On the extended multivalued Geraghty type contractions

Hojjat Afsharia, Hamed H. Alsulamib, Erdal Karapınarc,∗

aFaculty of Basic Science, University of Bonab, Bonab, Iran.
bNonlinear Analysis and Applied Mathematics Research Group (NAAM), King Abdulaziz University, Jeddah, Saudi Arabia.
cAtilim University, Department of Mathematics, 06836, Incek, Ankara, Turkey.

Communicated by W. Shatanawi

Abstract

In this paper we present some absolute retract results for modified Geraghty multivalued type contractions in \(b \)-metric space. Our results, generalize several existing results in the corresponding literature. We also present some examples to support the obtained results. ©2016 all rights reserved.

Keywords: Fixed points, extended multivalued Geraghty type contractions.

2010 MSC: 46T99, 47H10, 54H25.

1. Introduction and preliminaries

Let \(P(X) \) denote the collection of all nonempty subsets of a set \(X \neq \emptyset \), and \(F : X \to P(X) \) be multifunctions (multivalued mapping). Throughout the paper, set of all nonempty closed and bounded subsets of \(X \) will be represented by \(P_{b,cl}(X) \) under the assumption that \(X \) is equipped with a metric. Further, the set of all fixed point(s) of \(F \) will be denoted by \(\mathcal{F}_F \), that is,

\[
\mathcal{F}_F = \{ x \in X : x \in Fx \}.
\]

Let \((X, d)\) be a metric space and \(B(x_0, r) = \{ x \in X : d(x_0, x) < r \} \). For \(x \in X \) and \(A, B \subseteq X \), we set

\[
D : P(X) \times P(X) \to [0, \infty) \cup \{ +\infty \}, \text{ such that}
\]

\[
D(A, B) = \sup \{ D(a, B) : a \in A \} \text{ and } D(B, A) = \sup \{ D(b, A) : b \in B \}.
\]

*Corresponding author

Email addresses: hojat.afshari@yahoo.com, hojat.afshari@bonabu.ac.ir (Hojjat Afshari), hamed9@hotmail.com, hhaalsalmi@kau.edu.sa (Hamed H. Alsulami), erdalkarapinar@yahoo.com, erdal.karapinar@atilim.edu.tr (Erdal Karapınar)

Received 2016-08-01
Let $H : P(X) \times P(X) \to [0, \infty) \cup \{+\infty\}$ be defined as

$$H(A, B) = \begin{cases} \max\{D(A, B), D(B, A)\}, & A \neq \emptyset \neq B, \\ 0, & A = \emptyset = B, \\ +\infty, & \text{otherwise.} \end{cases}$$

Note that H forms a metric and it is called the Hausdorff metric (for more details see e.g. [13, 14] and the references therein).

For non-empty sets X, Y, a mapping $\varphi : X \to Y$ is called a selection of $F : X \to P(Y)$, whenever $\varphi(x) \in Fx$ for all $x \in X$. A topological space X is an absolute retract for metric spaces if for each metric space Y, $A \in P_d(Y)$ and continuous function $\psi : A \to X$, there exists a continuous function $\varphi : Y \to X$ such that $\varphi|_A = \psi$ (see [12]).

Let \mathcal{M} be the collection of all metric spaces, $X \in \mathcal{M}$, $D \in P(\mathcal{M})$ and $F : X \to P_{bcl}(X)$ a lower semi-continuous multifunction. We say that F has the selection property with respect to D if for each $Y \in D$, continuous function $f : Y \to X$ and continuous functional $g : Y \to (0, \infty)$ such that

$$G(y) := F(f(y)) \cap B(f(y), g(y)) \neq \emptyset$$

for all $y \in Y$, $A \in P_d(Y)$, every continuous selection $\psi : A \to X$ of $G|_A$ admits a continuous extension $\varphi : Y \to X$, which is a selection of G. If $D = \mathcal{M}$, then we say that F has the selection property and we denote this by $F \in Sp(X)$ (for more details see [13, 14]).

In this paper, we present some new results on absolute retract (see e.g. [4, 10, 12–14]) of the fixed points set of extended multivalued Geraghty type contractions. Our results combine, extend and generalize several existing results on the corresponding literature (see e.g. [1, 3, 8, 9, 11, 15, 16] and related references therein).

2. Fixed points set of extended multivalued Geraghty type contractions

In the all over this paper let Ψ be the set of all increasing and continuous functions $\psi : [0, \infty) \to [0, \infty)$ satisfying the following property: $\psi(ct) \leq c\psi(t)$ for all $c > 1$ and $\psi(0) = 0$. We denote by Θ the family of all increasing functions $\theta : [0, \infty) \to (0, 1)$.

Definition 2.1.
Let $F : X \to P_{bcl}(X)$ be a multivalued mapping and $\alpha : X \times X \to [0, \infty)$ be a given function. Then F is said to be α-admissible if

$$(T3) \quad \alpha(x, y) \geq 1 \text{ for all } y \in Fx \Rightarrow \alpha(y, z) \geq 1, \text{ for all } z \in Fy.$$

Example 2.2.
Let $X = [1, 2]$ and $Fx = [x - \frac{1}{2}, 2]$. Define $\alpha(x, y) = 1$ if $x = y = 2$ and $\alpha(x, y) = 0$ otherwise. Clearly, F is α-admissible.

Definition 2.3.
Let (X, d) be a metric space and $F : X \to P_{bcl}(X)$ be a multivalued mapping. We say that F is an extended multivalued Geraghty type contraction if there exist $\alpha : X \times X \to [0, \infty)$, $a \in [0, 1)$ and some $L \geq 0$ such that

$$\eta(a)D(x, F(x)) \leq d(x, y) \Rightarrow \alpha(x, y)\psi(H(Fx, Fy)) \leq \theta(\psi(M(x, y)))\psi(M(x, y)) + L\phi(N(x, y))$$

for all $x, y \in X$, where,

$$M(x, y) = \max\{d(x, y), D(x, Fx), D(y, Fy), \frac{D(x, Fy) + D(y, Fx)}{2}\}$$

and

$$N(x, y) = \min\{D(x, Fx), D(y, Fx)\}$$
and \(\eta(a) = \frac{1}{1+a}, \theta \in \Theta \) and \(\psi, \phi \in \Psi \).

Furthermore, we say that \(F \) is \textit{generalized multivalued Geraghty type contraction} if

\[
\alpha(x,y)\psi(H(Fx, Fy)) \leq \theta(\psi(M(x,y)))\psi(M(x,y)) + L\phi(N(x,y)) \tag{2.1}
\]

for all \(x, y \in X \), where, \(L, M(x,y), N(x,y), \alpha(x,y), \theta, \psi, \phi \) are defined as above.

\textbf{Remark 2.4.} The functions belonging to \(\Theta \) are strictly smaller than 1. Then, the expression \(\theta(\psi(M(x,y))) \) in (2.1) satisfies

\[\theta(\psi(M(x,y))) < 1 \]

for any \(x, y \in X \) with \(x \neq y \).

\textbf{Theorem 2.5.} Let \((X,d)\) be a complete metric space and \(F : X \to P_{b,d}(X) \) be a extended multivalued Geraghty type contraction such that

(i) \(F \) is \(\alpha \)-admissible;

(ii) there exists \(x_0 \in X \) and \(x_1 \in Fx_0 \) such that \(\alpha(x_0,x_1) \geq 1 \);

(iii) \(F \) is continuous.

Then \(F \) has a fixed point.

\textbf{Proof.} By condition (ii), there exists \(x_0 \in X \) and \(x_1 \in Fx_0 \) such that \(\alpha(x_0,x_1) \geq 1 \). If \(x_1 = x_0 \), as \(x_1 \in Fx_1 \), then \(x_1 \) is a fixed point of \(F \) and we have nothing to prove. First, we note that

\[
M(x_0,x_1) = \max\{d(x_0,x_1), D(x_0, Fx_0), D(x_1, Fx_1), \frac{D(x_0, Fx_1) + D(x_1, Fx_0)}{2}\}
\]

\[= \max\{d(x_0,x_1), D(x_1, Fx_1)\} \]

Since \(\eta(a)D(x_0, Fx_0) \leq d(x_0, x_1) \), if \(M(x_0,x_1) = D(x_1, Fx_1) \), then

\[
\psi(D(x_1, Fx_1)) \leq \alpha(x_0,x_1)\psi(H(Fx_0, Fx_1)) \leq \theta(\psi(D(x_1, Fx_1)))\psi(D(x_1, Fx_1)) + L\phi(0)
\]

which is a contradiction. It follows that \(M(x_0,x_1) = d(x_0,x_1) \). Let \(q = \frac{1}{\sqrt{\theta(\psi(d(x_0,x_1)))}} > 1 \), then there exists \(x_2 \in Fx_1 \) such that

\[
\psi(d(x_1,x_2)) \leq q\alpha(x_0,x_1)\psi(H(Fx_0, Fx_1)). \tag{2.2}
\]

Using (2.1) with \(x = x_0 \) and \(y = x_1 \), by (2.2) we get

\[
\psi(d(x_1,x_2)) \leq \sqrt{\theta(\psi(d(x_0,x_1)))\psi(d(x_0,x_1))}. \tag{2.3}
\]

Now, by the properties of the function \(\psi \), we deduce

\[
\psi\left(\frac{d(x_1,x_2)}{\sqrt{\theta(\psi(d(x_0,x_1)))}}\right) \leq \frac{1}{\sqrt{\theta(\psi(d(x_0,x_1)))}} \psi(d(x_1,x_2)) < \psi(d(x_0,x_1))
\]

and so \(d(x_1,x_2) < \sqrt{\theta(\psi(d(x_0,x_1)))d(x_0,x_1)} < d(x_0,x_1) \). If \(x_2 \in Fx_2 \), then \(x_2 \) is a fixed point of \(F \). Assume that \(x_1 \neq x_2 \notin Fx_2 \). We have:

\[
M(x_1,x_2) = \max\{d(x_1,x_2), D(x_2, Fx_2)\}, N(x_1,x_2) = 0
\]

and \(\eta(a)D(x_1, Fx_1) \leq d(x_1,x_2) \). If \(M(x_1,x_2) = D(x_2, Fx_2) \), then

\[
0 < \psi(D(x_2, Fx_2)) \leq \alpha(x_1,x_2)\psi(H(Fx_1, Fx_2))
\]
which is a contradiction and hence $M(x_1, x_2) = d(x_1, x_2)$.

Put $q_1 = \frac{\sqrt{\theta(\psi(d(x_0, x_1)))}}{\psi(d(x_1, x_2))} > 1$ (by (2.3)). Then there exists $x_3 \in Fx_2$ such that

$$\psi(d(x_2, x_3)) < q_1 \alpha(x_1, x_2) \psi(HFx_1, Fx_2)).$$

Since $\eta(a)D(x_2, Fx_2) \leq d(x_2, x_3)$, by (2.1) with $x = x_2$ and $y = x_3$, we have

$$\psi(d(x_2, x_3)) < q_1 \alpha(x_1, x_2) \psi(HFx_1, Fx_2))$$

$$\leq q_1 \theta(\psi(M(x_1, x_2))) \psi(M(x_1, x_2)) + q_1 LN(x_1, x_2)$$

$$= q_1 \theta(\psi(d(x_1, x_2))) \psi(d(x_1, x_2))$$

$$\leq \sqrt{\theta(\psi(d(x_0, x_1))) \psi(d(x_0, x_1))}$$

$$\leq \sqrt{\theta(\psi(d(x_0, x_1)))} \psi(d(x_0, x_1)).$$

Since

$$\psi\left(\frac{d(x_2, x_3)}{\sqrt{\theta(\psi(d(x_0, x_1)))}}\right)^2 \leq \psi(d(x_2, x_3)) \leq \psi(d(x_0, x_1))$$

and ψ is increasing, then

$$d(x_2, x_3) < \sqrt{\theta(\psi(d(x_0, x_1)))} d(x_0, x_1) < d(x_0, x_1).$$

By continuing this process, we obtain a sequence $\{x_n\}$ in X such that $x_n \neq x_{n-1}$ and $d(x_n, x_{n+1}) < \sqrt{\theta(\psi(d(x_0, x_1)))} d(x_0, x_1)$ for all $n \in \mathbb{N}$.

Let $t = \sqrt{\theta(\psi(d(x_0, x_1)))}$, then $0 < t < 1$. By the triangle inequality for $n < m$, we have

$$d(x_n, x_m) \leq \sum_{k=n}^{m-1} d(x_k, x_{k+1}) \leq (t^n \sum_{k=0}^{m-n-1} t^k) d(x_0, x_1)$$

$$\leq \frac{t^n}{1-t} d(x_0, x_1).$$

The previous inequality shows that $\{x_n\}$ is a Cauchy sequence in (X, d). Since (X, d) is a complete metric space, so there exists $x^* \in X$ such that $\lim_{n \to \infty} x_n = x^*$. The continuity of F implies that

$$0 \leq D(x^*, Fx^*) = \lim_{n \to \infty} D(x_{n+1}, Fx^*) \leq \lim_{n \to \infty} H(Fx_n, Fx^*) = 0$$

and so $x^* \in Fx^*$.

Example 2.6. Let $X = [-1, \infty)$, $d(x, y) = |x - y|$ and for any $A, B \subset X$

$$D(A, B) = \sup \{D(a, B) : a \in A\},$$

$$H(A, B) = \max\{\sup_{x \in A} D(x, B), \sup_{y \in B} D(y, A)\}.$$

Define a multivalued mapping $F : X \to P_{bd}(X)$ by $F(x) = [-1, \frac{x}{4}]$ for every $x \in X$. It is easy to see that (X, d) is a complete metric space. We have

$$\eta(a)D(x, F(x)) \leq d(x, y), \quad \eta(a) = \frac{1}{1 + a}, \quad a \in [0, 1),$$

$$\leq \theta(\psi(D(x_2, Fx_2))) \psi(D(x_2, Fx_2))$$

$$< \psi(D(x_2, Fx_2)),$$
In this case, the pair \((X,d)\) is said to be a \(b\)-metric on a \(b\)-metric space. We consider next the following family of subsets given by

\[
\mathcal{P}(X) := \{Y | Y \subset X \text{ and } Y \neq \emptyset\}.
\]

In this case \(D\) is a generalized functional on a \(b\)-metric space \((X,d)\) defined by \(D : P(X) \times P(X) \to [0, \infty) \cup \{+\infty\},\)

\[
D(A,B) = \begin{cases}
\inf\{d(a,b) | a \in A, b \in B\}, & A \neq \emptyset \neq B, \\
0, & A = \emptyset = B, \\
+\infty, & \text{otherwise}.
\end{cases}
\]

In particular, if \(x_0 \in X\) then \(D(x_0,B) := D(\{x_0\},B)\).

The following basic lemmas will be useful in the proof of main results.

Lemma 3.2 ([7]). Let \((X,d)\) be a \(b\)-metric space. Then, we have

\[
D(x,A) \leq s[d(x,y) + D(y,A)] \quad \text{for all } x, y \in X \text{ and } A \subset X.
\]

Lemma 3.3 ([7]). Let \((X,d)\) be a \(b\)-metric space and let \(\{x_k\}_{k=0}^n \subset X\). Then

\[
d(x_n, x_0) \leq sd(x_0, x_1) + \ldots + s^{n-1}d(x_{n-2}, x_{n-1}) + s^n d(x_{n-1}, x_n).
\]

We denote by \(\mathcal{F}\) the family of all functions \(\beta : [0, \infty) \to [0, \frac{1}{s^2})\) for some \(s > 1\).

Definition 3.4. Let \((X,d)\) be a complete \(b\)-metric space and \(F : X \to P_{b,cl}(X)\) be a multivalued mapping. We say that \(F\) is an extended multivalued Geraghty type contraction in \(b\)-metric space with \((s > 1)\), whenever there exist \(\alpha : X \times X \to [0, \infty), a \in [0, 1)\) and some \(L \geq 0\) such that for
\[M(x, y) = \max\{d(x, y), D(x, Fx), D(y, Fy), \frac{D(x, Fy) + D(y, Fx)}{2s} \} \]

and
\[N(x, y) = \min\{D(x, Fx), D(y, Fx)\}, \]
we have
\[\eta(a)D(x, F(x)) \leq d(x, y) \implies \alpha(x, y)\psi(s^3H(Fx, Fy)) \leq \beta(\psi(M(x, y)))\psi(M(x, y)) + L\phi(N(x, y)) \] (3.1)

for all \(x, y \in X \), where \(\eta(a) = \frac{1}{1+q}, \beta \in \mathcal{F} \) and \(\psi, \phi \in \Psi \).

Theorem 3.5. Let \((X, d)\) be a complete b-metric space with \((s > 1)\), and \(F : X \to P_{b,cl}(X) \) be a extended multivalued Geraghty type contraction such that

(i) \(F \) is \(\alpha \)-admissible;

(ii) there exists \(x_0 \in X \) and \(x_1 \in Fx_0 \) such that \(\alpha(x_0, x_1) \geq 1 \);

(iii) \(F \) is continuous.

Then \(F \) has a fixed point.

Proof. By condition (ii), there exists \(x_0 \in X \) and \(x_1 \in Fx_0 \) such that \(\alpha(x_0, x_1) \geq 1 \). If \(x_1 = x_0 \), as \(x_1 \in Fx_1 \), then \(x_1 \) is a fixed point of \(F \) and we have nothing to prove. First, we note that

\[M(x_0, x_1) = \max\{d(x_0, x_1), D(x_0, Fx_0), D(x_1, Fx_1), \frac{D(x_0, Fx_1) + D(x_1, Fx_0)}{2s} \} = \max\{d(x_0, x_1), D(x_1, Fx_1)\}. \]

Since \(\eta(a)D(x_0, Fx_0) \leq d(x_0, x_1) \), if \(M(x_0, x_1) = D(x_1, Fx_1) \), then

\[\psi(D(x_1, Fx_1)) \leq \alpha(x_0, x_1)\psi(s^3H(Fx_0, Fx_1)) \leq \beta(\psi(D(x_1, Fx_1)))\psi(D(x_1, Fx_1)) + L\phi(0) < \psi(D(x_1, Fx_1)), \]

which is a contradiction. It follows that \(M(x_0, x_1) = d(x_0, x_1) \). Let us take a real \(q \) such that \(1 < q < s \). Then

\[0 < \psi(D(x_1, Fx_1)) \leq \alpha(x_0, x_1)\psi(H(Fx_0, Fx_1)) < q\alpha(x_0, x_1)\psi(s^3H(Fx_0, Fx_1)). \]

Hence, there exists \(x_2 \in Fx_1 \) such that

\[\psi(d(x_1, x_2)) < q\alpha(x_0, x_1)\psi(s^3H(Fx_0, Fx_1)). \] (3.2)

Using (3.1) with \(x = x_0 \) and \(y = x_1 \), by (3.2) we get

\[\psi(d(x_1, x_2)) < \frac{q}{s^2}\psi(d(x_0, x_1)). \] (3.3)

Now, by the properties of the function \(\psi \) and regarding the fact that \(\frac{q}{s^2} < 1 \), we deduce

\[\psi\left(\frac{s^2}{q}d(x_1, x_2)\right) \leq \frac{s^2}{q}\psi(d(x_1, x_2)) < \psi(d(x_0, x_1)), \]

\[d(x_1, x_2) \leq \frac{q}{s^2}d(x_0, x_1) < d(x_0, x_1). \]
If $x_2 \in Fx_2$, then x_2 is a fixed point of F. Assume that $x_1 \neq x_2 \notin Fx_2$. We have:

$$M(x_1, x_2) = \max\{d(x_1, x_2), D(x_2, Fx_2)\}, N(x_1, x_2) = 0$$

and $\eta(a)D(x_1, Fx_1) \leq d(x_1, x_2)$. If $M(x_1, x_2) = D(x_2, Fx_2)$, then

$$0 < \psi(D(x_2, Fx_2)) \leq \alpha(x_1, x_2)\psi(s^3 H(Fx_1, Fx_2))$$

$$\leq \theta(\psi(D(x_2, Fx_2)))\psi(D(x_2, Fx_2))$$

$$< \psi(D(x_2, Fx_2)),$$

which is a contradiction and hence $M(x_1, x_2) = d(x_1, x_2)$. Put

$$q_1 = \frac{q}{s^2}\psi(d(x_0, x_1)) \psi(d(x_1, x_2)).$$

By (3.3), we have $q_1 > 1$. Hence, there exists $x_3 \in Fx_2$ such that

$$\psi(d(x_2, x_3)) < q_1 \alpha(x_1, x_2)\psi(s^3 H(Fx_1, Fx_2)).$$

Since $\eta(a)D(x, Fx_2) \leq d(x_2, x_3)$, by (3.1) with $x = x_2$ and $y = x_3$, we have

$$\psi(d(x_2, x_3)) < q_1 \alpha(x_1, x_2)\psi(s^3 H(Fx_1, Fx_2))$$

$$\leq q_1 \beta(\psi(M(x_1, x_2)))\psi(M(x_1, x_2)) + q_1 L\psi(N(x_1, x_2))$$

$$\leq \frac{q_1}{s^2}\psi(d(x_1, x_2)).$$

So

$$\psi(d(x_2, x_3)) \leq \frac{q_1}{s^2}\psi(d(x_1, x_2)) \leq \left(\frac{q}{s^2}\right)^2\psi(d(x_0, x_1)).$$

By properties of ψ we obtain

$$d(x_2, x_3) \leq \left(\frac{q}{s^2}\right)^2d(x_0, x_1).$$

By continuing this process, we obtain a sequence $\{x_n\}$ in X such that $x_n \in Fx_{n-1}$, $x_n \neq x_{n-1}$ and $d(x_n, x_{n+1}) < \left(\frac{q}{s^2}\right)^n d(x_0, x_1)$ for all $n \in \mathbb{N}$. By the triangle inequality for $n < m$, we have

$$d(x_n, x_m) \leq \sum_{k=n}^{m-1} s^{-k-n+1} d(x_k, x_{k+1})$$

$$\leq \sum_{k=n}^{\infty} s^{-k-n+1} \left(\frac{q}{s^2}\right)^k d(x_0, x_1)$$

$$= \left[\frac{s\left(\frac{q}{s^2}\right)^n}{1 - s\left(\frac{q}{s^2}\right)}\right] d(x_0, x_1) \to 0 \text{ as } n \to \infty.$$
Example 3.6. Put \(X = \{1\} \cup \{m + \frac{1}{n+2} : m, n \in \mathbb{N}\} \) and define a metric \(d \) on \(X \) by

\[
d(x, y) = |x - y|.
\]

Define a mapping \(F \) on \(X \) by

\[
F(x) = \begin{cases}
1 & \text{if } x = 1, \\
\frac{1}{n+2} & \text{if } x = m + \frac{1}{n}.
\end{cases}
\]

Then \(F \) satisfies in the assumptions of Theorem 3.5.

Proof. It is obvious that \((X, d)\) is a complete metric space and 1 is a unique fixed point of \(F \). If \(n < m \), we have

\[
\eta(a)D(m + \frac{1}{n+2}, F(m + \frac{1}{n+2})) < d(m + \frac{1}{n+2}, n + \frac{1}{n+2})
\]

\[
\eta(a)d(m + \frac{1}{n+2}, 7m + \frac{1}{n+2}) < d(m + \frac{1}{n+2}, n + \frac{1}{n+2})
\]

\[
\eta(a) | m + \frac{1}{n+2} - 7m - \frac{1}{n+2} | < | m + \frac{1}{n+2} - n - \frac{1}{n+2} |
\]

\[
\frac{1}{2} | -6m | \leq \eta(a) | -6m | < | m + \frac{1}{n+2} - n - \frac{1}{n+2} |.
\]

This is a contradiction. Therefore \(F \) satisfies in the assumptions of Theorem 3.5. \(\square \)

Example 3.7. Let \(X \) be the set of Lebesgue measurable functions on \([0, 1]\) such that \(\int_0^1 |x(t)|dt < 1 \). Define \(d : X \times X :\to [0, \infty) \) by

\[
d(x, y) = \int_0^1 |x(t) - y(t)|^2dt.
\]

Then, \(d \) is a \(b \)-metric on \(X \), with \(s = 2 \). The multivalued mapping \(T : X \to 2^X \) is defined by

\[
Tx(t) = \begin{cases}
3x + 4, & \text{if } x(t) < -1, \\
[-x, 1], & \text{if } -1 \leq x(t) < 0, \\
\frac{1}{8} \ln(1 + x(t)), & \text{if } x(t) \geq 0.
\end{cases}
\]

Consider the mapping \(\alpha : X \times X :\to [0, \infty) \) by the following

\[
\alpha(x, y) = \begin{cases}
2, & \text{if } y \leq x \leq -3, \\
1, & \text{if } x \geq y \geq 0, \\
0, & \text{otherwise}.
\end{cases}
\]

We take \(\beta : [0, \infty) :\to [0, \frac{1}{4}) \) and \(\psi : [0, \infty) :\to [0, \infty) \) as

\[
\psi(t) = t \quad \text{and} \quad \beta(t) = \frac{t^2 + 1}{4t^2 + 8}.
\]

Evidently, \(\psi \in \Psi \) and \(\beta \in F \). Moreover, \(T \) is \(\alpha \)-admissible, \(\alpha(1, T1) \geq 1 \) and \(T \) is continuous. Now, we prove that \(T \) is a generalized \(\alpha - \psi \)-Suzuki-Geraghty multivalued type contraction. For \(x(t) \geq 0 \), we have
\[
\alpha(x(t), y(t))\psi(s^3d(Tx(t), Ty(t))) \leq 2^3\left(\int_0^1 |Tx(t) - Ty(t)|^2 dt\right) \\
= 2^3\int_0^1 \frac{1}{8}\ln(1 + x(t)) - \frac{1}{8}\ln(1 + y(t)))^2 dt \\
= 2^{-3}\int_0^1 \ln(1 + x(t))^2 dt = 2^{-3}\int_0^1 \ln(1 + \frac{x(t) - y(t)}{1 + y(t)})^2 dt \\
\leq 2^{-3}\int_0^1 \ln(1 + |x(t) - y(t)|)^2 dt \leq 2^{-3}\int_0^1 |x(t) - y(t)|^2 dt \\
= 2^{-3}d(x, y) \leq \frac{d(x, y)^2 + 1}{4d(x, y)^2 + 8} d(x, y) = \beta(d(x, y)d(x, y)).
\]

For \(x(t) < 0\), by definition of \(Tx(t)\) and \(\alpha(x(t), y(t))\) the condition of (3.1) is satisfied. Thus, \(T\) is a generalized \(\alpha - \psi\)-Suzuki-Geraghty multivalued type contraction. By Theorem 3.5, \(T\) has a fixed point. Here \(0, -2\) are fixed points.

If in (3.2), \(F\) is a family of all functions \(\beta : [0, \infty) \to [0, \frac{1}{s}]\) for some \(s \geq 1\), we can deduce the following theorem.

Theorem 3.8. Let \((X, d)\) be a complete b-metric space and absolute retract for b-metric spaces, \(F : X \to P_b(X)\) an extended multivalued Geraghty type contraction, \(F\) is continuous, and \(F \in SP(X)\). If \(\alpha(x, y) \geq 1\) for all \(x \in X\) and \(y \in F(x)\), then \(F_F\) is an absolute retract for b-metric spaces.

Proof. Let \(Y\) be a b-metric space, \(A \in P_{cl}(Y)\) and \(\xi : A \to F_F\) a continuous function. Since \(X\) is an absolute retract for b-metric spaces, there exists a continuous function \(\varphi_0 : Y \to X\) such that \(\varphi_0|A = \xi\). Define the function \(g_0 : Y \to (0, \infty)\) by

\[
g_0(y) = \sup\{d(\varphi_0(y), z) | z \in F(\varphi_0(y))\} + 1
\]

for all \(y \in Y\). It is not difficult to see that \(g_0\) is continuous and

\[
F(\varphi_0(y)) \cap B(\varphi_0(y), g_0(y)) = F(\varphi_0(y))
\]

for all \(y \in A\) (see [14]). Also we observe that the function \(\xi : A \to F_F\) has the property \(\xi(y) \in F(\varphi_0(y))\) \((y \in A)\), so is a continuous selection of the multivalued mapping. Since \(F \in SP(X)\), there exists a continuous function \(\varphi_1 : Y \to X\) such that \(\varphi_1|A = \xi\) and \(\varphi_1(y) \in F(\varphi_0(y))\) for all \(y \in Y\). First, we note that

\[
M(\varphi_0(y), \varphi_1(y)) = \max\{d(\varphi_0(y), \varphi_1(y)), D(\varphi_0(y), F(\varphi_0(y))), D(\varphi_1(y), F(\varphi_1(y)))
\]

\[
= \frac{D(\varphi_0(y), F(\varphi_1(y))) + D(\varphi_1(y), F(\varphi_0(y)))}{2s}
\]

Since \(\eta(a)D(\varphi_0(y), F(\varphi_0(y))) \leq d(\varphi_0(y), \varphi_1(y))\), if \(M(\varphi_0(y), \varphi_1(y)) = D(\varphi_1(y), F(\varphi_1(y)))\), then

\[
\psi(D(\varphi_1(y), F(\varphi_1(y)))) \leq \alpha(\varphi_0(y), \varphi_1(y))\psi(s^3H(F(\varphi_0(y), F(\varphi_1(y))))
\]

\[
\leq \beta(\psi(D(\varphi_1(y), F(\varphi_1(y))))\psi(D(\varphi_1(y), F(\varphi_1(y)))) + L\phi(0)
\]

\[
< \psi(D(\varphi_1(y), F(\varphi_1(y))))
\]

which is contradiction. It follows that \(M(\varphi_0(y), \varphi_1(y)) = d(\varphi_0(y), \varphi_1(y))\). Let \(1 < q < s\) and \(r \in (1, \frac{q}{4})\), then

\[
\psi(D(\varphi_1(y), F(\varphi_1(y))) \leq \alpha(\varphi_0(y), \varphi_1(y))\psi(s^3H(F(\varphi_0(y), F(\varphi_1(y))))
\]

\[
\leq \beta(\psi(D(\varphi_0(y), \varphi_1(y))))\psi(d(\varphi_0(y), \varphi_1(y)))
\]

\[
< \frac{q}{s}\psi(d(\varphi_0(y), \varphi_1(y))).
\]
Now, by the property of $\psi \in \Psi$ and regarding the fact that $\frac{q}{s} < 1$ we have
\[\psi\left(\frac{1}{q} D(\varphi_1(y), F\varphi_1(y)) \right) \leq \frac{1}{q} \psi(D(\varphi_1(y), F\varphi_1(y))) < \psi(d(\varphi_0(y), \varphi_1(y))). \]

Since ψ is increasing, therefore
\[
D(\varphi_1(y), F\varphi_1(y)) \leq \frac{q}{s} d(\varphi_0(y), \varphi_1(y)) < \frac{q}{s} d(\varphi_0(y), \varphi_1(y)) + r^{-1}.
\]

Hence, $G_2(y) := F(\varphi_1(y)) \cap B(\varphi_1(y), \frac{q}{s} d(\varphi_0(y), \varphi_1(y)) + r^{-1}) \neq \emptyset$ for all $y \in Y$. Since we know that $F \in Sp(X)$, there exists a continuous function $\varphi_2 : Y \to X$ such that $\varphi_2|_A = \xi$ and $\varphi_2(y) \in G_2(y)$ for all $y \in Y$. Thus, $\varphi_2(y) \in F(\varphi_1(y))$ for all $y \in Y$ and
\[d(\varphi_1(y), \varphi_2(y)) < \frac{q}{s} d(\varphi_0(y), \varphi_1(y)) + r^{-1}. \]

Similarly we have
\[M(\varphi_1(y), \varphi_2(y)) = \max\{d(\varphi_1(y), \varphi_2(y)), D(\varphi_2(y), F\varphi_2(y))\}, N(\varphi_1(y), \varphi_2(y)) = 0. \]

If $M(\varphi_1(y), \varphi_2(y)) = D(\varphi_2(y), F\varphi_2(y))$, then
\[
0 < \psi(D(\varphi_2(y), F\varphi_2(y))) \leq \alpha(\varphi_1(y), \varphi_2(y)) \psi\left(s^3 H(F(\varphi_1(y), F(\varphi_2(y)))) \right) \\
\leq \beta(\psi(D(\varphi_2(y), F\varphi_2(y)))) \psi(D(\varphi_2(y), F\varphi_2(y))) \\
< \frac{q}{s} \psi(D(\varphi_2(y), F\varphi_2(y))) \\
< \psi(D(\varphi_2(y), F\varphi_2(y))),
\]
which is contradiction. It follows that $M(\varphi_1(y), \varphi_2(y)) = d(\varphi_1(y), \varphi_2(y))$.

Now, by the property of ψ we have
\[\psi\left(\frac{1}{q} D(\varphi_2(y), F\varphi_2(y)) \right) \leq \frac{1}{q} \psi(D(\varphi_2(y), F\varphi_2(y))) < \psi(d(\varphi_1(y), \varphi_2(y))). \]

Since ψ is increasing, therefore
\[D(\varphi_2(y), F\varphi_2(y)) \leq \frac{q}{s} d(\varphi_1(y), \varphi_2(y)) < \frac{q}{s} d(\varphi_1(y), \varphi_2(y)) + r^{-1}. \]

By (3.4) we have
\[D(\varphi_2(y), F\varphi_2(y)) < \left(\frac{q}{s} \right)^2 d(\varphi_0(y), \varphi_1(y)) + r^{-2}. \]

Hence, $G_3(y) := F(\varphi_2(y)) \cap B(\varphi_2(y), \left(\frac{q}{s} \right)^2 d(\varphi_0(y), \varphi_1(y)) + r^{-2}) \neq \emptyset$. Since $F \in Sp(X)$, there exists a continuous function $\varphi_3 : Y \to X$ such that $\varphi_3|_A = \xi$ and $\varphi_3(y) \in G_3(y)$ for all $y \in Y$. Also, we have $d(\varphi_2(y), \varphi_3(y)) < \left(\frac{q}{s} \right)^2 d(\varphi_0(y), \varphi_1(y)) + r^{-2}$ and $\varphi_3(y) \in F(\varphi_2(y))$ for all $y \in Y$. By continuing this process, we obtain $\{ \varphi_n : Y \to X \}_{n \geq 0}$ a sequence of continuous functions such that $\varphi_n|_A = \xi$ and $d(\varphi_{n-1}(y), \varphi_n(y)) < \left(\frac{q}{s} \right)^{n-1} d(\varphi_0(y), \varphi_1(y)) + r^{-n+1}$ and $\varphi_n(y) \in F(\varphi_{n-1}(y))$ for all $y \in Y$ and $n \geq 1$. Now, for each $\lambda > 0$ we put
\[Y_\lambda := \{ y \in Y : d(\varphi_0(y), \varphi_1(y)) < \lambda \}. \]

Since $\varphi_1(y) \in F(\varphi_0(y))$ and
\[F(\varphi_0(y)) \cap B(\varphi_0(y), g_0(y)) = F(\varphi_0(y)), \]
$\varphi_1(y) \in B(\varphi_0(y), g_0(y))$. Hence, $d(\varphi_0(y), \varphi_1(y)) < \lambda_0 := g_0(y)$. Thus, $y \in Y_{\lambda_0}$. Since Y_{λ_0} is open for each $\lambda > 0$, the family of sets $\{ Y_\lambda | \lambda > 0 \}$ is an open covering of Y and we have
\[d(\varphi_{n-1}(y), \varphi_n(y)) \leq \left(\frac{q}{s} \right)^{n-1} d(\varphi_0(y), \varphi_1(y)) + r^{-(n-1)} \]
for all $n \geq 1$ and $y \in Y$. Since $\frac{a}{b} < 1$, $r > 1$, and X is complete, the sequence $\{\phi_n\}_{n \geq 0}$ converges uniformly on Y_λ for all $\lambda > 0$. Let $\phi : Y \to X$ be the pointwise limit of $\{\phi_n\}_{n \geq 0}$ and note that ϕ is continuous and $\phi|_A = \xi$ because $\phi_n|_A = \xi$ for all $n \geq 0$. Since F is continuous, hence $\phi(y) \in F(\phi(y))$ for all $y \in Y$. Therefore, $\phi : Y \to B$ is a continuous extension of ξ, that is, $B = \{x \in X : x \in F(x)\}$ is an absolute retract for b-metric spaces. \hfill \Box

4. Corollaries

By letting $\alpha(x, y) = 1$ for all $x, y \in X$, we get the following consequences:

Corollary 4.1. Let (X, d) be a complete b-metric space and absolute retract for b-metric spaces, $F : X \to P_{b,d}(X)$, also there exists $a \in [0, 1)$ and some $L \geq 0$ such that,

$$
\eta(a)D(x, F(x)) \leq d(x, y) \implies \psi(s^3d(Tx, Ty)) \leq \beta(\psi(d(x, y)))\psi(d(x, y)) + L\phi(N(x, y))
$$

(4.1)

for all $x, y \in X$, where $\eta(a) = \frac{1}{1+4a}$, $\beta \in \mathcal{F}$, and $\psi, \phi \in \Psi$ and

$$
N(x, y) = \min\{d(x, Tx), d(y, Tx)\},
$$

F is continuous and $F \in SP(X)$. If $\alpha(x, y) \geq 1$ for all $x \in X$ and $y \in F(x)$, then \mathcal{F}_F is an absolute retract for b-metric spaces.

If in (4.1), we let $L = 0$ then we obtain the following sequence.

Corollary 4.2. Let (X, d) be a complete b-metric space and absolute retract for b-metric spaces, $F : X \to P_{b,d}(X)$, also there exist $a \in [0, 1)$ such that,

$$
\eta(a)D(x, F(x)) \leq d(x, y) \implies \psi(s^3d(Tx, Ty)) \leq \beta(\psi(d(x, y)))\psi(d(x, y))
$$

for all $x, y \in X$, where $\eta(a) = \frac{1}{1+4a}$, $\beta \in \mathcal{F}$ and $\psi, \phi \in \Psi$, F is continuous, and $F \in SP(X)$. If $\alpha(x, y) \geq 1$ for all $x \in X$ and $y \in F(x)$, then \mathcal{F}_F is an absolute retract for b-metric spaces.

5. Consequences

As it is expected, the main results of the paper yield several existing results in the literature by choosing the auxiliary functions α, η, ψ, ϕ in a proper way. To list more results it is sufficient to take $d(x, y)$ instead of $M(x, y)$, and/or take $L = 0$. Notice also that, one can replace the single valued mapping instead of multivalued mapping to cover more results in the literature. Furthermore, by relaxing b-metric with metric, we observe more results as a consequence of our main results.

Acknowledgment

The authors thank to editor and anonymous referees for their remarkable comments, suggestion and ideas that help to improve this paper.

References

