Fixed point theorems for generalized multivalued nonlinear \mathcal{F}-contractions

Iram Iqbala, Nawab Hussainb,*

aDepartment of Mathematics, University of Sargodha, Sargodha, Pakistan.
bDepartment of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.

Communicated by M. Eslamian

Abstract

In this paper, we introduce certain new concepts of α-η-lower semi-continuous and α-η-upper semi-continuous mappings. By using these concepts, we prove some fixed point results for generalized multivalued nonlinear \mathcal{F}-contractions in metric spaces and ordered metric spaces. As an application of our results we deduce Suzuki-Wardowski type fixed point results and fixed point results for orbitally lower semi-continuous mappings in complete metric spaces. Our results generalize and extend many recent fixed point theorems including the main results of Minak et al. [G. Minak, M. Olgun, I. Altun, Carpathian J. Math., 31 (2015), 241–248], Altun et al. [I. Altun, G. Minak, M. Olgun, Nonlinear Anal. Model. Control, 21 (2016), 201–210] and Olgun et al. [M. Olgun, G. Minak, I. Altun, J. Nonlinear Convex Anal., 17 (2016), 579–587]. ©2016 All rights reserved.

Keywords: α-η-\mathcal{F}-contraction, α-η-\mathcal{F}-contraction of Hardy-Rogers type, nonlinear \mathcal{F}-contraction.

1. Introduction and preliminaries

Let (\mathcal{X}, d) be a metric space. $2^{\mathcal{X}}$ denotes the family of all nonempty subsets of \mathcal{X}, $C(\mathcal{X})$ denotes the family of all nonempty, closed subsets of \mathcal{X}, $CB(\mathcal{X})$ denotes the family of all nonempty, closed, and bounded subsets of \mathcal{X} and $K(\mathcal{X})$ denotes the family of all nonempty compact subsets of \mathcal{X}. It is clear that, $K(\mathcal{X}) \subseteq CB(\mathcal{X}) \subseteq C(\mathcal{X}) \subseteq P(\mathcal{X})$. For $\mathcal{A}, \mathcal{B} \in C(\mathcal{X})$, let

$$H(\mathcal{A}, \mathcal{B}) = \max \left\{ \sup_{x \in \mathcal{A}} D(x, \mathcal{B}), \sup_{y \in \mathcal{B}} D(y, \mathcal{A}) \right\},$$

*Corresponding author

Received 2016-09-01
where $D(x, B) = \inf \{d(x, y) : y \in B\}$. Then H is called generalized Pompeiu-Hausdorff distance on $C(X)$. It is well-known that H is a metric on $CB(X)$, which is called Pompeiu-Hausdorff metric induced by d. For more details see [3, 11].

An interesting generalization of the Banach contraction principle to multivalued mappings is known as Nadler’s fixed point theorem [25]. After this, many authors extended Nadler’s fixed point theorem in many directions (see [10, 12, 21, 29] and references therein). In 2012, Samet et al. [28] defined α-admissible mappings. This notion is generalized by many authors (see [20, 21]). Salimi et al. [27] generalized this idea by introducing the function η and established fixed point theorems. Next, Asl et al. [8] extended these concepts to multivalued mappings by introducing the notion of α^*-admissible mappings as follows:

Definition 1.1 [8]. Let $T : X \to 2^X$ be a multivalued map on a metric space (X, d), $\alpha : X \times X \to \mathbb{R}^+$ be a function, then T is an α^*-admissible mapping, if

$$\alpha(y, z) \geq 1 \implies \alpha_*(Ty, Tz) \geq 1, \quad y, z \in X,$$

where

$$\alpha_*(A, B) = \inf_{y \in A, z \in B} \alpha(y, z).$$

Hussain et al. [19] modified the notion of α^*-admissible as follows:

Definition 1.2 [19]. Let $T : X \to 2^X$ be a multivalued map on a metric space (X, d), $\alpha, \eta : X \times X \to \mathbb{R}^+$ be two functions where η is bounded, then T is an α^*-admissible mapping with respect to η, if

$$\alpha(y, z) \geq \eta(y, z) \implies \alpha_*(Ty, Tz) \geq \eta_*(Ty, Tz), \quad y, z \in X,$$

where

$$\alpha_*(A, B) = \inf_{y \in A, z \in B} \alpha(y, z), \quad \eta_*(A, B) = \sup_{y \in A, z \in B} \eta(y, z).$$

Definition 1.3 [4]. Let $T : X \to 2^X$ be a multivalued map on a metric space (X, d), $\alpha, \eta : X \times X \to \mathbb{R}^+$ be two functions. We say that T is generalized α^*-admissible mapping with respect to η, if

$$\alpha(y, z) \geq \eta(y, z) \implies \alpha(u, v) \geq \eta(u, v), \quad \text{for all } u \in Ty, v \in Tz.$$

In 2014, Hussain et al. [10] introduced the notion of α^*-continuous mappings as follows:

Definition 1.4 [10]. Let (X, d) be a metric space, $\alpha, \eta : X \times X \to [0, \infty)$ and $T : X \to X$ be functions. Then T is an α^*-continuous mapping on X, if for given $z \in X$ and sequence $\{z_n\}$ with

$$z_n \to z \quad \text{as} \quad n \to \infty, \quad \alpha(z_n, z_{n+1}) \geq \eta(z_n, z_{n+1}), \quad \text{for all } n \in \mathbb{N} \implies Tz_n \to Tz.$$

After that Hussain et al. [15] generalized Definition 1.4 to multivalued maps.

Definition 1.5 [15]. Let $T : X \to 2^X$ be a multivalued map on a metric space (X, d), $\alpha, \eta : X \times X \to \mathbb{R}^+$ be two functions. We say that T is α^*-continuous multivalued mapping, if for given $z \in X$ and sequence $\{z_n\}$ with $z_n \to z$ as $n \to \infty$, $\alpha(z_n, z_{n+1}) \geq \eta(z_n, z_{n+1})$, for all $n \in \mathbb{N}$ we have $Tz_n \to Tz$. That is, $\lim_{n \to \infty} d(z_n, z) = 0$ and $\alpha(z_n, z_{n+1}) \geq \eta(z_n, z_{n+1})$ implies $\lim_{n \to \infty} H(Tz_n, Tz) = 0$.

Recently, Wardowski [31] defined F-contraction and proved a fixed point result as a generalization of the Banach contraction principle for this contraction. This idea has been extended in many directions (see [11, 14, 17] and references therein). Hussain et al. [18] broadened this idea to α^*-GF-contraction with respect to a general family of functions G. Following Wardowski and Hussain, we denote by F, the set of all functions $F : \mathbb{R}^+ \to \mathbb{R}$ satisfying the following conditions:

1. F is non-decreasing.
2. F is continuous.
3. If $\lim_{u \to \infty} u^{-1} F(u) = \infty$, then $\lim_{u \to \infty} F(u) = \infty$.
4. F is upper semicontinuous from above.
5. $F(t) \geq 0$ for all $t \in \mathbb{R}^+$.
6. F is convex.
7. F is lower semicontinuous.
8. F is superadditive.
9. F is subadditive.
10. F is a supermodular function.
11. F is a submodular function.
12. F is a strongly supermodular function.
13. F is a strongly submodular function.
14. F is a modular function.
15. F is a supermodular function.
16. F is a submodular function.
17. F is a modular function.
18. F is a strongly supermodular function.
19. F is a strongly submodular function.
20. F is a modular function.
21. F is a supermodular function.
22. F is a submodular function.
23. F is a modular function.
24. F is a strongly supermodular function.
25. F is a strongly submodular function.
26. F is a modular function.
27. F is a supermodular function.
28. F is a submodular function.
29. F is a modular function.
30. F is a strongly supermodular function.
31. F is a strongly submodular function.
32. F is a modular function.
33. F is a supermodular function.
34. F is a submodular function.
35. F is a modular function.
36. F is a strongly supermodular function.
37. F is a strongly submodular function.
38. F is a modular function.
39. F is a supermodular function.
40. F is a submodular function.
41. F is a modular function.
42. F is a strongly supermodular function.
43. F is a strongly submodular function.
44. F is a modular function.
45. F is a supermodular function.
46. F is a submodular function.
47. F is a modular function.
48. F is a strongly supermodular function.
49. F is a strongly submodular function.
50. F is a modular function.
51. F is a supermodular function.
52. F is a submodular function.
53. F is a modular function.
54. F is a strongly supermodular function.
55. F is a strongly submodular function.
56. F is a modular function.
57. F is a supermodular function.
58. F is a submodular function.
59. F is a modular function.
60. F is a strongly supermodular function.
61. F is a strongly submodular function.
62. F is a modular function.
63. F is a supermodular function.
64. F is a submodular function.
65. F is a modular function.
66. F is a strongly supermodular function.
67. F is a strongly submodular function.
68. F is a modular function.
69. F is a supermodular function.
70. F is a submodular function.
71. F is a modular function.
72. F is a strongly supermodular function.
73. F is a strongly submodular function.
74. F is a modular function.
(F₁) \(F \) is strictly increasing;

(F₂) for all sequence \(\{ a_n \} \subseteq \mathbb{R}^+ \), \(\lim_{n \to \infty} a_n = 0 \), if and only if \(\lim_{n \to \infty} F(a_n) = -\infty \);

(F₃) there exists \(0 < k < 1 \) such that \(\lim_{\alpha \to 0^+} \alpha^k F(\alpha) = 0 \),

(θ), if \(F \) also satisfies the following:

(F₄) \(F(\inf A) = \inf_{A} F(A) \) for all \(A \subseteq (0, \infty) \) with \(\inf A > 0 \),

(Θ), the set of all functions \(G : \mathbb{R}^+ \to \mathbb{R}^+ \) satisfying:

(θ) for all \(t_1, t_2, t_3, t_4 \in \mathbb{R}^+ \) with \(t_1 t_2 t_3 t_4 = 0 \) there exists \(\tau > 0 \) such that \(G(t_1, t_2, t_3, t_4) = \tau \).

On unifying the concepts of Wardowski’s and Nadlers, Altun et al. [5] gave the concept of multivalued \(F \)-contractions and established some fixed point results. On the other side, Minak et al. [23], extended the results of Wardowski as follows:

Theorem 1.6 ([23]). Let \((X, d)\) be a complete metric space, \(T : \mathcal{X} \to K(\mathcal{X}) \) and \(F \in \mathcal{F}_\sigma \). If there exists \(\tau > 0 \) such that for any \(z \in \mathcal{X} \) with \(d(z, Tz) > 0 \), there exists \(y \in F_{\sigma}^z \) satisfying

\[
\tau + F(D(y, Tz)) \leq F(d(z, y)),
\]

where

\[
F_{\sigma}^z = \{ y \in Tz : F(d(z, y)) \leq F(D(z, Tz)) + \sigma \},
\]

then \(T \) has a fixed point in \(\mathcal{X} \) provided \(\sigma < \tau \) and \(z \to d(z, Tz) \) is lower semi-continuous.

Theorem 1.7 ([23]). Let \((X, d)\) be a complete metric space, \(T : \mathcal{X} \to C(\mathcal{X}) \) and \(F \in \mathcal{F}_\sigma^* \). If there exists \(\tau > 0 \) such that for any \(z \in \mathcal{X} \) with \(d(z, Tz) > 0 \), there exists \(y \in F_{\sigma}^z \) satisfying

\[
\tau + F(D(y, Tz)) \leq F(d(z, y)),
\]

then \(T \) has a fixed point in \(\mathcal{X} \) provided \(\sigma < \tau \) and \(z \to d(z, Tz) \) is lower semi-continuous.

Minak et al. [23] also showed that \(F_{\sigma}^* \neq \emptyset \) in both cases when \(F \in \mathcal{F} \) and \(F \in \mathcal{F}_\sigma^* \). The aim of the present paper is to introduce the concept of \(\alpha-\eta \)-semicontinuous multivalued mappings and to prove fixed point theorem for multivalued nonlinear \(F \)-contractions that generalize the results of Altun et al. [6], Minak et al. [23], Olgun et al. [26] and Hussain et al. [18]. The following lemmas will be used in the sequel.

Lemma 1.8 ([3]). Let \(T : \mathcal{X} \to \mathcal{Y} \) be a multivalued function, then the following statements are equivalent.

1. \(T \) is lower semi-continuous.
2. \(V \subset \mathcal{Y} \Rightarrow T^{-1}[\text{int}(V)] \) is open in \(\mathcal{X} \),

where \(\text{int}(V) \) denotes the interior of \(V \).

Lemma 1.9 ([3]). Let \(T : \mathcal{X} \to \mathcal{Y} \) be a multivalued function, then the following statements are equivalent.

1. \(T \) is upper semi-continuous.
2. \(V \subset \mathcal{Y} \Rightarrow T^{-1}[\overline{V}] \) is closed in \(\mathcal{X} \),

where \(\overline{V} \) denotes the closure of \(V \).

2. Fixed point results for modified \(\alpha-\eta-GF \)-contraction

We begin this section with the following definitions.

Definition 2.1. Let \(T : \mathcal{X} \to 2^\mathcal{X} \) be a multivalued map on a metric space \((\mathcal{X}, d)\), \(\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+ \) be
two functions. We say that \mathcal{T} is α-η lower semi-continuous multivalued mapping on \mathcal{X}, if for given $z \in \mathcal{X}$ and sequence $\{z_n\}$ with
\[
\lim_{n \to \infty} d(z_n, z) = 0, \quad \alpha(z_n, z_{n+1}) \geq \eta(z_n, z_{n+1}), \quad \text{for all } n \in \mathbb{N},
\]
implies
\[
\lim_{n \to \infty} \inf D(z_n, \mathcal{T}z_n) \geq D(z, \mathcal{T}z).
\]

Definition 2.2. Let $\mathcal{T} : \mathcal{X} \to 2^{\mathcal{X}}$ be a multivalued map on a metric space (\mathcal{X}, d), $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. We say that \mathcal{T} is α-η upper semi-continuous multivalued mapping on \mathcal{X}, if for given $z \in \mathcal{X}$ and sequence $\{z_n\}$ with
\[
\lim_{n \to \infty} d(z_n, z) = 0, \quad \alpha(z_n, z_{n+1}) \geq \eta(z_n, z_{n+1}), \quad \text{for all } n \in \mathbb{N},
\]
implies
\[
\lim_{n \to \infty} \sup D(z_n, \mathcal{T}z_n) \leq D(z, \mathcal{T}z).
\]

Lemma 2.3. Let $\mathcal{T} : \mathcal{X} \to 2^{\mathcal{X}}$ be a multivalued map on a metric space (\mathcal{X}, d), $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Then \mathcal{T} is α-η continuous, if and only if it is α-η upper semi-continuous and α-η lower semi-continuous.

Proof. Suppose that \mathcal{T} is α-η upper semi-continuous and α-η lower semi-continuous. Then there exists a sequence $\{z_n\}$ in \mathcal{X} and $z \in \mathcal{X}$ with
\[
\lim_{n \to \infty} d(z_n, z) = 0, \quad \alpha(z_n, z_{n+1}) \geq \eta(z_n, z_{n+1}), \quad \text{for all } n \in \mathbb{N},
\]
implies
\[
\lim_{n \to \infty} \inf D(z_n, \mathcal{T}z_n) \geq D(z, \mathcal{T}z), \quad (2.1)
\]
and
\[
\lim_{n \to \infty} \sup D(z_n, \mathcal{T}z_n) \leq D(z, \mathcal{T}z). \quad (2.2)
\]

From (2.1) and (2.2), we get that $D(z_n, \mathcal{T}z_n) \to D(z, \mathcal{T}z)$ as $n \to \infty$. This is possible only when $\mathcal{T}z_n \to \mathcal{T}z$. Consequently, \mathcal{T} is α-η continuous.

Conversely, suppose that \mathcal{T} is α-η continuous. Then there exists a sequence $\{z_n\}$ in \mathcal{X} and $z \in \mathcal{X}$ with $z_n \to z$ as $n \to \infty$ and $\alpha(z_n, z_{n+1}) \geq \eta(z_n, z_{n+1})$ for all $n \in \mathbb{N}$ implies $\mathcal{T}z_n \to \mathcal{T}z$ as $n \to \infty$. This implies that $D(z_n, \mathcal{T}z_n) \to D(z, \mathcal{T}z)$ as $n \to \infty$ or $\lim_{n \to \infty} D(z_n, \mathcal{T}z_n) = D(z, \mathcal{T}z)$. From here it follows that $\lim_{n \to \infty} \inf D(z_n, \mathcal{T}z_n) \geq D(z, \mathcal{T}z)$ and $\lim_{n \to \infty} \sup D(z_n, \mathcal{T}z_n) \leq D(z, \mathcal{T}z)$. Hence \mathcal{T} is α-η upper semi-continuous and α-η lower semi-continuous.

Remark 2.4. As semi-continuity is a weaker property than continuity, an α-η upper semi-continuous and α-η lower semi-continuous mapping need not to be α-η continuous mapping, as shown in the examples below.

Example 2.5. Let $\mathcal{X} = \mathbb{R}$ with usual metric d. Then (\mathcal{X}, d) is a metric space. Define $\mathcal{T}_1 : \mathcal{X} \to 2^{\mathcal{X}}$, $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ by
\[
\mathcal{T}_1 z = \begin{cases}
\{0\} & \text{if } z \neq 0, \\
[-1, 1] & \text{if } z = 0,
\end{cases}
\]
\[
\alpha(y, z) = \begin{cases}
1 & \text{if } z, y \neq 0, \\
0 & \text{if } z = y = 0,
\end{cases}
\]
and $\eta(z, y) = \frac{1}{2}$, for all $z, y \in \mathcal{X}$.

Firstly, we show that \mathcal{T}_1 is not lower semi-continuous multivalued map. For this, let $V = [-1, 1] \subset 2^{\mathcal{X}}$,
then $T_1^{-1}(\text{int}(V)) = T_1^{-1}((-1,1)) = \emptyset$ which is not open in \mathbb{R}, so by Lemma 1.8 T_1 is not lower semi-continuous. But T_1 is $\alpha\cdot \eta$ lower semi-continuous multivalued map. Indeed, $\alpha(z_n, z_{n+1}) \geq \eta(z_n, z_{n+1})$ for sequence z_n of non-zero real numbers. Here arises two cases:

Case I. $z_n \to z = 0$.
If $z_n \to 0$, then $T_1 z_n = \{0\}$ and $T_1 z = [-1,1]$ such that $D(z_n, T_1 z_n) = D(0, \{0\}) = z_n$ and $D(z, T_1 z) = D(0, [-1,1]) = 0$. This implies that

$$\lim_{n \to \infty} \inf D(z_n, T z_n) = \lim_{n \to \infty} \inf z_n = z = 0 = D(z, T z).$$

Case II. $z_n \to z \neq 0$.
If $z_n \to z$, then $T_1 z_n = \{0\}$ and $T_1 z = \{0\}$ such that $D(z_n, T_1 z_n) = D(0, \{0\}) = z_n$ and $D(z, T_1 z) = z$. This implies that

$$\lim_{n \to \infty} \inf D(z_n, T_1 z_n) = \lim_{n \to \infty} \inf z_n = z = D(z, T_1 z).$$

On the other hand, in Case I we have

$$\lim_{n \to \infty} H(T_1 z_n, T_1 z) = 1.$$

Hence T_1 is not $\alpha\cdot \eta$-continuous multivalued map.

Example 2.6. Consider \mathcal{X} the same as in Example 2.5. Define $T_2 : \mathcal{X} \to 2^\mathcal{X}$, $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ by

$$T_2 z = \begin{cases} \{-1,1\} & \text{if } z \neq 0, \\ \{0\} & \text{if } z = 0, \end{cases}$$

$$\alpha(z, y) = \begin{cases} 0 & \text{if } z, y \neq 0, \\ 2 & \text{if } z = y = 0, \end{cases}$$

and $\eta(z, y) = \frac{1}{4}$, for all $z, y \in \mathcal{X}$.

Firstly, we show that T_2 is not upper semi-continuous multivalued map. For this, let $V = [-1,1] \subset 2^\mathcal{X}$, then $T_2^{-1}(V) = T_2^{-1}([-1,1]) = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$, which is not closed in \mathbb{R}, so by Lemma 1.9 T_2 is not upper semi-continuous. But T_2 is $\alpha\cdot \eta$ upper semi-continuous multivalued map. Indeed, $\alpha(z_n, z_{n+1}) \geq \eta(z_n, z_{n+1})$ for sequence $z_n = 0$ for all $n \in \mathbb{N}$. Then z_n approaches to $z = 0$ only. Therefore, If $z_n \to 0$, then $T_2 z_n = \{0\}$ and $T_2 z = \{0\}$. This implies that

$$\lim_{n \to \infty} \sup D(z_n, T_2 z_n) = 0 = D(z, T_2 z).$$

On the other hand,

$$\lim_{n \to \infty} H(T_2 z_n, T_2 z) = 1.$$

Hence T_2 is not $\alpha\cdot \eta$-continuous multivalued map.

Remark 2.7. Let $T : \mathcal{X} \to 2^\mathcal{X}$ be a multivalued map on a metric space (\mathcal{X}, d). Let $f : \mathcal{X} \to \mathbb{R}$, defined by $f(z) = D(z, T z)$, for all $z \in \mathcal{X}$, be a lower semi-continuous mapping. Take $\alpha(z, y) = \eta(z, y)$, for all $z, y \in \mathcal{X}$, then for $z \in \mathcal{X}$ and a sequence $\{z_n\}$ with

$$\lim_{n \to \infty} d(z_n, z) = 0, \quad \alpha(z_n, z_{n+1}) \geq \eta(z_n, z_{n+1}) \quad \text{for all } n \in \mathbb{N},$$

we have

$$\lim_{n \to \infty} \inf f(z_n) \geq f(z),$$

and so

$$\lim_{n \to \infty} \inf D(z_n, T z_n) \geq D(z, T z).$$

This shows that T is $\alpha\cdot \eta$ lower semi-continuous mapping. But if T is $\alpha\cdot \eta$ lower semi-continuous mapping, then f needs to be lower semi-continuous as shown in Example 2.12. Similarly, if $f : \mathcal{X} \to \mathbb{R}$ is upper semi-continuous mapping then, T is $\alpha\cdot \eta$ upper semi-continuous mapping but not conversely.
Theorem 2.8. Let (X,d) be a complete metric space and $\alpha, \eta : X \times X \rightarrow \mathbb{R}_+$ be two functions. Let $T : X \rightarrow K(X)$, $F \in \mathcal{F}$ and $G \in \mathcal{G}$ fulfilling the following assertions:

1. if for any $z \in X$ with $D(z, Tz) > 0$, there exists $y \in F^\sigma_z$ with $\alpha(z, y) \geq \eta(z, y)$ satisfying

$$G(D(z, Tz), D(y, Ty), D(z, Ty), D(y, Tz)) + F(D(y, Ty)) \leq F(d(z, y));$$

2. T is generalized α_\ast-admissible mapping with respect to η;
3. T is α-η lower semi-continuous mapping;
4. there exists $z_0 \in X$ and $y_0 \in Tz_0$ such that $\alpha(z_0, y_0) \geq \eta(z_0, y_0)$.

Then T has a fixed point in X provided $\sigma < \tau$.

Proof. Let $z_0 \in X$, since $Tz \in K(X)$ for every $z \in X$, the set F^σ_z is non-empty for any $\sigma > 0$, then there exists $z_1 \in F^\sigma_{z_0}$ and by hypothesis $\alpha(z_0, z_1) \geq \eta(z_0, z_1)$. Assume that $z_1 \notin Tz_1$, otherwise z_1 is the fixed point of T. Then, since Tz_1 is closed, $D(z_1, Tz_1) > 0$, so from condition (1), we have

$$G(D(z_0, Tz_0), D(z_1, Tz_1), D(z_0, 0), D(z_1, 0)) + F(D(z_1, Tz_1)) \leq F(d(z_0, z_1)). \quad (2.3)$$

Now for $z_1 \in X$ there exists $z_2 \in F^\sigma_{z_1}$ with $z_2 \notin Tz_2$, otherwise z_2 is the fixed point of T, since Tz_2 is closed, so $D(z_2, Tz_2) > 0$. Since T is generalized α_\ast-admissible mapping with respect to η, then $\alpha(z_1, z_2) \geq \eta(z_1, z_2)$. Again by using condition (1), we get

$$G(D(z_1, Tz_1), D(z_2, Tz_2), D(z_1, Tz_2), D(z_2, Tz_1)) + F(D(z_2, Tz_2)) \leq F(d(z_1, z_2)).$$

On continuing recursively, we get a sequence $\{z_n\}_{n \in \mathbb{N}}$ in X such that $z_{n+1} \in F^\sigma_{z_n}$, $z_{n+1} \notin Tz_{n+1}$, $\alpha(z_n, z_{n+1}) \geq \eta(z_n, z_{n+1})$ and

$$G(D(z_n, Tz_n), D(z_{n+1}, Tz_{n+1}), D(z_n, Tz_{n+1}), D(z_{n+1}, Tz_n)) + F(D(z_{n+1}, Tz_{n+1})) \leq F(d(z_n, z_{n+1})). \quad (2.4)$$

As $z_{n+1} \in Tz_n$, this implies that

$$G(D(z_n, Tz_n), D(z_{n+1}, Tz_{n+1}), D(z_n, Tz_{n+1}), 0) + F(D(z_{n+1}, Tz_{n+1})) \leq F(d(z_n, z_{n+1})).$$

From (2.4), we get that

$$G(D(z_n, Tz_n), D(z_{n+1}, Tz_{n+1}), D(z_n, Tz_{n+1}), 0) = \tau. \quad (2.4)$$

From equation (2.4), we get that

$$F(D(z_{n+1}, Tz_{n+1})) \leq F(d(z_n, z_{n+1})) - \tau. \quad (2.5)$$

Since $z_{n+1} \in F^\sigma_{z_n}$, we have

$$F(d(z_n, z_{n+1})) \leq F(D(z_n, Tz_n)) + \sigma. \quad (2.6)$$

Combining equations (2.5) and (2.6) gives

$$F(D(z_{n+1}, Tz_{n+1})) \leq F(D(z_n, Tz_n)) + \sigma - \tau. \quad (2.7)$$

Since Tz_n and Tz_{n+1} is compact, there exists $z_{n+1} \in Tz_n$ and $z_{n+2} \in Tz_{n+1}$ such that $d(z_n, z_{n+1}) = D(z_n, Tz_n)$ and $d(z_{n+1}, z_{n+2}) = D(z_{n+1}, Tz_{n+1})$, so equation (2.7) implies

$$F(d(z_{n+1}, z_{n+2})) \leq F(d(z_n, z_{n+1})) + \sigma - \tau. \quad (2.8)$$
By using equation (2.8), we get
\[F(d(z_{n+1}, z_{n+2})) \leq F(d(z_n, z_{n+1})) + \sigma - \tau \]
\[\leq F(d(z_{n-1}, z_n)) + 2\sigma - 2\tau \]
\[\vdots \]
\[\leq F(d(z_0, z_1)) + n\sigma - n\tau \]
\[= F(d(z_0, z_1)) - n(\tau - \sigma). \]
\[(2.9) \]

By letting limit as \(n \to \infty \) in equation (2.9), we get
\[\lim_{n \to \infty} F(d(z_{n+1}, z_{n+2})) = -\infty, \] so by (F2), we obtain
\[\lim_{n \to \infty} d(z_{n+1}, z_{n+2}) = 0. \]
\[(2.10) \]

Now from (F3), there exists \(0 < k < 1 \) such that
\[\lim_{n \to \infty} \left[d(z_{n+1}, z_{n+2}) \right]^k F(d(z_{n+1}, z_{n+2})) = 0. \]
\[(2.11) \]

By equation (2.9), we get
\[\lim_{n \to \infty} \left[d(z_{n+1}, z_{n+2}) \right]^k [F(d(z_{n+1}, z_{n+2})) - d(z_0, z_1)] \leq -n(\tau - \sigma)d(z_{n+1}, z_{n+2})^k \leq 0. \]
\[(2.12) \]

By taking limit as \(n \to \infty \) in equation (2.12) and applying equations (2.10) and (2.11), we have
\[\lim_{n \to \infty} n[d(z_{n+1}, z_{n+2})]^k = 0. \]

This implies that there exists \(n_1 \in \mathbb{N} \) such that \(n[d(z_{n+1}, z_{n+2})]^k \leq 1 \), or \(d(z_{n+1}, z_{n+2}) \leq \frac{1}{n^{1/k}}, \) for all \(n > n_1 \). Next, for \(m > n > n_1 \) we have
\[d(z_n, z_m) \leq \sum_{i=n}^{m-1} d(z_i, z_{i+1}) \leq \sum_{i=n}^{m-1} \frac{1}{i^{1/k}}, \]

since \(0 < k < 1 \), \(\sum_{i=n}^{m-1} \frac{1}{i^{1/k}} \) converges. Therefore, \(d(z_n, z_m) \to 0 \) as \(m, n \to \infty \). Thus, \(\{z_n\} \) is a Cauchy sequence. Since \(X \) is complete, there exists \(z^* \in X \) such that \(z_n \to z^* \) as \(n \to \infty \). From equations (2.17) and (2.10), we have
\[\lim_{n \to \infty} D(z_n, Tz_n) = 0. \]

Since \(T \) is \(\alpha-\eta \) lower semi-continuous mapping, then
\[0 \leq D(z, Tz) \leq \lim_{n \to \infty} \inf D(z_n, Tz_n) = 0. \]

Thus, \(T \) has a fixed point. \(\Box \)

Theorem 2.9. Let \((X, d) \) be a complete metric space and \(\alpha, \eta : X \times X \to \mathbb{R}_+ \) be two functions. Let \(T : X \to C(X), F \in \mathcal{F}_\alpha \) and \(G \in \mathcal{G} \) satisfy all assertions of Theorem 2.8. Then \(T \) has a fixed point in \(X \).

Proof. Let \(z_0 \in X \), since \(Tz_0 \in C(X) \) for every \(z \in X \) and \(F \in \mathcal{F}_\alpha \), the set \(F_{\alpha} \) is non-empty for any \(\sigma > 0 \), then there exists \(z_1 \in F_{\alpha}^{z_0} \) and by hypothesis \(\alpha(z_0, z_1) \geq \eta(z_0, z_1) \). Assume that \(z_1 \notin Tz_1 \), otherwise \(z_1 \) is the fixed point of \(T \). Then, since \(Tz_1 \) is closed, \(D(z_1, Tz_1) > 0 \), so from condition (1) of Theorem 2.8 we have
\[G(D(z_0, Tz_0), D(z_1, Tz_1), D(z_0, Tz_0)) + F(D(z_1, Tz_1)) \leq F(d(z_0, z_1)). \]

Now for \(z_1 \in X \) there exists \(z_2 \in F_{\alpha}^{z_1} \) with \(z_2 \notin Tz_2 \), otherwise \(z_2 \) is the fixed point of \(T \), since
Tz_2 is closed, so $D(z_2, Tz_2) > 0$. Since T is generalized α-admissible mapping with respect to η, then $\alpha(z_1, z_2) \geq \eta(z_1, z_2)$. Again by using condition (1) of Theorem 2.8, we get
\[G(D(z_1, Tz_1), D(z_2, Tz_2), D(z_1, Tz_2), D(z_2, Tz_1)) + F(D(z_2, Tz_2)) \leq F(d(z_1, z_2)).\]

On continuing recursively, we get a sequence $\{z_n\}_{n \in \mathbb{N}}$ in \mathcal{X} such that $z_{n+1} \in F^*_\alpha$, $z_{n+1} \notin Tz_{n+1}$, and $\alpha(z_n, z_{n+1}) \geq \eta(z_n, z_{n+1})$ and
\[G(D(z_n, Tz_n), D(z_{n+1}, Tz_{n+1}), D(z_n, Tz_{n+1}), D(z_{n+1}, Tz_n)) + F(D(z_{n+1}, Tz_{n+1})) \leq F(d(z_n, z_{n+1})).\]

The rest of the proof can be completed as the proof of Theorem 2.8. \hfill \square

Corollary 2.10. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_+$ be two functions. Let $T : \mathcal{X} \rightarrow K(\mathcal{X})$ and $F \in \mathfrak{F}$ fulfill the conditions (2)-(4) of Theorem 2.8 and if for any $z \in \mathcal{X}$ with $D(z, TZ) > 0$, there exists $y \in F^*_\alpha$ with $\alpha(z, y) \geq \eta(z, y)$ satisfying
\[\tau + F(D(y, Ty)) \leq F(d(z, y)),\]
then T has a fixed point in \mathcal{X} provided $\sigma < \tau$.

Proof. Define $G_L : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ by $G_L(t_1, t_2, t_3, t_4) = L \min\{t_1, t_2, t_3, t_4\} + \tau$, where $L \in \mathbb{R}^+$ and $\tau > 0$. Then $G_L \in \mathfrak{G}$ (see Example 2.1 of [13]). Therefore, the result follows by taking $G = G_L$ in Theorem 2.8. \hfill \square

Corollary 2.11. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_+$ be two functions. Let $T : \mathcal{X} \rightarrow C(\mathcal{X})$ and $F \in \mathfrak{F}^*$ satisfy all conditions of Corollary 2.10. Then T has a fixed point in \mathcal{X}.

Proof. By defining same G_L as in Corollary 2.10 and using Theorem 2.9, we get the required result. \hfill \square

Example 2.12. Let $\mathcal{X} = \{\frac{1}{2^n} : n \in \mathbb{N}\} \cup \{0\}$ with usual metric d. Then (\mathcal{X}, d) is a metric space. Define $T : \mathcal{X} \rightarrow K(\mathcal{X})$, $\alpha, \eta : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_+$, $G : \mathbb{R}^4 \rightarrow \mathbb{R}^+$ and $F : \mathbb{R}^+ \rightarrow \mathbb{R}$ by
\[
Tz = \begin{cases}
\{\frac{1}{2^n}\} & \text{if } z = \frac{1}{2^n}, \\
\{0\} & \text{if } z = 0,
\end{cases}
\]
\[
\alpha(z, y) = \begin{cases}
2 & \text{if } z = \frac{1}{2^n}, \\
\frac{1}{2} & \text{if } z = 0,
\end{cases}
\]
\[
\eta(z, y) = 1, \text{ for all } z, y \in \mathcal{X}, G(t_1, t_2, t_3, t_4) = \tau, \text{ where } \tau > 0 \text{ and } F(r) = \ln(r). \text{ Then}
\]
\[
D(z, TZ) = \begin{cases}
\frac{1}{2^n} & \text{if } z = \frac{1}{2^n}, \\
0 & \text{if } z = 0.
\end{cases}
\]

Let $D(z, TZ) > 0$, then $z = \frac{1}{2^n}$, so $Tz = \{\frac{1}{2^n}\}$. Thus for $y = \frac{1}{2^n} \in Tz$, we have
\[F(d(z, y)) - F(D(z, TZ)) = F\left(\frac{1}{2^n}\right) - F\left(\frac{1}{2^n}\right) = 0.
\]

Therefore, $y \in F^*_\sigma$ for $\sigma > 0$ with $\alpha(z, y) \geq \eta(z, y)$ and
\[
F(D(y, Ty)) - F(d(z, y)) = F\left(\frac{1}{2^n+1}\right) - F\left(\frac{1}{2^n}\right)
= \ln\left(\frac{1}{2^n+1}\right) - \ln\left(\frac{1}{2^n}\right)
= \ln\left(\frac{2^n}{2^n+1}\right) = \ln\left(\frac{1}{2}\right)
= - \ln 2.
\]

Hence $\tau + F(D(y, Ty)) \leq F(d(z, y))$ is satisfied for $0 < \sigma < \tau \leq \ln 2$.

Since $\alpha(z, y) \geq \eta(z, y)$ when $z, y \in \left\{ \frac{1}{2^{n-r}} : n \in \mathbb{N} \right\}$, this implies that $\alpha(u, v) = 2 > 1 = \eta(u, v)$ for all $u \in T z$ and $v \in T y$. Hence T is generalized α_η-admissible mapping with respect to η.

Next, let $\lim_{n \to \infty} d(z_n, z) = 0$ and $\alpha(z_n, z_{n+1}) \geq \eta(z_n, z_{n+1})$, for all $n \in \mathbb{N}$, then $z_n \in \left\{ \frac{1}{2^{n-r}} : n \in \mathbb{N} \right\}$. This implies that $T z_n = \left\{ \frac{1}{2^n} \right\}$ and $D(z_n, T z_n) = \frac{1}{2^n}$, for all $n \in \mathbb{N}$. Here arises two cases:

Case I. $z_n \to z = 0$.

Then $T z = \{0\}$ and $D(z, T z) = 0$. Thus

$$\lim_{n \to \infty} \inf_{n \to \infty} D(z_n, T z_n) = \lim_{n \to \infty} \inf_{n \to \infty} \left(\frac{1}{2^n} \right) \geq 0 = D(z, T z).$$

Case II. $z_n \to z = \frac{1}{2^n}$.

Then $T z = \left\{ \frac{1}{2^n} \right\}$ and $D(z, T z) = \frac{1}{2^n}$. Thus

$$\lim_{n \to \infty} \inf_{n \to \infty} D(z_n, T z_n) = \lim_{n \to \infty} \inf_{n \to \infty} \left(\frac{1}{2^n} \right) = \frac{1}{2^n} = D(z, T z).$$

Hence T is α_η lower semi-continuous mapping. Thus, all conditions of Corollary 2.10 (and Theorem 2.8) hold and 0 is a fixed point of T.

On the other hand, define $f : \mathcal{X} \to \mathbb{R}$, by $f(z) = D(z, T z)$, for all $z \in \mathcal{X}$. Then

$$\lim_{z \to 1} \inf_{z \to 1} f(z) = 0 \neq \frac{1}{2} = f(1).$$

Hence f is not lower semi-continuous mapping at $z = 1$. That is, Theorems 1.6 and 1.7 can not be applied for this example.

Example 2.13. Consider the sequence $\{S_n\}_{n \in \mathbb{N}}$ as follows:

$$S_1 = 1,$$

$$S_2 = 1 + 2,$$

$$: :$$

$$S_n = 1 + 2 + 3 + \ldots + n = \frac{n(n + 1)}{2},$$

$$: :$$

Let $\mathcal{X} = \{S_n : n \in \mathbb{N}\}$ with usual metric d. Then (\mathcal{X}, d) is a metric space. Define $T : \mathcal{X} \to K(\mathcal{X})$, $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$, $\mathcal{G} : \mathbb{R}^4 \to \mathbb{R}^+$ and $\mathcal{F} : \mathbb{R}^+ \to \mathbb{R}$ by

$$T z = \begin{cases} \{S_{n-1}, S_{n+1}\} & \text{if } z = S_n, \ n > 2, \\
\{z\} & \text{otherwise,} \end{cases}$$

$$\alpha(z, y) = \begin{cases} 3 & \text{if } z \in \{S_n : n \geq 2\}, \\
1 & \text{otherwises,} \end{cases}$$

$$\eta(z, y) = 2, \text{ for all } z, y \in \mathcal{X}, \ \mathcal{G}(t_1, t_2, t_3, t_4) = L \min\{t_1, t_2, t_3, t_4\} + \tau, \text{ where } \tau = \frac{1}{e^\tau}, \ n \in \mathbb{N}, \ L \in \mathbb{R}^+ \text{ and } \mathcal{F}(r) = \ln(r).$$

Then

$$D(z, T z) = \begin{cases} |n| & \text{if } z = S_n, \ n > 2, \\
0 & \text{otherwise.} \end{cases}$$
Let $D(z, Tz) > 0$, then $z = S_n, n > 2$, so, $Tz = \{S_{n-1}, S_{n+1}\}$. Thus for $y = S_{n-1} \in Tz$, we have

$$F(d(z, y)) - F(D(z, Tz)) = F(|n|) - F(|n|) = 0.$$

Therefore, $y \in F^*_\sigma$ for $\sigma = \frac{1}{e^{n+1}}, n \in \mathbb{N}$ with $\alpha(z, y) \geq \eta(z, y)$ and

$$F(D(y, Ty)) - F(D(z, y)) = F(|n - 1| - F(|n|)
\leq \ln \left(\frac{|n - 1|}{|n|}\right)
< -\frac{1}{e^n}.$$

This implies that $\tau + F(D(y, Ty)) \leq F(d(z, y))$. Since $D(z, Ty) = 0$, we have,

$$G(D(z, Tz), D(y, Ty), D(z, Ty), D(y, Tz)) + F(D(y, Ty)) = \tau + F(D(y, Ty)) \leq F(d(z, y)).$$

Hence condition (1) of Theorem 2.8 is satisfied for $0 < \sigma = \frac{1}{e^{n+1}} < \tau = \frac{1}{e^n}$.

Since $\alpha(z, y) \geq \eta(z, y)$ when $z, y \in \{S_n : n \geq 2\}$, this implies that $\alpha(u, v) = 3 > 2 = \eta(u, v)$ for all $u \in Tz$ and $v \in Ty$. Hence T is a generalized α, η-admissible mapping with respect to η.

Next, let $\lim_{n \to \infty} d(z_n, z) = 0$ and $\alpha(z_n, z_{n+1}) \geq \eta(z_n, z_{n+1})$, for all $n \in \mathbb{N}$, then $z_n \in \{S_n : n \in \mathbb{N}, n \geq 2\}$. Here arises two cases:

Case I. $z_n \in \{S_n : n > 2\}$.
Then $Tz_n = \{S_{n-1}, S_{n+1}\}$ and $D(z_n, Tz_n) = |n|$, for all $n \in \mathbb{N}$.

Subcase I. $z_n \to z = S_n, n > 2$.
Then $Tz = \{S_{n-1}, S_{n+1}\}$ and $D(z, Tz) = |n|$. Thus

$$\lim_{n \to \infty} \inf_{n \to \infty} D(z_n, Tz_n) = \lim_{n \to \infty} \inf_{n \to \infty} (|n|) = |n| = D(z, Tz).$$

Subcase II. $z_n \to z = S_1$.
Then $Tz = \{S_1\}$ and $D(z, Tz) = 0$. Thus

$$\lim_{n \to \infty} \inf_{n \to \infty} D(z_n, Tz_n) = \lim_{n \to \infty} \inf_{n \to \infty} (|n|) \geq 0 = D(z, Tz).$$

Subcase III. $z_n \to z = S_2$.
Then $Tz = \{S_2\}$ and $D(z, Tz) = 0$. Thus

$$\lim_{n \to \infty} \inf_{n \to \infty} D(z_n, Tz_n) = \lim_{n \to \infty} \inf_{n \to \infty} (|n|) \geq 0 = D(z, Tz).$$

Case II. $z_n \in \{S_2\}$.
Then z_n approaches to S_2 only. Therefore, $Tz_n = \{z_n\}$ and $Tz = \{z\}$. This implies that

$$\lim_{n \to \infty} \inf_{n \to \infty} D(z_n, Tz_n) = 0 = D(z, Tz).$$

Hence T is α, η lower semi-continuous mapping. Thus, all the conditions of Theorem 2.8 hold and $\{S_1, S_2\}$ is set of fixed points of T.

As an application of Theorems 2.8 and 2.9, we get the following results.

Theorem 2.14. Let \((X, d)\) be a complete metric space and \(\alpha, \eta : X \times X \to \mathbb{R}_+\) be two functions. Let \(T : X \to K(X), F \in \mathfrak{F}_*\) and \(G \in \mathfrak{G}\) fulfill the conditions (2) and (4) of Theorem 2.8. If for any \(y, z \in X\) with \(\alpha(z, y) \geq \eta(z, y)\) and \(H(Tz, Ty) > 0\) we have
\[
G(D(z, Tz), D(y, Ty), D(z, Ty), D(y, Tz)) + F(H(Tz, Ty)) \leq F(d(z, y)),
\]
then \(T\) has a fixed point in \(X\) provided \(T\) is \(\alpha\)-\(\eta\) continuous mapping.

Proof. By Lemma 2.3 we have \(T\) is \(\alpha\)-\(\eta\)-lower semi-continuous mapping. Also, for \(z \in X\) and \(y \in F_\sigma^\ast\) with \(D(z, Tz) > 0\) we have
\[
G(D(z, Tz), D(y, Ty), D(z, Ty), D(y, Tz)) + F(D(y, Ty)) \leq \frac{F(d(z, y))}{2},
\]
\[
G(D(z, Tz), D(y, Ty), D(z, Ty), D(y, Tz)) + F(H(Tz, Ty)) \leq F(d(z, y)).
\]
Thus, all the conditions of Theorem 2.8 are satisfied, so, \(T\) has a fixed point. \(\square\)

By similar arguments of Theorem 2.14, we state the following and omit its proof.

Theorem 2.15. Let \((X, d)\) be a complete metric space and \(\alpha, \eta : X \times X \to \mathbb{R}_+\) be two functions. Let \(T : X \to C(X), F \in \mathfrak{F}_*\) and \(G \in \mathfrak{G}\) satisfy all assertions of Theorem 2.14. Then \(T\) has a fixed point in \(X\).

On considering \(G = G_L\), as in Corollary 2.10, Theorems 2.14 and 2.15 reduce to the following corollaries.

Corollary 2.16. Let \((X, d)\) be a complete metric space and \(\alpha, \eta : X \times X \to \mathbb{R}_+\) be two functions. Let \(T : X \to K(X), F \in \mathfrak{F}\) fulfill the conditions (2) and (4) of Theorem 2.8. If for any \(y, z \in X\) with \(\alpha(z, y) \geq \eta(z, y)\) and \(H(Tz, Ty) > 0\) we have
\[
\tau + F(H(Tz, Ty)) \leq F(d(z, y)),
\]
then \(T\) has a fixed point in \(X\) provided \(T\) is \(\alpha\)-\(\eta\) continuous mapping.

Corollary 2.17. Let \((X, d)\) be a complete metric space and \(\alpha, \eta : X \times X \to \mathbb{R}_+\) be two functions. Let \(T : X \to C(X), F \in \mathfrak{F}\) satisfy all assertions of Corollary 2.16. Then \(T\) has a fixed point in \(X\).

Theorem 2.18. Let \((X, d)\) be a complete metric space, \(T : X \to K(X), F \in \mathfrak{F}\) and \(G \in \mathfrak{G}\). If for \(z \in X\) with \(D(z, Tz) > 0\), there exists \(y \in F_\sigma^\ast\) satisfying
\[
G(D(z, Tz), D(y, Ty), D(z, Ty), D(y, Tz)) + F(D(y, Ty)) \leq F(d(z, y)),
\]
then \(T\) has a fixed point in \(X\) provided \(\alpha < \tau\) and \(z \to D(z, Tz)\) is lower semi-continuous.

Proof. Define \(\alpha(z, y) = d(z, y) = \eta(z, y)\) for all \(z, y \in X\). Then \(\alpha(u, v) = d(z, y) = \eta(u, v)\), for all \(u \in Tz\) and \(v \in Ty\), that is, \(T\) is generalized \(\alpha\)-admissible mapping with respect to \(\eta\). Since \(z \to D(z, Tz)\) is lower semi-continuous, therefore by Remark 2.7 \(T\) is \(\alpha\)-\(\eta\)-lower semi-continuous. Thus, all the conditions of Theorem 2.8 holds. Hence \(T\) has a fixed point in \(X\). \(\square\)

Theorem 2.19. Let \((X, d)\) be a complete metric space, \(T : X \to C(X), F \in \mathfrak{F}\) and \(G \in \mathfrak{G}\). If for \(z \in X\) with \(D(z, Tz) > 0\), there exists \(y \in F_\sigma^\ast\) satisfying
\[
G(D(z, Tz), D(y, Ty), D(z, Ty), D(y, Tz)) + F(D(y, Ty)) \leq F(d(z, y)),
\]
then \(T\) has a fixed point in \(X\) provided \(\alpha < \tau\) and \(z \to D(z, Tz)\) is lower semi-continuous.

Proof. By defining \(\alpha(z, y)\) and \(\eta(z, y)\) the same as in proof of Theorem 2.18 and by using Theorem 2.8 we get the required result. \(\square\)

Remark 2.20. By taking \(G = G_L\), as in Corollary 2.11 in Theorems 2.18 and 2.19 we get Theorems 1.6 and 1.7.
3. Fixed point results for α-η-F-contraction of Hardy-Rogers type

In this section we establish certain fixed point results for α-η-F-contraction of Hardy-Rogers type.

Theorem 3.1. Let (X, d) be a complete metric space and $\alpha, \eta : X \times X \to \mathbb{R}_+$ be two functions. Let $T : X \to K(X)$ and $F \in \mathcal{F}$ fulfill the following assertions:

1. T is generalized α_*-admissible mapping with respect to η;
2. T is α-η lower semi-continuous mapping;
3. there exist $z_0 \in X$ and $y_0 \in Tz_0$ such that $\alpha(z_0, y_0) \geq \eta(z_0, y_0)$;
4. there exist $\sigma > 0$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that

$$\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad \text{for all } s \geq 0,$$

and for any $z \in X$ with $D(z, Tz) > 0$, there exists $y \in F^2_\sigma$ with $\alpha(z, y) \geq \eta(z, y)$ satisfying

$$\tau(d(z, y)) + F(D(y, Ty)) \leq F(a_1d(z, y) + a_2D(z, Tz) + a_3D(y, Ty)) + a_4D(z, Ty) + a_5D(y, Tz),$$

where $a_1, a_2, a_3, a_4, a_5 \in [0, +\infty)$ such that $a_1 + a_2 + a_3 + 2a_4 = 1$ and $a_5 \neq 1$.

Then T has a fixed point in X.

Proof. Let $z_0 \in X$, since $Tz_0 \in K(X)$ for every $z \in X$, the set F^2_σ is non-empty for any $\sigma > 0$, then there exists $z_1 \in F^2_\sigma$ and by hypothesis $\alpha(z_0, z_1) \geq \eta(z_0, z_1)$. Assume that $z_1 \notin Tz_1$, otherwise z_1 is the fixed point of T. Then, since Tz_1 is closed, $D(z_1, Tz_1) > 0$, so, from (4), we have

$$\tau(d(z_0, z_1)) + F(D(z_1, Tz_1)) \leq F(a_1d(z_0, z_1) + a_2D(z_0, Tz_0) + a_3D(z_1, Tz_1) + a_4D(z_0, Tz_1) + a_5D(z_1, Tz_0)).$$

Now for $z_1 \in X$ there exists $z_2 \in F^2_{\sigma^2}$ with $z_2 \notin Tz_2$, otherwise z_2 is the fixed point of T, since Tz_2 is closed, so, $D(z_2, Tz_2) > 0$. Since T is generalized α_*-admissible mapping with respect to η, then $\alpha(z_1, z_2) \geq \eta(z_1, z_2)$. Again by using (4), we get

$$\tau(d(z_1, z_2)) + F(D(z_2, Tz_2)) \leq F(a_1d(z_1, z_2) + a_2D(z_1, Tz_1) + a_3D(z_2, Tz_2) + a_4D(z_1, Tz_2) + a_5D(z_2, Tz_1)).$$

On continuing recursively, we get a sequence $\{z_n\}_{n \in \mathbb{N}}$ in X such that $z_{n+1} \in F^2_{\sigma^n}$, $z_{n+1} \notin Tz_{n+1}$, $\alpha(z_n, z_{n+1}) \geq \eta(z_n, z_{n+1})$ and

$$\tau(d(z_n, z_{n+1})) + F(D(z_{n+1}, Tz_{n+1})) \leq F(a_1d(z_n, z_{n+1}) + a_2D(z_n, Tz_n) + a_3D(z_{n+1}, Tz_{n+1}) + a_4D(z_n, Tz_{n+1}) + a_5D(z_{n+1}, Tz_n)).$$

As $z_{n+1} \in Tz_n$, this implies that

$$\tau(d(z_n, z_{n+1})) + F(D(z_{n+1}, Tz_{n+1})) \leq F(a_1d(z_n, z_{n+1}) + a_2D(z_n, Tz_n) + a_3D(z_{n+1}, Tz_{n+1}) + a_4D(z_n, Tz_{n+1}) + a_5D(z_{n+1}, Tz_n)).$$

As $z_{n+1} \in F^2_{\sigma^n}$, we have

$$F(d(z_n, z_{n+1})) \leq F(D(z_n, Tz_n)) + \sigma.$$ \hspace{1cm} (3.2)

As Tz_n and Tz_{n+1} is compact, there exist $z_{n+1} \in Tz_n$ and $z_{n+2} \in Tz_{n+1}$ such that $d(z_n, z_{n+1}) = D(z_n, Tz_n)$ and $d(z_{n+1}, z_{n+2}) = D(z_{n+1}, Tz_{n+1})$, so equations (3.1) and (3.2) imply

$$\tau(d(z_n, z_{n+1})) + F(d(z_{n+1}, z_{n+2})) \leq F(a_1d(z_n, z_{n+1}) + a_2d(z_n, z_{n+1}) + a_3d(z_{n+1}, z_{n+2}) + a_4d(z_n, z_{n+2})).$$
and
\[\mathcal{F}(d(z_n, z_{n+1})) \leq \mathcal{F}(d(z_n, z_{n+1})) + \sigma. \] \tag{3.3}

Let \(d_n = d(z_n, z_{n+1}) \), for \(n \in \mathbb{N} \), then
\[\tau(d_n) + \mathcal{F}(d_{n+1}) \leq \mathcal{F}((a_1 + a_2)d_n + a_3d_{n+1} + a_4d(z_n, z_{n+2}) \leq \mathcal{F}((a_1 + a_2 + a_4)d_n + (a_3 + a_4)d_{n+1}). \] \tag{3.4}

Assume that there exists \(n \in \mathbb{N} \) such that \(d_{n+1} \geq d_n \), then from (3.4), we get
\[\tau(d_n) + \mathcal{F}(d_{n+1}) \leq \mathcal{F}(d_{n+1}). \]

This is a contradiction to the fact that \(\tau(d_n) > 0 \). Hence \(d_{n+1} < d_n \) for all \(n \in \mathbb{N} \). This shows that sequence \(\{d_n\} \) is decreasing. Therefore, there exists \(\delta \geq 0 \) such that \(\lim_{n \to \infty} d_n = \delta \). Now let \(\delta > 0 \). From (3.4), we get
\[\tau(d_n) + \mathcal{F}(d_{n+1}) \leq \mathcal{F}(d_n). \] \tag{3.5}

Combining (3.3) and (3.5) gives
\[\mathcal{F}(d_{n+1}) \leq \mathcal{F}(d_n) + \sigma - \tau(d_n) \leq \mathcal{F}(d_{n-1}) + 2\sigma - \tau(d_{n-1}) - \tau(d_{n-1}) - \cdots - \tau(d_0). \] \tag{3.6}

Let \(\tau(d_{p_n}) = \min\{\tau(d_0), \tau(d_1), \ldots, \tau(d_n)\} \) for all \(n \in \mathbb{N} \). From (3.6), we get
\[\mathcal{F}(d_{n+1}) \leq \mathcal{F}(d_0) + n(\sigma - \tau(d_{p_n})). \] \tag{3.7}

From (3.6), we also get
\[\mathcal{F}(D(z_{n+1}, T z_{n+1})) \leq \mathcal{F}(D(z_0, T z_0)) + n(\sigma - \tau(d_{p_n})). \]

Now consider the sequence \(\{\tau(d_{p_n})\} \). We distinguish two cases.

Case 1. For each \(n \in \mathbb{N} \), there is \(m > n \) such that \(\tau(d_{p_m}) > \tau(d_{p_n}) \). Then we obtain a subsequence \(\{d_{p_{n_k}}\} \) of \(\{d_{p_n}\} \) with \(\tau(d_{p_{n_k}}) > \tau(d_{p_{n_k+1}}) \) for all \(k \). Since \(d_{p_{n_k}} \to \delta^+ \), we deduce that
\[\lim_{k \to \infty} \inf \tau(d_{p_{n_k}}) > \sigma. \]

Hence \(\mathcal{F}(d_{n_k}) \leq \mathcal{F}(d_0) + n(\sigma - \tau(d_{p_{n_k}})) \) for all \(k \). Consequently, \(\lim_{k \to \infty} \mathcal{F}(d_{n_k}) = -\infty \) and by (F2), we obtain \(\lim_{k \to \infty} d_{p_{n_k}} = 0 \), which contradicts that \(\lim_{n \to \infty} d_n > 0 \).

Case 2. There is \(n_0 \in \mathbb{N} \) such that \(\tau(d_{p_{m_0}}) > \tau(d_{p_m}) \) for all \(m > n_0 \). Then \(\mathcal{F}(d_{m}) \leq \mathcal{F}(d_0) + m(\sigma - \tau(d_{p_{n_0}})) \) for all \(m > n_0 \). Hence \(\lim_{m \to \infty} \mathcal{F}(d_m) = -\infty \), so \(\lim_{m \to \infty} d_m = 0 \), which contradicts that \(\lim_{n \to \infty} d_m > 0 \).

Thus, \(\lim_{n \to \infty} d_n = 0 \). From (F3), there exists \(0 < r < 1 \) such that
\[\lim_{n \to \infty} (d_n)^r \mathcal{F}(d_n) = 0. \]

By (3.7), we get for all \(n \in \mathbb{N} \)
\[(d_n)^r \mathcal{F}(d_n) - (d_n)^r \mathcal{F}(d_0) \leq (d_n)^r n(\sigma - \tau(d - p_n)) \leq 0. \] \tag{3.8}

By letting \(n \to \infty \) in (3.8), we obtain
\[\lim_{n \to \infty} n(d_n)^r = 0 \]

This implies that there exists \(n_1 \in \mathbb{N} \) such that \(n(d_n)^r \leq 1 \), or, \(d_n \leq \frac{1}{n^{1/r}} \), for all \(n > n_1 \). Rest of the proof can be completed as in Theorem 2.8.
Following the arguments in the proof of Theorem 3.1 and taking $F \in \mathcal{F}_*$, we obtain the following result.

Theorem 3.2. Let (X, d) be a complete metric space and $\alpha, \eta : X \times X \rightarrow \mathbb{R}_+$ be two functions. Let $T : X \rightarrow C(X)$ and $F \in \mathcal{F}_*$ satisfy all conditions of Theorem 3.1. Then T has a fixed point in X.

By taking $a_1 = 1$ and $a_2 = a_3 = 0$ in Theorems 3.1 and 3.2 respectively, we get the following.

Corollary 3.3. Let (X, d) be a complete metric space and $\alpha, \eta : X \times X \rightarrow \mathbb{R}_+$ be two functions. Let $T : X \rightarrow K(X)$ and $F \in \mathcal{F}_*$ fulfill the following assertions:

1. T is generalized α-admissible mapping with respect to η;
2. T is α, η lower semi-continuous mapping;
3. there exist $z_0 \in X$ and $y_0 \in Tz_0$ such that $\alpha(z_0, y_0) \geq \eta(z_0, y_0)$;
4. there exist $\sigma > 0$ and a function $\tau : (0, \infty) \rightarrow (\sigma, \infty)$ such that

$$\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad \text{for all } s \geq 0,$$

and for any $z \in X$ with $D(z, Tz) > 0$, there exists $y \in F^*_\sigma$ with $\alpha(z, y) \geq \eta(z, y)$ satisfying

$$\tau(d(z, y)) + F(D(y, Ty)) \leq F(d(z, y)).$$

Then T has a fixed point in X.

Corollary 3.4. Let (X, d) be a complete metric space and $\alpha, \eta : X \times X \rightarrow \mathbb{R}_+$ be two functions. Let $T : X \rightarrow C(X)$ and $F \in \mathcal{F}_*$ satisfy all conditions of Corollary 3.3. Then T has a fixed point in X.

By taking $a_1 = a_2 = a_3 = 0$ and $a_4 = a_5 = 1/2$ in Theorems 3.1 and 3.2 respectively, we get the following results for F-contraction of Chatterjea type.

Corollary 3.5. Let (X, d) be a complete metric space and $\alpha, \eta : X \times X \rightarrow \mathbb{R}_+$ be two functions. Let $T : X \rightarrow K(X)$ and $F \in \mathcal{F}_*$ fulfill the following assertions:

1. T is generalized α-admissible mapping with respect to η;
2. T is α, η lower semi-continuous mapping;
3. there exist $z_0 \in X$ and $y_0 \in Tz_0$ such that $\alpha(z_0, y_0) \geq \eta(z_0, y_0)$;
4. there exist $\sigma > 0$ and a function $\tau : (0, \infty) \rightarrow (\sigma, \infty)$ such that

$$\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad \text{for all } s \geq 0,$$

and for any $z \in X$ with $D(z, Tz) > 0$, there exists $y \in F^*_\sigma$ with $\alpha(z, y) \geq \eta(z, y)$ satisfying

$$\tau(d(z, y)) + F(D(y, Ty)) \leq F\left(\frac{D(z, Ty) + D(y, Tz)}{2}\right).$$

Then T has a fixed point in X.

Corollary 3.6. Let (X, d) be a complete metric space and $\alpha, \eta : X \times X \rightarrow \mathbb{R}_+$ be two functions. Let $T : X \rightarrow C(X)$ and $F \in \mathcal{F}_*$ satisfy all conditions of Corollary 3.5. Then T has a fixed point in X.

If we choose $a_4 = a_5 = 0$ in Theorems 3.1 and 3.2 respectively, we obtain the following results for F-contraction of Reich-type.

Corollary 3.7. Let (X, d) be a complete metric space and $\alpha, \eta : X \times X \rightarrow \mathbb{R}_+$ be two functions. Let $T : X \rightarrow K(X)$ and $F \in \mathcal{F}_*$ fulfill the following assertions:

1. T is generalized α-admissible mapping with respect to η;
2. T is α-η lower semi-continuous mapping;
3. there exist $z_0 \in X$ and $y_0 \in Tz_0$ such that $\alpha(z_0, y_0) \geq \eta(z_0, y_0)$;
4. there exist $\sigma > 0$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that
 \[
 \lim_{t \to s^+} \inf \tau(t) > \sigma, \quad \text{for all } s \geq 0,
 \]
 and for any $z \in X$ with $D(z, Tz) > 0$, there exists $y \in F_\sigma$ with $\alpha(z, y) \geq \eta(z, y)$ satisfying
 \[
 \tau(d(z, y)) + F(D(y, Ty)) \leq F(a_1 d(z, y) + a_2 D(z, Tz) + a_3 D(y, Ty)),
 \]
 where $a_1, a_2, a_3, a_4, a_5 \in [0, +\infty)$ such that $a_1 + a_2 + a_3 = 1$ and $a_3 \neq 1$.

Then T has a fixed point in X.

Corollary 3.8. Let (X, d) be a complete metric space and $\alpha, \eta : X \times X \to \mathbb{R}_+$ be two functions. Let $T : X \to C(X)$ and $F \in \mathcal{F}$ satisfy all conditions of Corollary 3.7. Then T has a fixed point in X.

As an application of Theorems 3.1 and 3.2, we obtain the following.

Theorem 3.9. Let (X, d) be a complete metric space and $\alpha, \eta : X \times X \to \mathbb{R}_+$ be two functions. Let $T : X \to K(X)$ and $F \in \mathcal{F}$ fulfill the conditions (1) and (3) of Theorem 3.1 and the following assertions:
1. T is α-η continuous mapping;
2. there exists a function $\tau : (0, \infty) \to (0, \infty)$ such that
 \[
 \lim_{t \to s^+} \inf \tau(t) > 0, \quad \text{for all } s \geq 0,
 \]
 and for any $y, z \in X$ with $\alpha(z, y) \geq \eta(z, y)$ and $H(Tz, Ty) > 0$ satisfying
 \[
 \tau(d(z, y)) + F(H(Tz, Ty)) \leq F(a_1 d(z, y) + a_2 D(z, Tz) + a_3 D(y, Ty)) + a_4 D(z, Ty) + a_5 D(y, Tz)),
 \]
 where $a_1, a_2, a_3, a_4, a_5 \in [0, +\infty)$ such that $a_1 + a_2 + a_3 + 2a_4 = 1$ and $a_3 \neq 1$.

Then T has a fixed point in X.

Proof. By Lemma 2.3 we have T is α-η-lower semi continuous mapping. Also, for $z \in X$ and $y \in F_\sigma$ with $D(z, Tz) > 0$, we have
\[
F(D(y, Ty)) \leq F(H(Tz, Ty)) \leq F(a_1 d(z, y) + a_2 D(z, Tz) + a_3 D(y, Ty)) + a_4 D(z, Ty) + a_5 D(y, Tz)) - \tau(d(z, y)).
\]

Thus, all conditions of Theorem 3.1 are satisfied. Hence T has a fixed point. \hfill \Box

By similar arguments of Theorem 3.9 and using Theorem 3.2, we state the following theorem.

Theorem 3.10. Let (X, d) be a complete metric space and $\alpha, \eta : X \times X \to \mathbb{R}_+$ be two functions. Let $T : X \to K(X)$ and $F \in \mathcal{F}$ satisfy all conditions of Theorem 3.9. Then T has a fixed point in X.

Theorem 3.11. Let (X, d) be a complete metric space, $T : X \to K(X)$ and $F \in \mathcal{F}$. If there exist $\sigma > 0$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that
 \[
 \lim_{t \to s^+} \inf \tau(t) > \sigma, \quad \text{for all } s \geq 0,
 \]
 and for any $z \in X$ with $D(z, Tz) > 0$, there exists $y \in F_\sigma$ satisfying
 \[
 \tau(d(z, y)) + F(D(y, Ty)) \leq F(a_1 d(z, y) + a_2 D(z, Tz) + a_3 D(y, Ty)) + a_4 D(z, Ty) + a_5 D(y, Tz)),
 \]
 where $a_1, a_2, a_3, a_4, a_5 \in [0, +\infty)$ such that $a_1 + a_2 + a_3 + 2a_4 = 1$ and $a_3 \neq 1$, then T has a fixed point in X provided $z \to D(z, Tz)$ is lower semi-continuous.
Proof. Define $\alpha(z, y) = d(z, y) = \eta(z, y)$ for all $z, y \in \mathcal{X}$. Then by using Remark 2.7 and Theorem 3.1, we get the required result. \hfill \Box

Theorem 3.12. Let (\mathcal{X}, d) be a complete metric space, $T : \mathcal{X} \to C(\mathcal{X})$ and $F \in \mathfrak{F}_s$ satisfy all assertions of Theorem 3.11. Then T has a fixed point in \mathcal{X}.

Proof. Define $\alpha(z, y) = d(z, y) = \eta(z, y)$ for all $z, y \in \mathcal{X}$. Then by using Remark 2.7 and Theorem 3.2, we get the required result. \hfill \Box

By taking $a_1 = 1$ and $a_2 = a_3 = a_4 = a_5 = 0$ in Theorems 3.11 and 3.12, we get the following corollaries.

Corollary 3.13 (Theorem 11 of [6]). Let (\mathcal{X}, d) be a complete metric space, $T : \mathcal{X} \to K(\mathcal{X})$ and $F \in \mathfrak{F}_s$. If there exist $\sigma > 0$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that

$$
\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad \text{for all } s \geq 0,
$$

and for any $z \in \mathcal{X}$ with $D(z, T z) > 0$, there exists $y \in F_x^z$ satisfying

$$
\tau(d(z, y)) + F(D(y, T y)) \leq F(d(z, y)),
$$

then T has a fixed point in \mathcal{X} provided $z \to D(z, T z)$ is lower semi-continuous.

Corollary 3.14 (Theorem 10 of [6]). Let (\mathcal{X}, d) be a complete metric space, $T : \mathcal{X} \to C(\mathcal{X})$ and $F \in \mathfrak{F}_s$ satisfy all assertions of Corollary 3.13. Then T has a fixed point in \mathcal{X}.

By taking $a_1 = a_2 = a_3 = 0$ and $a_4 = a_5 = 1/2$ in Theorems 3.11 and 3.12, we get the following.

Corollary 3.15. Let (\mathcal{X}, d) be a complete metric space, $T : \mathcal{X} \to K(\mathcal{X})$ and $F \in \mathfrak{F}_s$. If there exist $\sigma > 0$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that

$$
\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad \text{for all } s \geq 0,
$$

and for any $z \in \mathcal{X}$ with $D(z, T z) > 0$, there exists $y \in F_x^z$ satisfying

$$
\tau(d(z, y)) + F(D(y, T y)) \leq F\left(\frac{D(z, T y) + D(y, T z)}{2}\right),
$$

then T has a fixed point in \mathcal{X} provided $z \to D(z, T z)$ is lower semi-continuous.

Corollary 3.16. Let (\mathcal{X}, d) be a complete metric space, $T : \mathcal{X} \to C(\mathcal{X})$ and $F \in \mathfrak{F}_s$ satisfy all assertions of Corollary 3.15. Then T has a fixed point in \mathcal{X}.

By choosing $a_4 = a_5 = 0$ in Theorems 3.11 and 3.12, we get the following.

Corollary 3.17. Let (\mathcal{X}, d) be a complete metric space, $T : \mathcal{X} \to K(\mathcal{X})$ and $F \in \mathfrak{F}_s$. If there exist $\sigma > 0$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that

$$
\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad \text{for all } s \geq 0,
$$

and for any $z \in \mathcal{X}$ with $D(z, T z) > 0$, there exists $y \in F_x^z$ satisfying

$$
\tau(d(z, y)) + F(D(y, T y)) \leq F(a_1 d(z, y) + a_2 D(z, T z) + a_3 D(y, T y)),
$$

where $a_1, a_2, a_3 \in [0, +\infty)$ such that $a_1 + a_2 + a_3 = 1$ and $a_3 \neq 1$, then T has a fixed point in \mathcal{X} provided $z \to D(z, T z)$ is lower semi-continuous.
Corollary 3.18. Let \((X, d)\) be a complete metric space, \(T : X \rightarrow C(X)\) and \(F \in \mathcal{F}_s\) satisfy all assertions of Corollary 3.17 Then \(T\) has a fixed point in \(X\).

Remark 3.19. Corollary 3.13 is a generalization of Theorem 2.3 of [26]. In fact, if \(\tau\) is a constant, then \(T\) is a multivalued \(F\)-contraction and every multivalued \(F\)-contraction is multivalued nonexpansive and every multivalued nonexpansive map is upper semi-continuous, then \(T\) is upper semi-continuous. Therefore, the function \(z \rightarrow D(z, Tz)\) is lower semi-continuous. On the other hand for any \(z \in X\) with \(D(z, Tz) > 0\) and \(y \in F_y\), we have

\[
\tau(d(z, y)) + F(D(y, Ty)) \leq \tau(d(z, y)) + F(H(Tz, Ty)) \leq F(d(z, y)).
\]

Hence \(T\) satisfies all conditions of Corollary 3.13 Similarly, Corollary 3.14 generalizes Theorem 2.5 of [26].

Remark 3.20. If we take \(T\), a single self-mapping on \(X\), Theorems 3.11 and 3.12 reduce to Theorem 1 of [30].

4. Fixed point results in partially ordered metric space

Let \((X, d, \preceq)\) be a partially ordered metric space and \(T : X \rightarrow 2^X\) be a multivalued mapping. For \(A, B \in 2^X\), \(A \preceq B\) implies that \(a \preceq b\) for all \(a \in A\) and \(b \in B\). We say that \(T\) is monotone increasing, if \(Ty \preceq Tz\), for all \(y, z \in X\), for which \(y \preceq z\). There are many applications in differential and integral equations of monotone mappings in ordered metric spaces (see [2] [7] [10] [17] and references therein). In this section, from Sections 2 and 3, we derive the following new results in partially ordered metric spaces.

Theorem 4.1. Let \((X, d, \preceq)\) be a complete partially ordered metric space, \(T : X \rightarrow K(X)\), \(F \in \mathcal{F}\) and \(G \in \mathcal{G}\) fulfill the following assertions:

1. if for any \(z \in X\) with \(D(z, Tz) > 0\), there exists \(y \in F_y\) with \(z \preceq y\) satisfying
 \[G(D(z, Tz), D(y, Ty), D(z, Ty), D(y, Tz)) + F(D(y, Ty)) \leq F(d(z, y));\]
2. \(T\) is monotone increasing;
3. there exist \(z_0 \in X\) and \(y_0 \in Tz_0\) such that \(z_0 \preceq y_0\);
4. for given \(z \in X\) and sequence \(\{z_n\}\) with \(z_n \rightarrow z\) as \(n \rightarrow \infty\) and \(z_n \preceq z_{n+1}\) for all \(n \in \mathbb{N}\), we have
 \[\lim_{n \rightarrow \infty} \inf D(z_n, Tz_n) \geq D(z, Tz),\]
then \(T\) has a fixed point in \(X\) provided \(\sigma < \tau\).

Proof. Define \(\alpha, \eta : X \times X \rightarrow [0, \infty)\) by

\[
\alpha(z, y) = \begin{cases} 2 & z \preceq y, \\ 0 & \text{otherwise,} \end{cases} \quad \eta(z, y) = \begin{cases} 1 & z \preceq y, \\ 0 & \text{otherwise,} \end{cases}
\]

then for \(z, y \in X\) with \(z \preceq y\), \(\alpha(y, z) \geq \eta(y, z)\) implies \(u \preceq v\) for all \(u \in Tz\) and \(v \in Ty\). Hence \(\alpha(u, v) = 2 = \eta(u, v)\), for all \(u \in Tz\) and \(v \in Ty\) and \(\alpha(u, v) = \eta(u, v) = 0\) otherwise. This shows that \(T\) is generalized \(\alpha\)-admissible mapping with respect to \(\eta\). Thus, all the conditions of Theorem 2.8 are satisfied and \(T\) has a fixed point.

By similar arguments as in Theorem 4.1, we state the following.

Theorem 4.2. Let \((X, d, \preceq)\) be a complete partially ordered metric space, \(T : X \rightarrow C(X)\), \(F \in \mathcal{F}_s\) and \(G \in \mathcal{G}\) fulfill all conditions of Theorem 4.1 Then \(T\) has a fixed point in \(X\) provided \(\sigma < \tau\).

Theorem 4.3. Let \((X, d, \preceq)\) be a complete partially ordered metric space, \(T : X \rightarrow K(X)\), \(F \in \mathcal{F}\) and \(G \in \mathcal{G}\) fulfill the conditions (2) and (3) of Theorem 4.1 and the following assertions:
1. If for any \(z, y \in X \) with \(z \preceq y \) and \(H(Tz, Ty) > 0 \) satisfying
\[
G(D(z, Tz), D(y, Ty), D(z, Ty), D(y, Tz)) + F(H(Tz, Ty)) \leq F(d(z, y));
\]
2. for given \(z \in X \) and sequence \(\{z_n\} \) with \(z_n \to z \) as \(n \to \infty \) and \(z_n \preceq z_{n+1} \) for all \(n \in \mathbb{N} \), we have \(Tz_n \to Tz \),
then \(T \) has a fixed point in \(X \).

Theorem 4.4. Let \((X, d, \preceq)\) be a complete partially ordered metric space, \(T : X \to C(X) \), \(F \in \mathcal{F}_* \) and \(G \in \mathcal{G} \) fulfill all conditions of Theorem 4.3. Then \(T \) has a fixed point in \(X \).

By taking \(G = G_L \), as in Corollary 4.5, Theorems 4.1–4.4 reduce to the following.

Corollary 4.5. Let \((X, d, \preceq)\) be a complete partially ordered metric space, \(T : X \to K(X) \) and \(F \in \mathcal{F}_* \) satisfy conditions (2)-(4) of Theorem 4.1 and if for any \(z \in X \) with \(D(z, Tz) > 0 \), there exists \(y \in F^* \) with \(z \preceq y \) satisfying
\[
\tau + F(D(y, Ty)) \leq F(d(z, y)),
\]
then \(T \) has a fixed point in \(X \) provided \(\sigma < \tau \).

Corollary 4.6. Let \((X, d, \preceq)\) be a complete partially ordered metric space, \(T : X \to C(X) \) and \(F \in \mathcal{F}_* \) satisfy all conditions of Corollary 4.5. Then \(T \) has a fixed point in \(X \) provided \(\sigma < \tau \).

Corollary 4.7. Let \((X, d, \preceq)\) be a complete partially ordered metric space, \(T : X \to K(X) \) and \(F \in \mathcal{F}_* \) fulfill conditions (2)-(4) of Theorem 4.1 and if for any \(z \in X \) with \(z \preceq y \) and \(H(Tz, Ty) > 0 \) we have
\[
\tau + F(H(Tz, Ty)) \leq F(d(z, y)),
\]
then \(T \) has a fixed point in \(X \).

Corollary 4.8. Let \((X, d, \preceq)\) be a complete partially ordered metric space, \(T : X \to C(X) \) and \(F \in \mathcal{F}_* \) satisfy all conditions of Corollary 4.7. Then \(T \) has a fixed point in \(X \) provided \(\sigma < \tau \).

Theorem 4.9. Let \((X, d)\) be a complete metric space, \(T : X \to K(X) \) and \(F \in \mathcal{F}_* \) fulfill the following assertions:
1. \(T \) is monotone increasing;
2. there exist \(z_0 \in X \) and \(y_0 \in Tz_0 \) such that \(z_0 \preceq y_0 \);
3. for given \(z \in X \) and sequence \(\{z_n\} \) with \(z_n \to z \) as \(n \to \infty \) and \(z_n \preceq z_{n+1} \) for all \(n \in \mathbb{N} \) we have
\[
\lim_{n \to \infty} \inf D(z_n, Tz_n) \geq D(z, Tz);
\]
4. there exist \(\sigma > 0 \) and a function \(\tau : (0, \infty) \to (\sigma, \infty) \) such that
\[
\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad \text{for all } s \geq 0,
\]
and for any \(z \in X \) with \(D(z, Tz) > 0 \), there exists \(y \in F^* \) with \(z \preceq y \) satisfying
\[
\tau(d(z, y)) + F(D(y, Ty)) \leq F(a_1 d(z, y) + a_2 D(z, Tz) + a_3 D(y, Ty) + a_4 D(z, Ty) + a_5 D(y, Tz)),
\]
where \(a_1, a_2, a_3, a_4, a_5 \in [0, +\infty) \) such that \(a_1 + a_2 + a_3 + 2a_4 = 1 \) and \(a_3 \neq 1 \).
Then \(T \) has a fixed point in \(X \).
Theorem 4.10. Let \((X,d,\preceq)\) be a complete partially ordered metric space, \(T : X \to C(X)\) and \(F \in \mathcal{F}\) fulfill all conditions of Theorem 4.9. Then \(T\) has a fixed point in \(X\) provided \(\sigma < \tau\).

Theorem 4.11. Let \((X,d,\preceq)\) be a complete partially ordered metric space, \(T : X \to K(X)\) and \(F \in \mathcal{F}\) fulfill the conditions (1) and (2) of Theorem 4.9 and the following assertions:

1. for given \(z \in X\) and sequence \(\{z_n\}\) with \(z_n \to z\) as \(n \to \infty\) and \(z_n \preceq z_{n+1}\) for all \(n \in \mathbb{N}\), we have \(Tz_n \to Tz\);
2. there exist \(\sigma > 0\) and a function \(\tau : (0,\infty) \to (\sigma,\infty)\) such that
 \[
 \lim_{t \to s^+} \inf \tau(t) > \sigma, \quad \text{for all } s \geq 0,
 \]
 and for any \(z,y \in X\) with \(z \preceq y\) and \(H(Tz,Ty) > 0\), satisfying
 \[
 \tau(d(z,y)) + F(H(Tz,Ty)) \leq F(a_1d(z,y) + a_2D(z,Tz) + a_3D(y,Ty) + a_4D(z,Ty) + a_5D(y,Tz)),
 \]
where \(a_1,a_2,a_3,a_4,a_5 \in [0,\infty)\) such that \(a_1 + a_2 + a_3 + 2a_4 = 1\) and \(a_3 \neq 1\).
Then \(T\) has a fixed point in \(X\).

Theorem 4.12. Let \((X,d,\preceq)\) be a complete partially ordered metric space, \(T : X \to C(X)\) and \(F \in \mathcal{F}\) fulfill all conditions of Theorem 4.11. Then \(T\) has a fixed point in \(X\) provided \(\sigma < \tau\).

5. Suzuki-Wardowski type fixed point results

In this section we establish certain fixed point results for Suzuki-Wardowski type multivalued \(F\)-contractions.

Theorem 5.1. Let \((X,d)\) be a complete metric space, \(T : X \to K(X)\) and \(F \in \mathcal{F}\). If for \(z,y \in X\) with \(\frac{1}{2}D(z,Tz) \leq d(z,y)\) and \(D(z,Tz) > 0\), we have
 \[
 \tau + F(D(y,Ty)) \leq F(d(z,y)),
 \]
then \(T\) has a fixed point in \(X\) provided \(z \to D(z,Tz)\) is lower semi-continuous.

Proof. Suppose that \(G = G_{\mathcal{F}}\) as in Corollary 2.10. Let \(z \in X\) with \(D(z,Tz) > 0\) and \(y \in F_z, \sigma < \tau\). Then \(y \in Tz\), therefore we have \(\frac{1}{2}D(z,Tz) \leq D(z,Tz) \leq d(z,y)\). So, by using (5.1), we get
 \[
 G(D(z,Tz),D(y,Ty),D(z,Ty),D(y,Tz)) + F(D(y,Ty)) = \tau + F(D(y,Ty)) \leq F(d(z,y)).
 \]
Thus, all conditions of Theorem 2.18 hold and \(T\) has a fixed point.

Theorem 5.2. Let \((X,d)\) be a complete metric space, \(T : X \to C(X)\) and \(F \in \mathcal{F}\). If for \(z,y \in X\) with \(\frac{1}{2}D(z,Tz) \leq d(z,y)\) and \(D(z,Tz) > 0\), we have
 \[
 \tau + F(D(y,Ty)) \leq F(d(z,y)),
 \]
then \(T\) has a fixed point in \(X\) provided \(z \to D(z,Tz)\) is lower semi-continuous.

Proof. By taking \(G = G_{\mathcal{F}}\) as in Corollary 2.10 and by using Theorem 2.19 we get the required result.

Theorem 5.3. Let \((X,d)\) be a complete metric space, \(T : X \to K(X)\) and \(F \in \mathcal{F}\). If for \(z,y \in X\) with \(\frac{1}{2}D(z,Tz) \leq d(z,y)\) and \(H(Tz,Ty) > 0\), we have
 \[
 \tau + F(H(Tz,Ty)) \leq F(d(z,y)),
 \]
then \(T\) has a fixed point in \(X\).
Proof. Since every multivalued F-contraction is multivalued nonexpansive and every multivalued nonexpansive map is upper semi-continuous, then \mathcal{T} is upper semi-continuous. Therefore, the function $z \to D(z, Tz)$ is lower semi-continuous (see the Proposition 4.2.6 of [3]). Also, for $z, y \in \mathcal{X}$ with $\frac{1}{2}D(z, Tz) \leq d(z, y)$ and $D(z, Tz) > 0$ we have

$$\tau + F(D(y, Ty)) \leq \tau + F(H(Tz, Ty)) \leq F(d(z, y)).$$

Thus, all conditions of Theorem 3.11 hold and \mathcal{T} has a fixed point. \qed

By similar arguments as in Theorem 5.3, we state the following theorem and omit its proof.

Theorem 5.4. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $F \in \mathcal{F}$. If for $z, y \in \mathcal{X}$ with $\frac{1}{2}D(z, Tz) \leq d(z, y)$ and $H(Tz, Ty) > 0$, we have

$$\tau + F(H(Tz, Ty)) \leq F(d(z, y)),$$

then \mathcal{T} has a fixed point in \mathcal{X}.

By considering \mathcal{T} a single-valued mapping in Theorem 5.3, we get the following.

Corollary 5.5. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ and $F \in \mathcal{F}$. If for $z, y \in \mathcal{X}$ with $\frac{1}{2}d(z, Tz) \leq d(z, y)$ and $d(Tz, Ty) > 0$, we have

$$\tau + F(d(Tz, Ty)) \leq F(d(z, y)),$$

then \mathcal{T} has a fixed point in \mathcal{X}.

Remark 5.6. Corollary 5.5 is a generalization of the Corollary 3.1 of [18]. In fact, let Corollary 3.1 of [18] holds, then $\frac{1}{2}d(z, Tz) \leq d(z, Tz) \leq d(z, y)$. This implies that $\tau + F(d(Tz, Ty)) \leq F(d(z, y))$. Hence \mathcal{T} satisfies all conditions of Corollary 5.5 and \mathcal{T} has a fixed point.

Theorem 5.7. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ be a continuous mapping and $F \in \mathcal{F}$. If there exists a function $\tau : (0, \infty) \to (0, \infty)$ such that

$$\lim_{t \to s^+} \inf \tau(t) > 0, \quad \text{for all } s \geq 0,$$

and for $z, y \in \mathcal{X}$ with $\frac{1}{2}D(z, Tz) \leq d(z, y)$ and $H(Tz, Ty) > 0$, we have

$$\tau(d(z, y)) + F(H(Tz, Ty)) \leq F(a_1d(z, y) + a_2D(z, Tz) + a_3D(y, Ty) + a_4D(z, Ty) + a_5D(y, Tz)),$$

(5.2)

where $a_1, a_2, a_3, a_4, a_5 \in [0, +\infty)$ such that $a_1 + a_2 + a_3 + 2a_4 = 1$ and $a_3 \neq 1$, then \mathcal{T} has a fixed point in \mathcal{X}.

Proof. Let $\lim_{t \to s^+} \inf \tau(t) > \sigma > 0$, and for all $s \geq 0$ also suppose that $z \in \mathcal{X}$ with $D(z, Tz) > 0$ and $y \in F^*_\sigma, \sigma < \tau$. Then $\lim_{t \to s^+} \inf \tau(t) > 0$ and $y \in Tz$, therefore we have $\frac{1}{2}D(z, Tz) \leq D(z, Tz) \leq d(z, y)$. So, by using (5.2), we get

$$\tau(d(z, y)) + F(D(y, Ty)) \leq \tau(d(z, y)) + F(H(Tz, Ty)) \leq F(a_1d(z, y) + a_2D(z, Tz) + a_3D(y, Ty) + a_4D(z, Ty) + a_5D(y, Tz)).$$

Since \mathcal{T} is continuous, then \mathcal{T} is upper semi-continuous. Therefore, the function $z \to D(z, Tz)$ is lower semi-continuous (see the Proposition 4.2.6 of [3]). Thus, all conditions of Theorem 3.11 hold and \mathcal{T} has a fixed point. \qed
Theorem 5.8. Let \((X,d)\) be a complete metric space, \(T : X \to C(X)\) be a continuous mapping and \(F \in \mathfrak{F}_s\). If there exists a function \(\tau : (0, \infty) \to (\sigma, \infty)\) such that
\[
\lim_{t \to s^+} \inf \tau(t) > 0, \quad \text{for all } s \geq 0,
\]
and for \(z, y \in X\) with \(\frac{1}{2}D(z, Tz) \leq d(z, y)\) and \(H(Tz, Ty) > 0\), we have
\[
\tau(d(z, y)) + F(H(Tz, Ty)) \leq F(a_1 d(z, y) + a_2 D(z, Tz) + a_3 D(y, Ty) + a_4 D(z, Ty) + a_5 D(y, Tz)),
\]
where \(a_1, a_2, a_3, a_4, a_5 \in [0, +\infty)\) such that \(a_1 + a_2 + 3a_3 + 2a_4 = 1\) and \(a_3 \neq 1\. Then \(T\) has a fixed point in \(X\).

Proof. By using the same arguments as in Theorem 5.7 and by using Theorem 3.12, we get the required result.

6. Applications to orbitally lower semi-continuous mappings

Let \(z_0 \in X\) be any point. Then an orbit \(O(z_0)\) of a mapping \(T : X \to 2^X\) at a point \(z_0\) is a set
\[
O(z_0) = \{ z_{n+1} : z_{n+1} \in Tz_n, \ n = 0, 1, 2, \ldots \}.
\]
Recall that a function \(g : X \to \mathbb{R}\) is called \(T\)-orbitally lower semi-continuous, if for any sequence \(\{z_n\}\) in \(X\) with \(z_{n+1} \in Tz_n\) for all \(n = 0, 1, 2, \ldots\), \(g(z) \leq \liminf_{n \to \infty} g(z_n)\), whenever \(\lim_{n \to \infty} z_n = z\) \(9\). Many authors extended Nadler’s fixed point theorem for lower semi-continuous mappings (see \([13, 22, 23]\) and references therein). In this section, as an application of our results proved in Sections 1 and 2, we deduce certain fixed point theorems.

Theorem 6.1. Let \((X, d)\) be a complete metric space, \(T : X \to K(X)\), \(F \in \mathfrak{F}\) and \(G \in \mathfrak{G}\). If for \(z \in O(w), w \in X\) with \(D(z, Tz) > 0\), there exists \(y \in \mathcal{F}^*_\sigma\) satisfying
\[
G(D(z, Tz), D(y, Ty), D(z, Ty), D(y, Tz)) + F(D(y, Ty)) \leq F(d(z, y)), \quad (6.1)
\]
then \(T\) has a fixed point in \(X\) provided \(\sigma < \tau\) and \(z \to D(z, Tz)\) is \(T\)-orbitally lower semi-continuous.

Proof. Define \(\alpha, \eta : X \times X \to \mathbb{R}_+\) by
\[
\alpha(z, y) = \begin{cases} 2 & \text{if } z, y \in O(w), \\ 0 & \text{otherwise}, \end{cases} \quad \text{and } \eta(z, y) = 1, \ \forall z, y \in X.
\]

Then \(\alpha(z, y) \geq \eta(z, y)\), when \(z, y \in O(w)\). Since \(z \to D(z, Tz)\) is \(T\)-orbitally lower semi-continuous, so for any sequence \(\{z_n\}\) in \(X\) with \(z_{n+1} \in Tz_n\) and \(\lim_{n \to \infty} d(z_n, z) = 0\), we have
\[
D(z, Tz) \leq \lim_{n \to \infty} \inf D(z_n, Tz_n).
\]
This implies that \(T\) is \(\alpha, \eta\)-orbitally lower semi-continuous mapping. Now let \(\alpha(z, y) \geq \eta(z, y)\), then \(z, y \in O(w)\). So, for all \(u \in Tz\) and \(v \in Ty\) we have \(u, v \in O(w)\). Therefore, \(\alpha(u, v) = 2 > 1 = \eta(u, v)\). This shows that \(T\) is generalized \(\alpha, \eta\)-admissible mapping with respect to \(\eta\). Also, from equation (6.1), for any \(z \in X\) with \(D(z, Tz) > 0\), there exists \(y \in \mathcal{F}^*_\sigma\) with \(\alpha(z, y) \geq \eta(z, y)\), we have
\[
G(D(z, Tz), D(y, Ty), D(z, Ty), D(y, Tz)) + F(D(y, Ty)) \leq F(d(z, y)).
\]
Thus, all the conditions of Theorem 2.8 are satisfied and so \(T\) has a fixed point.

\(\square\)
By similar arguments as in Theorem 6.1, we state the following theorem and omit its proof.

Theorem 6.2. Let \((X, d)\) be a complete metric space, \(T : X \to C(X)\), \(F \in \mathfrak{F}\), and \(G \in \mathfrak{G}\). If for \(z \in O(w), w \in X\) with \(D(z, Tz) > 0\), there exists \(y \in \mathcal{F}^*_\sigma\) satisfying
\[
G(D(z, Tz), D(y, Ty), D(z, Ty), D(y, Tz)) + F(D(y, Ty)) \leq F(d(z, y)),
\]
then \(T\) has a fixed point in \(X\) provided \(\sigma < \tau\) and \(z \to D(z, Tz)\) is \(T\)-orbitally lower semi-continuous.

Theorem 6.3. Let \((X, d)\) be a complete metric space, \(T : X \to K(X)\), \(F \in \mathfrak{F}\) and \(G \in \mathfrak{G}\). If for \(z, y \in O(w)\) with \(H(Tz, Ty) > 0\) we have
\[
G(D(z, Tz), D(y, Ty), D(z, Ty), D(y, Tz)) + F(H(Tz, Ty)) \leq F(d(z, y)),
\]
then \(T\) has a fixed point in \(X\) provided \(T\) is orbitally continuous.

Proof. By defining \(\alpha(z, y), \eta(z, y)\) the same as in the proof of Theorem 6.1 and applying Theorem 2.14, we get the required result.

Theorem 6.4. Let \((X, d)\) be a complete metric space, \(T : X \to K(X)\) and \(F \in \mathfrak{F}\). If for \(z, y \in O(w)\) with \(H(Tz, Ty) > 0\) satisfying
\[
G(D(z, Tz), D(y, Ty), D(z, Ty), D(y, Tz)) + F(H(Tz, Ty)) \leq F(d(z, y)),
\]
then \(T\) has a fixed point in \(X\) provided \(T\) is orbitally continuous.

Proof. By defining \(\alpha(z, y), \eta(z, y)\) the same as in the proof of Theorem 6.1 and applying Theorem 2.15, we get the required result.

By taking \(G = G_L\), as in Corollary 2.11, Theorems 6.1, 6.2, 6.3 and 6.4 reduce to the following.

Corollary 6.5. Let \((X, d)\) be a complete metric space, \(T : X \to K(X)\) and \(F \in \mathfrak{F}\). If for \(z \in O(w), w \in X\) with \(D(z, Tz) > 0\), there exists \(y \in \mathcal{F}^*_\sigma\) satisfying
\[
\tau + F(D(y, Ty)) \leq F(d(z, y)),
\]
then \(T\) has a fixed point in \(X\) provided \(\sigma < \tau\) and \(z \to D(z, Tz)\) is \(T\)-orbitally lower semi-continuous.

Corollary 6.6. Let \((X, d)\) be a complete metric space, \(T : X \to C(X)\) and \(F \in \mathfrak{F}\). If for \(z \in O(w), w \in X\) with \(D(z, Tz) > 0\), there exists \(y \in \mathcal{F}^*_\sigma\) satisfying
\[
\tau + F(D(y, Ty)) \leq F(d(z, y)),
\]
then \(T\) has a fixed point in \(X\) provided \(\sigma < \tau\) and \(z \to D(z, Tz)\) is \(T\)-orbitally lower semi-continuous.

Corollary 6.7. Let \((X, d)\) be a complete metric space, \(T : X \to K(X)\) and \(F \in \mathfrak{F}\). If for \(z, y \in O(w)\) with \(H(Tz, Ty) > 0\) satisfying
\[
\tau + F(H(Tz, Ty)) \leq F(d(z, y)),
\]
then \(T\) has a fixed point in \(X\) provided \(T\) is orbitally continuous.

Corollary 6.8. Let \((X, d)\) be a complete metric space, \(T : X \to C(X)\) and \(F \in \mathfrak{F}\). If for \(z, y \in O(w)\) with \(H(Tz, Ty) > 0\) satisfying
\[
\tau + F(H(Tz, Ty)) \leq F(d(z, y)),
\]
then \(T\) has a fixed point in \(X\) provided \(T\) is orbitally continuous.
Remark 6.9. If we take \mathcal{T}, a single mapping from X to X, Theorems 6.3 and 6.4 reduce to the Theorem 4.1 of [18] and Corollaries 6.7 and 6.8 reduce to Corollary 4.1 of [18].

Theorem 6.10. Let (X, d) be a complete metric space, $\mathcal{T} : X \to K(X)$ and $F \in \mathfrak{F}$. If there exist $\sigma > 0$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that
\[
\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad \text{for all } s \geq 0,
\]
and for any $z \in O(w), w \in X$ with $D(z, Tz) > 0$, there exists $y \in F(z)$ satisfying
\[
\tau(d(z, y)) \leq \mathcal{F}(d(y, Tz)) \leq \mathcal{F}(a_1 d(z, y) + a_2 D(z, Tz) + a_3 D(y, Tz) + a_4 D(z, Ty) + a_5 D(y, Tz)),
\]
where $a_1, a_2, a_3, a_4, a_5 \in [0, +\infty)$ such that $a_1 + a_2 + a_3 + 2a_4 = 1$ and $a_3 \neq 1$, then \mathcal{T} has a fixed point in X provided $z \to D(z, Tz)$ is T-orbitally lower semi-continuous.

Proof. By defining $\alpha(z, y), \eta(z, y)$ the same as in the proof of Theorem 6.1 and applying Theorem 3.11 we get the required result.

Theorem 6.11. Let (X, d) be a complete metric space, $\mathcal{T} : X \to C(X)$ and $F \in \mathfrak{F}$, satisfying all conditions of Theorem 6.10. Then \mathcal{T} has a fixed point in X.

References

[28] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for \(\alpha \psi \)-contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165.

