{\infty}$ be a sequence of continuous multivalued mappings satisfying the following assertions:

1. $\alpha(z_1, z_2) \geq \eta(z_1, z_2) \Rightarrow H(T_i z_1, T_j z_2) \leq \psi(d(z_1, z_2))$ for each $i, j \in \mathbb{N}$;
2. $T_i z \subseteq B_0$, for each $z \in A_0$, $i \in \mathbb{N}$ and (A, B) satisfies the weak P-property;
3. $\{T_i\}$ is α-proximal admissible with respect to η;
4. there exist $z_0, z_i \in A$, and $y_i \in T_i z_0$ for each $i \in \mathbb{N}$ such that

$$d(z_i, y_i) = dist(A, B), \quad \alpha(z_0, z_i) \geq \eta(z_0, z_i).$$

Then the mappings T_i have a common best proximity point.

Proof. It is similar to the proof of Theorem 2.3 and is omitted. \qed

Taking $\eta(z_1, z_2) = 1$ in Theorem 4.2 we get the following:

Corollary 4.3. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that A_0 is nonempty and $\{T_i : A \rightarrow CL(B)\}_{i=1}^{\infty}$ be a sequence of continuous multivalued mappings satisfying the following assertions:

1. $\alpha(z_1, z_2) \geq 1 \Rightarrow H(T_i z_1, T_j z_2) \leq \psi(d(z_1, z_2))$ for each $i, j \in \mathbb{N}$;
2. $T_i z \subseteq B_0$, for each $z \in A_0$, $i \in \mathbb{N}$ and (A, B) satisfies the weak P-property;
3. $\{T_i\}$ is α-proximal admissible;
4. there exists $z_0, z_i \in A$, and $y_i \in T_i z_0$ for each $i \in \mathbb{N}$ such that

$$d(z_i, y_i) = dist(A, B), \quad \alpha(z_0, z_i) \geq 1.$$

Then the mappings T_i have a common best proximity point.

Taking $\alpha(z_1, z_2) = 1$ in Theorem 4.2 we get the following:

Corollary 4.4. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that A_0 is nonempty and $\{T_i : A \rightarrow CL(B)\}_{i=1}^{\infty}$ be a sequence of continuous multivalued mappings satisfying the following assertions:

1. $\eta(z_1, z_2) \leq 1 \Rightarrow H(T_i z_1, T_j z_2) \leq \psi(d(z_1, z_2))$ for each $i, j \in \mathbb{N}$;
2. $T_i z \subseteq B_0$, for each $z \in A_0$, $i \in \mathbb{N}$ and (A, B) satisfies the weak P-property;
3. $\{T_i\}$ is η-proximal subadmissible;
4. there exist $z_0, z_i \in A$, and $y_i \in T_i z_0$ for each $i \in \mathbb{N}$ such that

$$d(z_i, y_i) = dist(A, B), \quad \eta(z_0, z_i) \leq 1.$$

Then the mappings T_i have a common best proximity point.

Remark 4.5. The choice $A = B = X$ reduces Definition 4.1 and Theorem 4.2 into the Definition 3.1 and Theorem 3.2 in [5], respectively, and generalizes Theorem 4.1 in [17]. When $A = B = X$, Corollaries 4.3 and 4.4 generalize Corollaries 4.1 and 4.2 in [17], respectively.

Theorem 4.6. Let A and B be two nonempty closed subsets of a complete metric space (X, d) such that A_0 is nonempty and $\{T_i : A \rightarrow K(B)\}_{i=1}^{\infty}$ be a sequence of continuous multivalued mappings satisfying all assertions of Theorem 4.2 with condition H. Then the mappings T_i have a unique common best proximity.
Definition 4.7. Let \(A \) and \(B \) be two nonempty subsets of a metric space \((X, d)\) and \(\{ T_i : A \to B \}_{i=1}^{\infty} \) be a sequence of mappings. The sequence \(\{ T_i \} \) is \(\alpha, \eta \)-proximal admissible with respect to \(\eta \) if there exists two functions \(\alpha, \eta : A \times A \to [0, \infty) \) such that for \(z_1, z_2, u_1, u_2 \in A \),

\[
\begin{align*}
\alpha(z_1, z_2) &\geq \eta(z_1, z_2) \\
 d(u_1, T_i z_1) &= \text{dist}(A, B) \\
 d(u_2, T_j z_2) &= \text{dist}(A, B)
\end{align*}
\]

for each \(i, j \in \mathbb{N} \). When \(\alpha(z_1, z_2) = 1 \) for all \(z_1, z_2 \in A \), the sequence \(\{ T_i \} \) is called \(\eta \)-proximal subadmissible and when \(\eta(z_1, z_2) = 1 \) for all \(z_1, z_2 \in A \), the sequence \(\{ T_i \} \) is called \(\alpha \)-proximal admissible.

From Definition 4.1 and Theorem 4.2, we obtain the following result for a sequence of single-valued mappings.

Theorem 4.8. Let \(A \) and \(B \) be two nonempty closed subsets of a complete metric space \((X, d)\) such that \(A_0 \) is nonempty and \(\{ T_i : A \to B \}_{i=1}^{\infty} \) be a sequence of continuous mappings satisfying the following assertions:

1. \(\alpha(z_1, z_2) \geq \eta(z_1, z_2) \Rightarrow d(T_i z_1, T_j z_2) \leq \psi(d(z_1, z_2)) \) for each \(i, j \in \mathbb{N} \);
2. \(T_i z \subseteq B_0 \) for each \(z \in A_0 \), \(i \in \mathbb{N} \) and \((A, B)\) satisfies the weak P-property;
3. \(\{ T_i \} \) is \(\alpha, \eta \)-proximal admissible with respect to \(\eta \);
4. there exist \(z_0, z_i \in A_0 \) such that for each \(i \in \mathbb{N} \)

\[
d(z_i, T_i z_0) = \text{dist}(A, B), \quad \alpha(z_0, z_i) \geq \eta(z_0, z_i).
\]

Then the mappings \(T_i \) have a common best proximity point.

5. **Common best proximity point results in partially ordered metric space**

Let \((X, d, \preceq)\) be a partially ordered metric space and \(A \) and \(B \) be two nonempty subsets of \(X \). The existence of best proximity point in the setting of a partially ordered metric space has been established in [2, 3, 10, 11, 25, 27]. In this section, we derive new results in partially ordered metric spaces as an application of our results in Sections 2 and 3. Recall that a mapping \(T : A \to B \) is said to be proximally increasing if it satisfies the condition

\[
\begin{align*}
z_1 \preceq z_2 &\quad \Rightarrow \quad d(u_1, T z_1) = \text{dist}(A, B) \\
 d(u_2, T z_2) &= \text{dist}(A, B)
\end{align*}
\]

where \(z_1, z_2, u_1, u_2 \in A \) (see [10]). Very recently, Pragadeeswarar et al. [27] defined the notion of proximal relation between two subsets of \(X \) as follows:

Definition 5.1 ([27]). Let \(A \) and \(B \) be two nonempty subsets of a partially ordered metric space \((X, d, \preceq)\) such that \(A_0 \neq \emptyset \). Let \(B_1 \) and \(B_2 \) be two nonempty subsets of \(B_0 \). The proximal relation between \(B_1 \) and \(B_2 \) is denoted and defined by \(B_1 \preceq (1) B_2 \), if for every \(b_1 \in B_1 \) with \(d(a_1, b_1) = d(A, B) \), there exists \(b_2 \in B_2 \) with \(d(a_2, b_2) = d(A, B) \) such that \(a_1 \preceq a_2 \).

Now we present our main results of this section.

Theorem 5.2. Let \(A \) and \(B \) be two nonempty closed subsets of a partially ordered complete metric space \((X, d, \preceq)\) such that \(A_0 \) is nonempty and \(T, S : A \to CL(B) \) be continuous mappings satisfying the following assertions for all \(z_1, z_2 \in A \) with \(z_1 \preceq z_2 \):

1. \(H(T z_1, S z_2) \leq \psi(d(z_1, z_2)); \)
2. \(T z \subseteq B_0 \) for each \(z \in A_0 \) and \((A, B)\) satisfies the weak P-property;
3. \(z_1, z_2 \in A_0, \ z_1 \preceq z_2 \) implies \(T z_1 \preceq (1) S z_2 \);
4. there exist \(z_0, z_1, z_2 \in A_0, y_1 \in Tz_0 \) and \(y_2 \in Sz_0 \) such that

\[
d(z_1, y_1) = \text{dist}(A, B), \quad z_0 \preceq z_1\]

and

\[
d(z_2, y_2) = \text{dist}(A, B), \quad z_0 \preceq z_2.
\]

Then \(T \) and \(S \) have a common best proximity point.

Proof. Define \(\alpha, \eta : X \times X \rightarrow [0, \infty) \) by

\[
\alpha(z_1, z_2) = \begin{cases} 1 & z_1 \preceq z_2, \\ 0 & \text{otherwise}, \end{cases} \quad \eta(z_1, z_2) = \begin{cases} 1 & z_1 \preceq z_2, \\ 0 & \text{otherwise}. \end{cases}
\]

Since \(Tz_1 \preceq_{(1)} Sz_2 \), therefore for \(z_1, z_2, u_1, u_2 \in X, y_1 \in Tz_1, y_2 \in Sz_2 \) with

\[
\begin{align*}
\alpha(z_1, z_2) & \geq \eta(z_1, z_2) \\
d(u_1, y_1) & = \text{dist}(A, B) \\
d(u_2, y_2) & = \text{dist}(A, B)
\end{align*}
\]

we have \(u_1 \preceq u_2 \). This implies that \(\alpha(u_1, u_2) = 1 > \frac{1}{2} = \eta(u_1, u_2) \) for \(z_1 \preceq z_2 \) and \(\alpha(u_1, u_2) = 0 = \eta(u_1, u_2) \) otherwise. Thus, all the conditions of Theorem 2.3 are satisfied and hence mappings \(T \) and \(S \) have a common best proximity point. \(\square \)

By considering \(T = S \), Theorem 5.2 is reduced to the following:

Theorem 5.3. Let \(A \) and \(B \) be two nonempty closed subsets of a partially ordered complete metric space \((X, d, \preceq) \) such that \(A_0 \) is non-empty and \(T : A \rightarrow CL(B) \) be a continuous mapping satisfying the following assertions for all \(z_1, z_2 \in A \) with \(z_1 \preceq z_2 \):

1. \(H(Tz_1, Tz_2) \leq \psi(d(z_1, z_2)) \);
2. \(Tz \subseteq B_0 \) for each \(z \in A_0 \) and \((A, B)\) satisfies the weak P-property;
3. \(z_1, z_2 \in A_0, z_1 \preceq z_2 \) implies \(Tz_1 \preceq_{(1)} Tz_2 \);
4. there exist \(z_0, z_1 \in A_0, y_1 \in Tz_0 \) such that

\[
d(z_1, y_1) = \text{dist}(A, B), \quad z_0 \preceq z_1.
\]

Then the mapping \(T \) has a best proximity point.

Following the arguments in the proof of Theorem 5.2, we obtain the following result.

Theorem 5.4. Let \(A \) and \(B \) be two nonempty closed subsets of a partially ordered complete metric space \((X, d, \preceq) \) such that \(A_0 \) is non-empty and \(\{T_i : A \rightarrow CL(B)\}^\infty_{i=1} \) be sequence of continuous mappings satisfying the following assertions for all \(z_1, z_2 \in A \) with \(z_1 \preceq z_2 \):

1. \(H(T_i z_1, T_j z_2) \leq \psi(d(z_1, z_2)) \) for each \(i, j \in \mathbb{N} \);
2. \(T_i z \subseteq B_0 \) for each \(z \in A_0, i \in \mathbb{N} \) and \((A, B)\) satisfies the weak P-property;
3. \(z_1, z_2 \in A_0, z_1 \preceq z_2 \) implies \(T_i z_1 \preceq_{(1)} T_j z_2 \) for each \(i, j \in \mathbb{N} \);
4. there exist \(z_0, z_i \in A_0 \) and \(y_i \in T_i z_0 \) for each \(i \in \mathbb{N} \) such that

\[
d(z_i, y_i) = \text{dist}(A, B), \quad z_0 \preceq z_i.
\]

Then the mappings \(T_i \) have a common best proximity point.

For single valued mappings, from Theorems 5.2, 5.4 we obtain the following results.
Theorem 5.5. Let A and B be two nonempty closed subsets of a partially ordered complete metric space (X,d,\preceq) such that A_0 is nonempty and $T,S : A \to B$ be continuous mappings satisfying the following assertions for all $z_1,z_2 \in A$ with $z_1 \preceq z_2$:

1. $d(Tz_1, Sz_2) \leq \psi(d(z_1,z_2))$;
2. $Tz,Sz \subseteq B_0$ for each $z \in A_0$ and (A,B) satisfies the weak P-property;
3. $z_1,z_2 \in A_0$, $z_1 \preceq z_2$ implies $Tz_1 \preceq Sz_2$;
4. there exist $z_0,z_1,z_2 \in A_0$ such that

$$d(z_1,Tz_0) = \text{dist}(A,B), \quad z_0 \preceq z_1$$

and

$$d(z_2,Tz_0) = \text{dist}(A,B), \quad z_0 \preceq z_2.$$

Then T and S have a common best proximity point.

Theorem 5.6. Let A and B be two nonempty closed subsets of a partially ordered complete metric space (X,d,\preceq) such that A_0 is non-empty and $T : A \to B$ be a continuous mapping satisfying the following assertions for all $z_1,z_2 \in A$ with $z_1 \preceq z_2$:

1. $d(Tz_1, Tz_2) \leq \psi(d(z_1,z_2))$;
2. $Tz \subseteq B_0$ for each $z \in A_0$ and (A,B) satisfies the weak P-property;
3. $z_1,z_2 \in A_0$, $z_1 \preceq z_2$ implies $Tz_1 \preceq Tz_2$;
4. there exist $z_0,z_1 \in A_0$ such that

$$d(z_1,Tz_0) = \text{dist}(A,B), \quad z_0 \preceq z_1.$$

Then T has a best proximity point.

Theorem 5.7. Let A and B be two nonempty closed subsets of a partially ordered complete metric space (X,d,\preceq) such that A_0 is nonempty and $\{T_i : A \rightarrow B\}^\infty_i$ be sequence of continuous mappings satisfying the following assertions for all $z_1,z_2 \in A$ with $z_1 \preceq z_2$:

1. $d(T_iz_1, T_jz_2) \leq \psi(d(z_1,z_2))$ for each $i,j \in \mathbb{N}$;
2. $T_iz \subseteq B_0$ for each $z \in A_0$, $i \in \mathbb{N}$ and (A,B) satisfies the weak P-property;
3. $z_1,z_2 \in A_0$, $z_1 \preceq z_2$ implies $T_iz_1 \preceq T_jz_2$ for each $i,j \in \mathbb{N}$;
4. there exist $z_0,z_i \in A_0$ for each $i \in \mathbb{N}$ such that

$$d(z_i, T_iz_0) = \text{dist}(A,B), \quad z_0 \preceq z_i.$$

Then the mappings T_i have a common best proximity point.

Acknowledgment

The author A. R. Khan is grateful to King Fahd University of Petroleum & Minerals for supporting research project IN141047.

References

[29] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165.
