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Abstract

In this paper, we consider the following fractional initial value problems:

Dαu(t) = f(t, u(t), Dβu(t)), t ∈ (0, 1],

u(k)(0) = ηk, k = 0, 1, ..., n− 1,

where n− 1 < β < α < n, (n ∈ N) are real numbers, Dα and Dβ are the Caputo fractional derivatives and
f ∈ C([0, 1] ×R). Using the fixed point index theory, we study the existence and multiplicity of positive
solutions and obtain some new results. c©2016 All rights reserved.
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1. Introduction

Fractional differential equations have received much attention recently. They arise in many engineering
and scientific disciplines as the modeling of systems and processes in viscoelasticity, electrochemistry, control,
porous media, electromagnetic, etc. (See [6, 10, 11]). A significant feature of a fractional order differential
operator, in contrast to its counterpart in classical calculus, is its non local behavior. It means that the
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future state of a dynamical system or process based on the fractional differential operator depends on its
current state as well its past states. Therefore, many papers and books on fractional calculus, fractional
differential equations and fractional integral equations have appeared. Qualitative theory of differential
equations is very useful in applications. So, recently much attention has been focused on the study of
the existence and multiplicity of solutions of positive solutions for boundary and initial value problems
of fractional differential equations. There are many techniques to deal with the existence of solutions of
fractional differential equations such as fixed point theorems [5, 9, 13], upper and lower solutions method
[8], fixed point index [4, 12, 13], coincidence theory [1], etc. In [2, 3, 7], the authors considered the existence
of solutions of the following initial value problems

Dαu(t) = f(t,Dβu(t)), t ∈ (0, 1],

u(k)(0) = ηk, k = 0, 1, ...,m− 1,

but the assumptions are almost strong. In this paper, our object is to improve the situation. We consider

Dαu(t) = f(t, u(t), Dβu(t)), t ∈ (0, 1], (1.1)

u(k)(0) = ηk, k = 0, 1, ..., n− 1, (1.2)

where n − 1 < β < α < n, (n ∈ N), Dα , Dβ are the Caputo fractional derivatives and f ∈ C([0, 1] ×R).
By using the properties of Green function and index fixed point theorem, some new existence results for
positive solutions are obtained. Moreover, the existence of two positive solutions on the initial value problem
(1.1)–(1.2) is also considered.

The rest of the paper is organized as follows: In Section 2, we present some known results and introduce
conditions to be used in the next section. The main results are formulated and proved in Section 3. An
example is also presented to demonstrate the applications of the main results.

2. Background materials

For the convenience of the reader, in this section we shall state some necessary definitions and preliminary
results. Let E = C[0, 1] be the Banach space with the maximum norm ||u|| = maxt∈[0,1] u(t).

Definition 2.1 ([6, 11]). The fractional integral of order α for the function u ∈ C[0,∞)
⋂
L1
loc[0,∞) is

defined as

Iαu(t) =

∫ t

0

(t− s)α−1

Γ(α)
u(s)ds, 0 ≤ t ≤ 1,

where m− 1 < α < m and m ∈ N.

Definition 2.2 ([6, 11]). The α-th Caputo derivative of u is defined by

cDαu(t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1u(n)(s)ds, 0 ≤ t ≤ 1,

where n− 1 < α < n, n = [α] + 1 and [α] denotes the integer part of α.

For the Caputo fractional derivative, the following equality holds

cDα(a0t
r + a1t

r−1 + ....+ a1) = 0, m− 1 < α ≤ m,

where the degree of the polynomial is no more than m− 1, i.e., r ≤ m− 1. Moreover, the α-order integral
of the α-order Caputo fractional derivative requires the knowledge of the initial values of the function and
its integer order derivatives just as in the case of the integer order,

IαDαf(t) = f(t)−
m−1∑
k=0

fk(0+)
tk

k!
, m− 1 < α ≤ m. (2.1)
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Property 2.3 ([11]). Let α ≥ 0 and let n = [α]+1. If u(t) ∈ ACn[0, 1], then the Caputo fractional derivative
exists almost everywhere on [0, 1] and is represented by

cDαu(t) =
1

Γ(n− α)

∫ t

0

un(s)

(t− s)α−n+1
ds. (2.2)

Definition 2.4. u ∈ Cm[0, 1] is called a solution of (1.1)–(1.2) if it satisfies (1.1) and (1.2).

Definition 2.5. The beta function is defined by

B(x, y) =

∫ 1

0
sx−1(1− s)y−1ds, x, y > 0.

It is known that

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

We can reduce problem (1.1)–(1.2) to an integral equation in E [3, 7].

Lemma 2.6. Let n ∈ N, n− 1 < β < α < n and assume

(i) : f : [0, 1]×R→ R is a continuously differentiable function;

(ii) : f(0, 0) = 0 and f(t, 0) 6= 0 on a compact subinterval of [0, 1].

Then u ∈ Cn[0, 1] is a solution of (1.1)–(1.2) if and only if

u(t) =

n−1∑
k=0

tk

k!
ηk +

1

Γ(β)

∫ t

0
(t− s)β−1v(s)ds, 0 ≤ t ≤ 1,

where v ∈ C[0, 1] is a solution of the equation

v(t) =

∫ 1

0
G(t, s)f(s, v(s))ds, 0 ≤ t ≤ 1,

with

G(t, s) =
1

Γ(α− β)
(t− s)α−β−1

+ , (2.3)

such that

(t− s)α−β−1
+ =

{
(t− s)α−β−1, 0 ≤ s ≤ t ≤ 1,
0, s ≥ t. (2.4)

By making use of (2.3), we can prove that G(t, s) has the following properties.

Proposition 2.7. G(t, s) ≤ tα−β−1(1− s)α−β−1 ≤ sα−β−1(1− s)α−β−1, 0 ≤ s ≤ t ≤ 1.

Proposition 2.8. G(t, s) ≥ 1
Γ(α−β) [s(1− s)]α−β−1, 0 ≤ s ≤ t ≤ 1.

Definition 2.9. An operator T : D → E is said to be completely continuous if it is continuous and compact.

Lemma 2.10 (The Schauder Fixed Point Theorem). Let X be a normed linear space, X0 ⊂ X be a convex
closed set and T : X0 → X0 be a completely continuous mapping. Then the mapping T has a fixed point in
X0.

Let

P = {u ∈ E|u(t) ≥ 1

Γ(α− β)
||u||, t ∈ [0, 1]}.

Obviously, P is a cone in the Banach space E.
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Define the operators T and L as follows

(Tu)(t) =
1

Γ(α− β)

∫ t

0
(t− s)α−β−1f(s, u(s))ds, (2.5)

(Lu)(t) =
1

Γ(α− β)

∫ t

0
(t− s)α−β−1u(s)ds. (2.6)

To establish the existence of multiple positive solutions in E of problem (1.1)–(1.2), let us list the
following assumptions, which will stand throughout the paper:

(H1) : f : [0, 1]× [0,+∞)→ [0,+∞) is continuous;

(H2) : lim infu→o
f(t,u)
u > m uniformly with respect to t ∈ [0, 1];

(H3) : lim supu→∞
f(t,u)
u < k uniformly with respect to t ∈ [0, 1];

(H4) : lim supu→o
f(t,u)
u < k uniformly with respect to t ∈ [0, 1];

(H5) : lim infu→∞
f(t,u)
u > m uniformly with respect to t ∈ [0, 1];

(H6) : There exists r0 > 0 such that

f(t, u) <

{∫ 1

0
[s(1− s)]α−β−1

}−1

r0ds =
r0

B(α− β, α− β)
, 0 ≤ u ≤ r0, 0 ≤ t ≤ 1; (2.7)

(H7) : There exist r̄0 > 0 such that

f(t, u) > Γ(α− β){
∫ 1

0
[s(1− s)]α−β−1}−1r̄0ds (2.8)

=
Γ(α− β)r̄0

B(α− β, α− β)
0 ≤ u ≤ r̄0, 0 ≤ t ≤ 1, (2.9)

where

m = max{1, B(α− β, α− β)

Γ(α− β)
}, (2.10)

k =
1

B(α− β, α− β)
, (2.11)

and B(x, y) is the known beta function.

Lemma 2.11. Suppose (H1) holds, then the operator T : P → P is completely continuous.

Proof. Firstly, we show that T (P ) ⊂ P . By Proposition 2.7, we have

||Tu|| ≤
∫ t

0
sα−β−1(1− s)α−β−1f(s, u(s))ds,

and then by Proposition 2.8, we obtain

(Tu)(t) ≥ 1

Γ(α− β)

∫ t

0
[s(1− s)]α−β−1f(s, u(s))ds ≥ 1

Γ(α− β)
||Tu||.

Hence, T (p) ⊂ P. By a standard argument, we can show that T is continuous and compact. Therefore
is completely continuous.
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Lemma 2.12 ([4]). Let Ω ⊂ E be a bounded open set, T : Ω̄ ∩ P → P be completely continuous. If there
exists u0 ∈ P\{θ} such that u− Tu 6= µu0, ∀µ ≥ o, u ∈ ∂Ω ∩ P, then i(T,Ω ∩ P, P ) = 0.

Lemma 2.13 ([4]). Let Ω ⊂ E be a bounded open set with θ ∈ Ω. Suppose that T : Ω̄∩P → P is completely
continuous. If u 6= µTu, ∀µ ∈ ∂Ω ∩ P and 0 ≤ µ ≤ 1, then i(T,Ω ∩ P ) = 1.

The main tool of the paper is the following well-known fixed point index result.

Lemma 2.14 ([4]). Let T : P → P be a completely continuous mapping and Ty 6= y for y ∈ ∂Br. Then we
have the following conclusions:

(i) : If ||y|| ≤ ||Ty|| for y ∈ ∂Br, then i(T,Br, P ) = 0.

(ii) : If ||y|| ≥ ||Ty|| for y ∈ ∂Br, then i(T,Br, P ) = 1.

3. Main results

In this section, we investigate the existence and multiplicity of solutions for the initial value problem of
nonlinear fractional differential equations (1.1)–(1.2).

Theorem 3.1. Suppose that (H1)–(H3) hold. Then the problem (1.1)–(1.2) has at least one positive solution.

Proof. From (H2), there exist ε > 0 and r > 0 such that

f(t, u) ≥ (m+ ε)u, u ∈ [0, r]. (3.1)

Therefore, for all u ∈ B̄r ∩ P , by (3.1) we have

(Tu)(t) ≥ (m+ ε)

∫ t

0
G(t, s)u(s)ds = (m+ ε)(Lu)(t), t ∈ [0, 1]. (3.2)

Similar to Lemma 2.11, we can show that the operator L defined in (2.6) is completely continuous and
so by Lemma 2.10, it has a fixed point say, φ∗, i.e., φ∗ = L(φ∗). Now, we show that

u− Tu 6= µφ∗, ∀u ∈ ∂Br ∩ P, µ ≥ 0.

Otherwise, if there exist u0 ∈ ∂Br ∩ P and µ0 such that u0 − Tu0 = µ0φ
∗, then

u0 = Tu0 + µ0φ
∗ ≥ µ0φ

∗.

If τ∗ = sup{τ |u0 ≥ τφ∗}, then one has

(m+ ε)L(u0) ≥ mL(u0) ≥ τ∗mL(φ∗) = τ∗mφ∗.

Therefore,

u0 = T (u0) + µ0φ
∗ ≥ (m+ ε)L(u0) + µ0φ

∗ ≥ τ∗mφ∗ + µ0φ
∗ ≥ (τ∗ + µ0)φ∗,

which contradicts definition of τ∗. So, for all u ∈ ∂Br ∩ P, µ ≥ 0. We have u − Tu 6= µφ∗. Therefore, by
Lemma 2.12 it follows that

i(T,Br ∩ P, P ) = 0. (3.3)

By (H3), there exists R > r such that

f(t, u) ≤ (k − ε)u, ∀u ∈ P, ≥ R. (3.4)
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Then for u ∈ ∂BR ∩ P , by virtue of (3.4) and (2.11), we know that

||Tu(t)|| ≤ k 1

Γ(α− β)

∫ 1

0
(t− s)α−β−1||u||ds

≤ k
∫ 1

0
[s(1− s)]α−β−1ds||u|| < R.

So, this yields that
i(T,BR ∩ P, P ) = 1. (3.5)

From (3.3) and (3.5), we get

i(T, (BR\B̄r) ∩ P, P ) = i(T,BR ∩ P, P )− i(T,Br ∩ P, P ) = 1.

Therefore, T has at least one fixed point on (BR\B̄r). Consequently, problem (1.1)–(1.2) has at least
one positive solution.

Theorem 3.2. Suppose that (H1),(H4) and (H5) are satisfied. Then the problem (1.1)–1.2 has at least one
positive solution.

Proof. By (H4), there exist ε > 0 and r1 < 1 such that

f(t, u) ≤ ku, u ∈ [0, r1], t ∈ [0, 1]. (3.6)

Then for any u ∈ ∂Br1 ∩ P, by virtue of (3.6) and (2.11), we have

||Tu(t)|| ≤ k 1

Γ(α− β)

∫ 1

0
(t− s)α−β−1||u||ds

≤ k
∫ 1

0
[s(1− s)]α−β−1ds||u||

= kB(α− β, α− β)||u|| < r1.

Also, by (H5), there exists R1 > 1 such that

f(t, u) ≥ (m+ ε)u, u ≥ R1, t ∈ [0, 1]. (3.7)

Then for any u ∈ ∂BR1 ∩ P , by virtue of (3.7) and (2.10), we have

||Tu(t)|| ≥ (m+ ε)
1

Γ(α− β)

∫ 1

0
(t− s)α−β−1||u||ds

≥ m 1

Γ(α− β)

∫ 1

0
[s(1− s)]α−β−1ds||u||

= m
B(α− β, α− β)

Γ(α− β)
> R1.

Hence, similar to Theorem 3.1, we know that T has a positive fixed point in (BR1\B̄r1) ∩ P . That is to
say the problem (1.1)–(1.2) has a positive solution in (BR1\B̄r1) ∩ P .

Theorem 3.3. Suppose that (H1),(H2),(H5) and (H6) are satisfied. Then the problem (1.1)–(1.2) has at
least two positive solutions.

Proof. By the methods of Theorems 3.1 and 3.2 we can select R > r0 > r > 0 such that

i(T,Br ∩ P, P ) = 0, (3.8)

i(T,BR ∩ P, P ) = 0. (3.9)

Then for any u ∈ ∂Br0 ∩ P , by Proposition 2.7 and (H6), we have
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Tu(t) =

∫ 1

0
G(t, s)f(s, u(s))ds (3.10)

≤ B(α− β, α− β) sup{f(t, u)|0 ≤ u ≤ r0, 0 ≤ t ≤ 1}
< r0, 0 ≤ t ≤ 1.

This yields that for any u ∈ ∂Br0 ∩ P , we have Tu < u. In fact if there exist u0 ∈ ∂Br0 ∩ P such that
u0(t) ≤ Tu0(t), t ∈ [0, 1], then ||u0|| < r0 which contradicts the fact that u0 ∈ ∂Br0 ∩ P . Therefore, by the
same method as in the proofs of previous theorems we have the following

i(T,BR\B̄r0 ∩ P, P ) = −1, (3.11)

i(T,Br0\B̄r ∩ P, P ) = 1. (3.12)

Therefore, T has two positive fixed points in BR\B̄r0 ∩ P and Br0\B̄r ∩ P , respectively. Consequently,
problem (1.1)–(1.2) has two positive solutions.

Theorem 3.4. Suppose that (H1),(H3),(H4) and (H7) are satisfied. Then the problem (1.1)–(1.2) has at
least two positive solutions.

Proof. By the methods of Theorems 3.1 and 3.2, we can select R̄ > r̄0 > r̄ > 0 such that

i(T,Br̄ ∩ P, P ) = 1, (3.13)

i(T,BR̄ ∩ P, P ) = 1. (3.14)

Then for any u ∈ ∂Br̄0 ∩ P , by Proposition 2.8 and (H7), we have

Tu(t) =

∫ 1

0
G(t, s)f(s, u(s))ds (3.15)

≥ 1

Γ(α− β)

∫ 1

0
[s(1− s)]α−β−1ds{Γ(α− β)

∫ 1

0
[s(1− s)]α−β−1}−1r̄0 (3.16)

= r̄0 > u, 0 ≤ t ≤ 1.

Therefore,
i(T,Br̄0 ∩ P, P ) = 0, (3.17)

that is similar to the proof of Theorem 3.3, T has two positive fixed points in BR̄\B̄r̄0 ∩P and Br̄0\B̄r̄ ∩P ,
respectively. Consequently, problem (1.1)–(1.2) has two positive solutions.

Example 3.5. Consider the following fractional initial value problems

cDm+ 3
4u(t) =

1

4
[

1

π2
u2 + 1 +

3

4
cDm+ 1

4 sinu], 0 < t < 1, (3.18)

uk(0) = 0, k = 0, 1, 2, ...,m,

where α = m+ 3
4 , β = m+ 1

4 , m=0,1,2,..., f(t, u) = 1
4 [ 1
π2u

2 + 1 + 3
4
cDn+ 1

4 sinu]. By a simple computation,

it is easy to see that (H1),(H2) and (H5) hold. Take r0 = π, then f(t, u) = 1
4 [ 1
π2u

2 + 1 + 3
4
cDn+ 1

4 sinu] ≤ 3
4

and {
∫ 1

0 [s(1 − s)]α−β−1ds}−1r0 = r0
B(α−β,α−β) = 1. Thus, (H6) holds. Therefore, it follows from Theorem

3.3 that the initial value problems (3.18) for any m = 0, 1, ... has at least two positive solutions.
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