A numerical approximation with IP/SUPG algorithm for P-T-T viscoelastic flows

Lei Houa, Yunqing Fenga,\ast, Lin Qiub

aDepartment of Mathematics, Shanghai University, Shanghai, 200444 China.
bDepartment of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China.

Communicated by Y. Yao

Abstract

A numerical approximation for Phan-Thien-Tanner(P-T-T) viscoelastic flow problems has investigated. The approximation is proposed by an interior penalty(IP) method and a Streamline Upwind Petrov-Galerkin(SUPG) method. Meanwhile, the error estimates for the above numerical approximation of the P-T-T model is derived. The numerical results support the efficiency of the algorithm. \copyright 2016 All rights reserved.

Keywords: Viscoelastic flows, P-T-T model, finite element method, stokes, constitutive equation.

1. Introduction and Preliminaries

The investigation of the nonlinear material in the viscoelastic flow problems has practical significance in both engineering and medical fields, such as polymer processes, artificial organs, etc. Due to the complex material character of the fluid, numerical simulation of the impact viscoelastic flow problems is a difficult and expensive task. Some useful progress, such as \cite{4,11}, has been made in the past decades. They give mathematical and engineering perspectives on the viscoelastic flows. The fluid properties can be characterized by modern technology, such as constitutive equations. However, the complex theological responses of fluid and the elastic effect under high Weissenberg number make the numerical simulation of the viscoelastic flows become a difficult task, see \cite{9,10,13}.

Many constitutive models have become available in recent years that are able to describe the dominant convective behavior and the nonlinear coupling increases. In this paper we adopt the Phan-Thien-Tanner...
(P-T-T) equation, which is the differential type constitutive equation, to calculate the viscoelastic flows. To date, many numerical methods have been developed and adopted for the simulation of the nonlinear material properties, like the finite difference method (FDM), the finite volume method (FVM) and the finite element method (FEM). As we know, to improve the stability and efficiency of numerical simulation, many numerical schemes have been established and adopted. In [5], the discrete elastic viscous split stress algorithm is proposed for improving the stability of simulation by improving the ellipticity of the momentum equation. Moreover, the elastic viscous split stress scheme, the adaptive viscoelastic stress split scheme and the discrete adaptive viscoelastic stress split algorithm also can be used to stabilize the calculation program, see [14]. A streamline upwind Petrov-Galerkin (SUPG) method was introduced as a discretization method by Baranger and Sandri [1] for viscoelastic flows. Najib and Sandri [12] studied a numerical method for oldroyd-B fluid. The main idea of the method is to decouple the oldroyd-B model into two equation systems. Bonite et al. [2] presented a face interior penalty finite element method for solving stokes equations. Hou [7, 8] considered some physical applications of P-T-T model.

In this paper, we decouple the P-T-T model into two parts: the stokes-like problem and the constitutive equation. In details, the stokes-like problem is computed by IP method, and the constitutive equation is calculated by SUPG method. Moreover, we shall obtain error estimates of an IP/SUPG finite element method for the P-T-T model.

The paper is organized as follows. In Section 2, we introduce the P-T-T model and the mathematical notation. Section 3 displays an IP/SUPG method and the discrete approximation. In Section 4, error estimates of the IP/SUPG method for P-T-T model are presented. Section 5 is the numerical results.

2. P-T-T model and mathematical notation

Let us first introduce some notation. For a bounded domain Ω in \mathbb{R}^2, with boundary $\partial \Omega$. We consider viscoelastic flow governed by P-T-T model:

\[
\begin{cases}
- \nabla \cdot (2\eta \mathbf{D}(\mathbf{u}) + \mathbf{\tau}) + \nabla p = \mathbf{f}, & \text{in } \Omega \\
\nabla \cdot \mathbf{u} = 0, & \text{in } \Omega \\
\left(1 + \frac{\varepsilon \lambda}{1 - \eta \eta_p} \right) \mathbf{\tau} + \lambda ((\mathbf{u} \cdot \nabla) \mathbf{u} - \mathbf{\tau} \nabla \mathbf{u} - \nabla \mathbf{u}^T \mathbf{\tau}) = 2(1 - \eta \eta_p) \mathbf{D}(\mathbf{u}), & \text{in } \Omega \\
\mathbf{u} = 0, & \text{on } \partial \Omega,
\end{cases}
\]

(2.1)

where \mathbf{u}, p and $\mathbf{\tau}$ denote the velocity, viscoelastic stress tensor and pressure fields, respectively, ε, λ and η_p represent dimensionless material constant, Weissenberg number and viscosity constant, respectively. $\mathbf{D}(\mathbf{u})$ denote the rate of deformation tensor and $\mathbf{D}(\mathbf{u}) = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^T)$.

Throughout the paper, We denote by $\| \cdot \|_s$ and $(\cdot, \cdot)_s$ the norm and inner product on the Sobolev spaces $H^s(\Omega), s \geq 0$. In what follows, velocity \mathbf{u}, pressure p and viscoelastic stress tensor $\mathbf{\tau}$ belong to their respective spaces V, Q and S given by

\[
V = \{ \mathbf{u} \in H^1(\Omega); \mathbf{u} = 0, \text{on } \partial \Omega \},
\]

\[
Q = \{ p \in L^2(\Omega), \int_{\Omega} q \, dx = 0 \},
\]

\[
S = \{ \mathbf{T} \in L^2(\Omega), \mathbf{T} = (T_{ij}), T_{ij} = T_{ji}, i, j = 1, 2 \}
\]

and let $X = V \times Q \times S$.

Let $\Gamma_h = \{ K \}$ denotes a partition of Ω and K can be a triangle or a quadrilateral in two dimensions. The parameter h denotes the mesh size of Γ_h given by $h = \max_{K \in \Gamma_h} h_K$, where h_K is the diameter of K.

We shall use the following finite element space:

\[
V_h = \{ \mathbf{v} \in H^1(\Omega) : \mathbf{v}|_K \in p'(K)^2 \ \forall K \in \Gamma_h \},
\]
\[Q_h = \{ q \in L^2_0(\Omega) : q|_K \in p^l(K) \ \forall K \in \Gamma_h \}, \]
\[S_h = \{ \sigma \in H^1(\Omega) : \sigma|_K \in p^l(K)^d \ \forall K \in \Gamma_h \}, \]

here \(p^l(K) \) denotes the space of polynomials of total degree at most \(l \) on \(K \), \(l \geq 1 \). Let \(X_h = V_h \times Q_h \times S_h \).

3. Formulation of finite element method and error bounds

3.1. IP method and error estimate

We consider the stokes-like problem

\[
\begin{aligned}
- \nabla \cdot T + \nabla p &= f, \quad \text{in } \Omega, \\
\nabla \cdot u &= 0, \quad \text{in } \Omega, \\
T &= 2\eta_p D(u) + \tau, \quad \text{in } \Omega, \\
u &= 0, \quad \text{on } \partial \Omega,
\end{aligned}
\]

(3.1)

where \(T \) denotes extra stress tensor.

We define

\[
(u, v) = \int_{\Omega} u \cdot v \, dx,
\]

and

\[
<u, v>_{\Gamma} = \int_{\Gamma} u \cdot v \, ds.
\]

As for the stokes-like equation (3.1), we define the bilinear forms by

\[
a_h(T_h, v_h) = (T_h, D(v_h)) - (T_h \cdot n, v_h)_{\partial \Omega},
\]

(3.2)

\[
b_h(p_h, v_h) = -(p_h, \nabla \cdot v_h) + (p_h, v_h \cdot n)_{\partial \Omega}
\]

(3.3)

and the jump operators

\[
j_1(u_h, v_h) = 2\eta_p \sum_{K \in \mathcal{T}_h} h \int_{\partial K} [\nabla u_h] \cdot [\nabla v_h] \, ds + \frac{\eta_p \beta}{h} \int_{\partial \Omega} u_h \cdot v_h \, ds,
\]

(3.4)

\[
j_2(p_h, q_h) = \sum_{K \in \mathcal{T}_h} \frac{\gamma h^3}{\eta_p} \int_{\partial K} [\nabla p_h] [\nabla q_h] \, ds,
\]

(3.5)

where \(\alpha, \beta, \gamma \) are positive constants. \([\cdot]\) is the interior penalty term.

Then, the IP method for solving the stokes-like problem (3.1) is to find \((u_h, p_h, T_h) \in X_h\) such that

\[
a_h(T_h, v_h) + b_h(p_h, v_h) - b_h(q_h, u_h) - a_h(s_h, u_h) + \left(\frac{1}{2\eta_p} T_h, s_h \right) + j_1(u_h, v_h) + j_2(p_h, q_h)
\]

(3.6)

for all \((v_h, q_h, s_h) \in X_h\).

Furthermore, we state an approximation property.

Lemma 3.1. Let \((u, p, T)\) be the exact solution of (3.1), and let \((u_h, p_h, T_h) \in X_h\) be the numerical solution of (3.6). Then

\[
a_h(T - T_h, v_h) + b_h(p - p_h, v_h) - b_h(q_h, u - u_h) - a_h(s_h, u - u_h) + \left(\frac{1}{2\eta_p} (T - T_h), s_h \right) + j_1(u - u_h, v_h) + j_2(p - p_h, q_h) = 0 \quad \forall N_h \in X_h.
\]

(3.7)
Then, we need to define the triple norm
\[\| u, p, T \|^2 = \frac{1}{2\eta_p} \| T \|_{0,\Omega}^2 + 2\eta_p \| D(u) \|_{0,\Omega}^2 + \frac{1}{2\eta_p} \| p \|_{0,\Omega}^2 \] (3.8)
and the discrete triple norm
\[\| u_h, p_h, T_h \|^2 = \| u, p, T \|^2 + j_1(u - u_h, v_h) + j_2(p - p_h, q_h), \] (3.9)
where \((u, p, T) \in X\).

As in [3], we can obtain the optimal convergence rate in the triple norm if the exact solution \(u, p, T \) satisfies the assumptions stated in the following theorem

Theorem 3.2. Suppose that the mesh satisfies the quasuniformity of the mesh and that \(u, p, T \) be the solution of (3.1), then the solution \(u_h, p_h, T_h \) by the interior penalty method satisfies the error estimate
\[\| (u, p, T) - (u_h, p_h, T_h) \| \leq C \| \tau - \tau_h \| + o(h), \] (3.10)
where \(C \) is a constant independent of \(h \).

3.2. SUPG method and error analysis

we shall present a SUPG algorithm to solve the equation
\[\left(1 + \frac{\varepsilon \lambda}{1 - \eta_p} \text{tr}(\tau) \right) \tau + \lambda((u \cdot \nabla)u - \nabla u - \nabla u^T \tau) = 2(1 - \eta_p)D(u), \text{in } \Omega. \] (3.11)

The SUPG method is given as follows. An operator \(B \) is defined by
\[B(u, v, \tau, \omega) = ((u \cdot \nabla)\tau, \omega + h(v \cdot \nabla)\omega) + \frac{1}{2}((\nabla \cdot u)\tau, \omega) \] (3.12)
for all \((u, v, \tau, \omega) \in V_h \times V_h \times S_h \times S_h\).

Moreover, setting \(u = v, \tau = \omega \), we have
\[B(u, \tau, \tau) = h((u \cdot \nabla)\tau, (u \cdot \nabla)\tau) = h \| (u \cdot \nabla)\tau \|^2. \] (3.13)

For \(\omega_u = \omega + vh u \cdot \nabla \omega \), we obtain
\[B(\lambda u, \tau, \omega) = ((\lambda u \cdot \nabla)\tau, \omega + vh(u \cdot \nabla)\omega) + \frac{1}{2}((\nabla \cdot \lambda u)\tau, \omega). \] (3.14)

Taking the inner product of (3.11) with a test function \(\omega_u \), we have
\[\left(\left(1 + \frac{\varepsilon \lambda}{1 - \eta_p} \text{tr}(\tau) \right) \tau, \omega_u \right) + B(\lambda u, \tau, \omega) - \lambda((\tau \nabla u + \nabla u^T \tau), \omega_u) = 2(1 - \eta_p)(D(u), \omega_u) \] \forall \omega \in S. (3.15)

Now we define the discrete approximation of (3.15) as, find \(\tau \in S_h \) such that
\[\left(\left(1 + \frac{\varepsilon \lambda}{1 - \eta_p} \text{tr}(\tau_h) \right) \tau_h, \omega_{u_h} \right) + B(\lambda u_h, \tau_h, \omega) - \lambda((\tau_h \nabla u_h + \nabla u_h^T \tau_h), \omega_{u_h}) = 2(1 - \eta_p)(D(u_h), \omega_{u_h}) \] \forall \omega \in S_h. (3.16)

In order to consider the error estimate of the finite element solution related to the IP formulation (3.6), we proved the following result.
Theorem 3.3. Assume that τ and τ_h be the solutions of (3.11) and (3.16), respectively. Then the following inequality holds
\[
\| \tau - \tau_h \| \leq C h^{3/2} + (2(1 - \eta_p) + C \lambda L + C \lambda M h) \| u - u_h \|_1 / (7/8 - 2\lambda M - C \rho L)
\] (3.17)
for sufficiently small $\lambda > 0$ and $\rho = \frac{\epsilon \lambda}{1 - \eta_p}$, C is a positive constant independent of h.

Proof. Let $\tilde{\tau}$ be the L^2 projection of τ in S_h. We have
\[
(\tau - \tilde{\tau}, \omega) = 0 \quad \forall \omega \in S_h.
\] (3.18)
We apply the error estimate in [12] for $\tau \in H^2(\Omega)$
\[
\| \tau - \tilde{\tau} \| + h \| \tau - \tilde{\tau} \|_1 \leq C h^2 \| \tau \|_2,
\] (3.19)
\[
\| \tau - \tilde{\tau} \| \leq C h^{3/2} \| \tau \|_2.
\] (3.20)

The standard weak formulation of the constitutive equation in S is given by
\[
\left(\left(1 + \frac{\epsilon \lambda}{1 - \eta_p} (\text{tr}(\tau))^2 \right) \tau, \omega_h \right) + B(\lambda u, \lambda u_h, \tau, \omega, \omega_h) - \lambda((\tau \nabla u + \nabla u^T \tau), \omega_h)
\]
\[
= 2(1 - \eta_p)(D(u), (\omega_h, \omega)) \quad \forall \omega \in S.
\] (3.21)
Subtracting (3.21) from (3.16), and inserting the tensor $\tilde{\tau}$ and setting $\omega = \sigma = \tau_h - \tilde{\tau}$, we obtain
\[
\left(\left(1 + \frac{\epsilon \lambda}{1 - \eta_p} (\text{tr}(\tau_h))^2 \right) \tau_h, \sigma_{u_h} \right) - \frac{\epsilon \lambda}{\alpha} (\text{tr}(\sigma) \tau, \sigma_{u_h}) + B(\lambda u_h, \lambda \sigma, \sigma) - \lambda((\sigma \nabla u_h + \nabla u_h^T \sigma), \sigma_{u_h})
\]
\[
= (\tau - \tilde{\tau}, \sigma_{u_h}) - \frac{\epsilon \lambda}{\alpha} (\text{tr}(\tau_h)(\tilde{\tau} - \tau), \sigma_{u_h}) - \frac{\epsilon \lambda}{\alpha} (\text{tr}(\tilde{\tau} - \tau) \tau, \sigma_{u_h})
\]
\[
- B(\lambda u_h, \tilde{\tau} - \tau, \sigma) - B(\lambda(u_h - u), \lambda u_h, \tau, \sigma) + \lambda((\tilde{\tau} - \tau) \nabla u_h + \nabla u_h^T (\tilde{\tau} - \tau)), \sigma_{u_h})
\]
\[
- \lambda((\tilde{\tau} \nabla (u - u_h) + \nabla (u - u_h)^T \tau), \sigma_{u_h}) + 2(1 - \eta_p)(D(u_h - u), \sigma_{u_h}).
\] (3.22)
Assuming that the solution (u, p, T, τ) is smooth enough,
\[
L = \max\{|| u ||_3, || p ||_2, || T ||_2, || \tau ||_2\},
\]
and
\[
\max\{|| \nabla u_h ||_{0, \infty}, || \tau_h ||_{0, \infty}\} \leq M.
\]
where $\nabla u_h, \tau_h \in L^\infty(\Omega)$. We estimate the first part on the right-hand side of (3.22) by
\[
(\tau - \tilde{\tau}, \sigma_{u_h}) - \frac{\epsilon \lambda}{\alpha} (\text{tr}(\tau_h)(\tilde{\tau} - \tau), \sigma_{u_h}) - \frac{\epsilon \lambda}{\alpha} (\text{tr}(\tilde{\tau} - \tau) \tau, \sigma_{u_h})
\]
\[
\leq || \tau - \tilde{\tau} || \| \tau_h \|_0 || \tau_h \|_0 + 2\frac{\epsilon \lambda}{\alpha} || \tau_h \|_0 || \tau - \tilde{\tau} || \| \sigma ||_{u_h} + || \tau ||_{0, \infty} \| \text{tr}(\tilde{\tau} - \tau) \| || \sigma ||_{u_h}
\]
\[
\leq Ch^2 \| \tau \|_2 \| \sigma \|_{u_h} + CLM h^2 \| \sigma \|_{u_h} + \sqrt{2}C \| \tau \|_2 \| \tilde{\tau} - \tau \| || \sigma ||_{u_h}
\]
\[
\leq CL h^2(1 + M + L) \| \sigma \|_{u_h}.
\] (3.23)
For the first B term on the right-hand side of (3.22), using (3.14),
\[
B(\lambda u_h, \tilde{\tau} - \tau, \sigma)
\]
\[
= -((\lambda u_h \cdot \nabla) \sigma, \tilde{\tau} - \tau) - ((\nabla \cdot \lambda u_h) (\tilde{\tau} - \tau), \sigma)/2 + ((\lambda u_h \cdot \nabla)(\tilde{\tau} - \tau), (\lambda u_h \cdot \nabla) \tilde{\tau}).
\] (3.24)
Note that \(\nabla \cdot \mathbf{u} = 0 \) and using lemma from [14], we obtain an estimate for (3.24)

\[
B(\lambda \mathbf{u}_h, \tilde{\tau} - \tau, \sigma) \leq \|
\lambda (\mathbf{u}_h \cdot \nabla \sigma) \| \| \tilde{\tau} - \tau \| + \lambda \| \mathbf{u}_h - \mathbf{u} \|_1 \| \tilde{\tau} - \tau \| \| \sigma \|_{0, \infty} /2 \\
+ \lambda h^{1/2} \| \mathbf{u}_h \|_{0, \infty} \| \tilde{\tau} - \tau \|_1 \| \lambda h^{1/2}(\mathbf{u}_h \cdot \nabla) \sigma \| \\
\leq CHh^{3/2} \| \lambda h^{1/2}(\mathbf{u}_h \cdot \nabla) \sigma \| + \lambda CLh \| \mathbf{u}_h - \mathbf{u} \|_1 \| \sigma \| /2 \\
+ CLMh^{3/2} \| \lambda h^{1/2}(\mathbf{u}_h \cdot \nabla) \sigma \| \\
\leq CL((1 + \lambda M)h^{3/2} + \lambda h \| \mathbf{u}_h - \mathbf{u} \|_1 /2) \| \sigma \|_{u_h} .
\]

In view of expression B in (3.12) and imbedding theorem in [6], we consider the second B term on the right-hand side of (3.22)

\[
B(\lambda (\mathbf{u}_h - \mathbf{u}), \lambda \mathbf{u}_h, \tau, \sigma) = (\lambda(\mathbf{u}_h - \mathbf{u}) \cdot \nabla \tau, \sigma_{u_h}) + \lambda(\nabla \cdot (\mathbf{u}_h - \mathbf{u}) \tau, \sigma) /2 \\
\leq C\lambda \| \mathbf{u}_h - \mathbf{u} \|_1 \| \tau \|_2 \| \sigma \|_{u_h} + \| \mathbf{u}_h - \mathbf{u} \|_1 \| \tau \|_2 \| \sigma \|_{u_h} \\
\leq C\lambda L \| \mathbf{u}_h - \mathbf{u} \|_1 \| \sigma \|_{u_h} .
\]

Using (3.19), we easily see that

\[
\lambda((\tilde{\tau} - \tau) \nabla \mathbf{u}_h + \nabla \mathbf{u}_h^T(\tilde{\tau} - \tau), \sigma_{u_h}) - \lambda((\mathbf{u}_h \cdot \nabla (\mathbf{u}_h - \mathbf{u}) + \nabla (\mathbf{u}_h - \mathbf{u})^T \tau), \sigma_{u_h}) \\
\leq 2\lambda \| \nabla \mathbf{u}_h \|_{0, \infty} \| \tilde{\tau} - \tau \| \| \sigma \|_{u_h} + 2\lambda \| \mathbf{u}_h - \mathbf{u} \|_1 \| \tau \|_{0, \infty} \| \sigma \|_{u_h} \\
\leq C\lambda L(Mh^2 + \| \mathbf{u}_h \|_1) \| \sigma \|_{u_h} .
\]

For the last term on the right-hand side of (3.22), we obtain

\[
2(1 - \eta_p)(D(\mathbf{u}_h - \mathbf{u}), \sigma_{u_h}) \leq 2(1 - \eta_p) \| \mathbf{u}_h - \mathbf{u} \|_1 \| \sigma \|_{u_h} .
\]

Hence, combining (3.23) and (3.25)-(3.28), we get upper bound of the right-hand side of (3.22)

\[
RH \leq CL(h^2 + pMh^2 + pLh^2 + \lambda Mh^2 + h^{3/2} + \lambda Mh^{3/2}) \| \sigma \|_{u_h} \\
+ (2(1 - \eta_p) + C\lambda L + C\lambda Mh) \| \mathbf{u}_h - \mathbf{u} \|_1 \| \sigma \|_{u_h} ,
\]

where \(\rho = \varepsilon \lambda / 1 - \eta_p \).

We will derive a lower bound of the left-hand side of (3.22). By using Young’s inequality and the equality (3.13), we have

\[
\left(\frac{1 + \varepsilon \lambda}{1 - \eta_p} (\mathbf{v}_h, \sigma_{u_h}) \right) + B(\lambda \mathbf{u}_h, \sigma, \sigma) \\
= \left(\frac{1 + \varepsilon \lambda}{1 - \eta_p} (\mathbf{v}_h, \sigma_{u_h}) \right) + \left(\frac{1 + \varepsilon \lambda}{1 - \eta_p} (\mathbf{v}_h, \sigma_{u_h} \cdot \nabla \sigma) \right) + B(\lambda \mathbf{u}_h, \sigma, \sigma) \\
\geq (1 - \frac{2\varepsilon h}{1 - \eta_p} \| \sigma \|_{0, \infty}) \| \sigma \|^2 - h(1 + \frac{2\varepsilon h}{1 - \eta_p} \| \sigma \|^2 - \frac{2\varepsilon h}{1 - \eta_p} \| \mathbf{v}(\sigma_{u_h} \cdot \nabla) \sigma \| \| \sigma \|^2) + B(\lambda \mathbf{u}_h, \sigma, \sigma) \\
\geq 15 \| \sigma \|^2 /16 - h((1 + \frac{2\varepsilon h}{1 - \eta_p} \| \sigma \|^2 - \frac{2\varepsilon h}{1 - \eta_p} \| \mathbf{v}(\sigma_{u_h} \cdot \nabla) \sigma \| \| \sigma \|^2) /4) + B(\lambda \mathbf{u}_h, \sigma, \sigma) \\
\geq 7 \| \sigma \|^2 /8 ,
\]

where \(h \leq 16/289 \) and \(\| \mathbf{v}_h \|_{0, \infty} \leq (1 - \eta_p) / 32 \varepsilon \lambda \leq M \). For the rest of term on the left-hand side of (3.22), we get

\[
\left(\frac{\varepsilon \lambda}{1 - \eta_p} (\mathbf{v}(\sigma \sigma_{u_h} \cdot \mathbf{v}_h)), \sigma_{u_h}) \right) - \lambda((\sigma \nabla \mathbf{u}_h + \nabla \mathbf{u}_h^T \sigma), \sigma_{u_h}) \\
\leq \frac{\varepsilon \lambda}{1 - \eta_p} \| \mathbf{v}(\sigma) \| \| \sigma \|_{0, \infty} \| \sigma \|_{u_h} + 2\lambda \| \nabla \mathbf{u}_h \|_{0, \infty} \| \sigma \|_{u_h} \\
\leq (CL \frac{\varepsilon \lambda}{1 - \eta_p} + 2\lambda M) \| \sigma \|^2_{u_h} .
\]
Using the bounds (3.30) and (3.31), we get a lower bound of the left-side of (3.22)

\[LH \geq \left(\frac{7}{8} - 2\lambda M - C\rho L \right) \| \sigma \|_{u_h}^2. \]

(3.32)

Therefore, combining (3.29) and (3.32), we obtain

\[\left(\frac{7}{8} - 2\lambda M - C\rho L \right) \| \sigma \|_{u_h} \leq CL \left(h^2 + \rho M h^2 + \rho L h^2 + \lambda M h^2 + h^{3/2} + \lambda M h^{3/2} \right) \| \sigma \|_{u_h} \]

\[+ \left(2(1 - \eta p) + C\lambda L + C\lambda M h \right) \| u - u_h \|_1 \| \sigma \|_{u_h}. \]

(3.33)

Using the triangle inequality, we proved the error estimate (3.17).

\[\| (u - u_h, p - p_h, T - T_h) + \| \tau - \tau_h \| \leq Ch. \]

(3.34)

\[\text{Proof.} \] Combining Theorem 3.2 with Theorem 3.3, we obtain the bound (3.34), which completes the proof.

4. Numerical experiments

Here, we consider the creeping flow in a planar channel problem with P-T-T model (2.1). We shall solve the problem using the proposed IP/SUPG method to illustrate the theoretical analysis. Figure 1 shows the test domain and Dirichlet boundary conditions. \(u_y \) represents the velocity in \(y \)-direction.

![Figure 1: The geometry and boundary conditions.](image)

The exact solution \((u, p, \tau) \) is given by

\[u = \begin{pmatrix} 1 - y^4 \\ 0 \end{pmatrix}, \quad p = -x^2, \]

\[\tau = \begin{pmatrix} 32\lambda \alpha y^6 & -4\alpha y^3 \\ -4\alpha y^3 & 0 \end{pmatrix}. \]

(4.1)

Therefore, the right hand side terms of the momentum and constitutive equations modified by substituting (4.1) into (3.1) and (3.11) are given by

\[f = \begin{pmatrix} 12y^2 - 2x \\ 0 \end{pmatrix}, \]

(4.2)
The error is defined as follows

\[E_{L_2}(\mathbf{u}) = \left(\sum_{j=0}^{m} || \mathbf{u}(j) - \mathbf{u}_{exact}(j) || \right)^{1/2}, \]

\[E_{L_2}(p) = \left(\sum_{j=0}^{m} || p(j) - p_{exact}(j) || \right)^{1/2}, \]

\[E_{L_2}(\mathbf{\tau}) = \left(\sum_{j=0}^{m} || \mathbf{\tau}(j) - \mathbf{\tau}_{exact}(j) || \right)^{1/2}, \]

\[E_{L_2}(\mathbf{T}) = \left(\sum_{j=0}^{m} || \mathbf{T}(j) - \mathbf{T}_{exact}(j) || \right)^{1/2}. \]

The effects of material parameter \(\lambda \) on the error estimates of velocity, pressure and stress are displayed in Figure 2 and Figure 3.

Figure 2: Error estimates in \(\mathbf{u}, p, \tau \) and \(\mathbf{T} \) with \(\lambda = 0.5 \) by IP/SUPG algorithm.

Figure 3: Error estimates in \(\mathbf{u}, p, \tau \) and \(\mathbf{T} \) with \(\lambda = 2.5 \) by IP/SUPG algorithm.

5. Conclusions

In this paper, we construct the IP/SUPG finite element schemes and present the error estimates for the IP/SUPG algorithm of the P-T-T viscoelastic flow problems. It is proved that the algorithm is stable and convergent.
Acknowledgment

The first author is supported by the National Natural Science Foundation of China (No. 11271247).

References

