Feng-Liu type fixed point results for multivalued mappings on JS-metric spaces

Ishak Altuna,b,*, Nasir Al Arific, Mohamed Jlelid, Aref Lashine,f, Bessem Sametd

aCollege of Science, King Saud University, Riyadh, Saudi Arabia.
bDepartment of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey.
cGeology and Geophysics Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.
dDepartment of Mathematics, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.
ePetroleum and Gas Engineering Department, College of Engineering, King Saud University, P. O. Box 800, Riyadh 11421, Saudi Arabia.
fBenha University, Faculty of Science, Geology Department, P. O. Box 13518, Benha, Egypt.

Communicated by C. Alaca

Abstract

In this paper, we present a fixed point theorem for multivalued mappings on generalized metric space in the sense of Jleli and Samet [M. Jleli, B. Samet, Fixed Point Theory Appl., 2015 (2015), 61 pages]. In fact, we obtain as a special case both b-metric version and dislocated metric version of Feng-Liu’s fixed point result. ©2016 All rights reserved.

Keywords: Fixed point, multivalued mapping, generalized metric space, b-metric space, dislocated metric space.

2010 MSC: 54H25, 47H10.

1. Introduction and Preliminaries

Let X be any nonempty set. An element $x \in X$ is said to be a fixed point of a multivalued mapping $T : X \rightarrow P(X)$ if $x \in Tx$, where $P(X)$ denotes the family of all nonempty subsets of X. Let (X, d) be a
metric space. We denote the family of all nonempty closed and bounded subsets of X by $CB(X)$ and the family of all nonempty closed subsets of X by $C(X)$. For $A, B \in C(X)$, let
\[
H(A, B) = \max \left\{ \sup_{x \in A} d(x, B), \sup_{y \in B} d(y, A) \right\},
\]
where $d(x, B) = \inf \{d(x, y) : y \in B \}$. Then H is called generalized Pompei-Hausdorff distance on $C(X)$. It is well known that H is a metric on $CB(X)$, which is called Pompei-Hausdorff metric induced by d. We can find detailed information about the Pompeiu-Hausdorff metric in [3, 10].

Let $T : X \to CB(X)$. Then, T is called multivalued contraction if there exists $L \in [0, 1)$ such that $H(Tx, Ty) \leq Ld(x, y)$ for all $x, y \in X$ (see [16]). In 1969, Nadler [16] proved that every multivalued contraction on complete metric space has a fixed point. Then, the fixed point theory of multivalued contraction has been further developed in different directions by many authors, in particular, by Reich [17], Mizoguchi-Takahashi [15], Klim-Wardowski [14], Berinde-Berinde [2], Ćirić [4] and many others [5, 6, 12, 18]. Also, Feng and Liu [8] gave the following theorem without using generalized Pompei-Hausdorff distance. To state their result, we give the following notation for a multivalued mapping $T : X \to C(X)$: let $b \in (0, 1)$ and $x \in X$ define
\[
I_b^x(T) = \{ y \in Tx : bd(x, y) \leq d(x, Tx) \}.
\]

Theorem 1.1 ([8]). Let (X, d) be a complete metric space and $T : X \to C(X)$. If there exists a constant $c \in (0, 1)$ such that there is $y \in I_b^x(T)$ satisfying
\[
d(y, Ty) \leq cd(x, y)
\]
for all $x \in X$. Then T has a fixed point in X provided that $c < b$ and the function $x \to d(x, Tx)$ is lower semicontinuous.

As mentioned in Remark 1 of [8], we can see that Theorem [1.1] is a real generalization of Nadler’s.

The aim of this paper is to present Feng-Liu type fixed point results for multivalued mappings on some generalized metric space such as b-metric spaces and dislocated metric spaces. To do this, we will consider JS-metric on a nonempty set.

Let X be a nonempty set and $D : X \times X \to [0, \infty]$ be a mapping. For every $x \in X$ define a set
\[
C(D, X, x) = \{ \{x_n\} \subset X : \lim_{n \to \infty} D(x_n, x) = 0 \}.
\]

In this case, we say that D is a generalized metric in the sense of Jleli and Samet [11] (for short JS-metric) on X if it satisfies the following conditions:

1. (D_1) for every $(x, y) \in X \times X$, $D(x, y) = 0 \Rightarrow x = y$;
2. (D_2) for every $(x, y) \in X \times X$, $D(x, y) = D(y, x)$;
3. (D_3) there exists $c > 0$ such that for every $(x, y) \in X \times X$ and $\{x_n\} \in C(D, X, x)$,
\[
D(x, y) \leq c \limsup_{n \to \infty} D(x_n, y).
\]

In this case (X, D) is said to be JS-metric space. Note that, if $C(D, X, x) = \emptyset$ for all $x \in X$, then (D_3) is trivially held. The class of JS-metric space is larger than many known class of metric space. For example, every standard metric space, every b-metric space, every dislocated metric space (in the sense of Hitzler-Seda [9]), and every modular space with the Fatou property is a JS-metric space. For more details see [11].

Let (X, D) be a JS-metric space, $x \in X$, and $\{x_n\}$ be a sequence in X. If $\{x_n\} \in C(D, X, x)$, then $\{x_n\}$ is said to be converges to x. If $\lim_{n,m \to \infty} D(x_n, x_{n+m}) = 0$, then $\{x_n\}$ is said to be Cauchy sequence. If every
Cauchy sequence in \((X, D)\) is convergent, then \((X, D)\) is said to be complete. By Proposition 2.4 of [1], we see that every convergent sequence in \((X, D)\) has a unique limit. That is, if \(\{x_n\} \in C(D, X) \cap C(D, X, y)\), then \(x = y\).

After the introducing the JS-metric space, Jleli and Samet [11] presented some fixed point results including Banach contraction and Ćirić type quasicontraction mappings.

2. Main result

Let \((X, D)\) be a JS-metric space and \(U \subseteq X\). We say that \(U\) is sequentially open if for each sequence \(\{x_n\}\) in \(X\) such that \(\lim_{n \to \infty} D(x_n, x) = 0\) for some \(x \in U\) is eventually in \(U\), that is, there exists \(n_0 \in \mathbb{N}\) such that \(x_n \in U\) for all \(n \geq n_0\). Let \(\tau_{JS}\) be the family of all sequentially open subsets of \(X\), then it is easy to see that \((X, \tau_{JS})\) is a topological space. Further, a sequence \(\{x_n\}\) is convergent to \(x\) in \((X, D)\) if and only if it is convergent to \(x\) in \((X, \tau_{JS})\). Let \(C(X)\) be the family of all nonempty closed subsets of \((X, \tau_{JS})\) and let \(\Lambda\) be the family of all nonempty subsets \(A\) of \(X\) satisfying the following property: for all \(x \in X\),

\[
D(x, A) = 0 \Rightarrow x \in A,
\]

where \(D(x, A) = \inf\{D(x, y) : y \in A\}\). In this case, \(C(X) = \Lambda\). Indeed, let \(A \in C(X)\) and \(x \in X\). If \(D(x, A) = 0\), then there exists a sequence \(\{x_n\}\) in \(A\) such that \(\lim_{n \to \infty} D(x, x_n) = 0\). Therefore, by the definition of the topology \(\tau_{JS}\), for any \(U \in \tau_{JS}\) including the point \(x\), there exists \(n_U \in \mathbb{N}\) such that \(x_n \in U\) for all \(n \geq n_U\). In this case, we have \(U \cap A \neq \emptyset\), that is, \(x \in \overline{A} = A\). Hence \(C(X) \subseteq \Lambda\). Now, let \(A \in \Lambda\). We will show that \(A \in C(X)\). Let \(x \in X\) and \(\{x_n\}\) be a sequence in \(X\) such that \(\lim_{n \to \infty} D(x_n, x) = 0\). If there exists a subsequence \(\{x_{n_k}\}\) of \(\{x_n\}\) such that \(\{x_{n_k}\} \subset A\), then we get \(D(x, A) = 0\). Since \(A \in \Lambda\), then \(x \in A\). This is a contradiction. Therefore, there exists \(n_0 \in \mathbb{N}\) such that \(x_n \in X\setminus A\) for all \(n \geq n_0\). This shows that \(X\setminus A \in \tau_{JS}\), and so \(A \in C(X)\). As a consequence we get \(C(X) = \Lambda\).

Now we will consider the following special cases for \(\tau_{JS}\):

Let \((X, D)\) be a metric space. Then it is clear that \(\tau_{JS}\) coincides with the metric topology \(\tau_D\).

Let \((X, D)\) be a \(b\)-metric space. In this case, there are three topologies on \(X\) as follows: First is sequential topology \(\tau_s\), which is defined as in Definition 3.1 (3) of [1]. Second is the \(\tau_D\) topology [13], which is the family of all open subsets of \(X\) in the usual sense, that is, a subset \(U\) of \(X\) is open if for any \(x \in U\), there exists \(\varepsilon > 0\) such that

\[
B(x, \varepsilon) := \{y \in X : D(x, y) < \varepsilon\} \subseteq U.
\]

Third is the \(\tau^D\) topology, which the family of all finite intersections of

\[
C = \{B(x, \varepsilon) : x \in X, r > 0\},
\]

satisfies conditions (B1)–(B2) of (7), Proposition 1.2.1) is a base of \(\tau^D\). By Proposition 3.3 of [1], we know that \(\tau_s = \tau_D \subset \tau^D\). Also by Definition 2.1 and Theorem 3.4 of [1], we can see that \(\tau_{JS} = \tau_s\).

Let \((X, D)\) be a dislocated metric space in the sense of Hitzler and Seda [9]. In this case, the set of balls does not in general yield a conventional topology. However, by defining a new membership relation, which is more general than the classical membership relation from set theory, Hitzler and Seda [9] constructed a suitable topology on dislocated metric space as follows: Let \(X\) be a set. A relation \(\triangleleft \subseteq X \times P(X)\) is called \(d\)-membership relation on \(X\) if it satisfies the following property: for all \(x \in X\) and \(A, B \in P(X)\),

\[
x \triangleleft A \text{ and } A \subseteq B \text{ implies } x \triangleleft A.
\]

Let \(U_x\) be a nonempty collection of subsets of \(X\) for each \(x \in X\). If the following conditions are satisfied, then the pair \((U_x, \triangleleft)\) is called \(d\)-neighbourhood system for \(x\):

(i) if \(U \in U_x\), then \(x \triangleleft U\);

(ii) if \(U, V \in U_x\), then \(U \cap V \in U_x\);
(iii) if \(U \subseteq U_x \), then there is \(V \subseteq U \) with \(V \subseteq U_x \) such that for all \(y \in V \) we have \(U \subseteq U_y \);
(iv) if \(U \subseteq U_x \) and \(U \subseteq V \), then \(V \subseteq U_x \).

The \(d \)-neighbourhood system \((U_x, \prec) \) generates a topology on \(X \). This topological space is called \(d \)-topological space and indicated as \((X, U, \prec)\), where \(U = \{U_x : x \in X\} \).

Now, let \((X, D)\) be a dislocated metric space in the sense of Hitzler and Seda [9]. Define a membership relation \(\prec \) as the relation
\[
\{(x, A) : \text{there exists } \varepsilon > 0 \text{ for which } B(x, \varepsilon) \subseteq A\}. \tag{2.1}
\]

In this case, by Proposition 3.5 of [9], we know that \((U_x, \prec)\) is \(d \)-neighbourhood system for \(x \) for each \(x \in X \), where \(U_x \) be the collection of all subsets \(A \) of \(X \) such that \(x \prec A \). By taking into account the Definition 2.2, Definition 3.8 and Proposition 3.9 of [9] we can see that the \(d \)-topology generated by (2.1) on \((X, D)\) coincides with the topology \(\tau_{JS} \).

Let \((X, D)\) be a generalized metric space and \(T : X \to C(X) \) be a multivalued mapping. For a constant \(b \in (0, 1) \) and \(x \in X \), we will consider the following set in our main result:
\[
I^c_0(T) = \{y \in Tx : bD(x, y) \leq D(x, Tx)\}.
\]

Theorem 2.1. Let \((X, D)\) be a complete generalized metric space and \(T : X \to C(X) \) be multivalued mapping. Suppose there exists a constant \(c > 0 \) such that for any \(x \in X \) there is \(y \in I^c_0(T) \) satisfying
\[
D(y, Ty) \leq cD(x, y). \tag{2.2}
\]

If there exists \(x_0 \in X \) such that \(D(x_0, Tx_0) < \infty \), then it can be constructed a sequence \(\{x_n\} \) in \(X \) satisfying:
(i) \(x_{n+1} \in Tx_n \);
(ii) \(D(x_n, x_{n+1}) < \infty \);
(iii) \(bD(x_{n+1}, x_{n+2}) \leq cD(x_n, x_{n+1}) \) and \(bD(x_{n+1}, Tx_{n+1}) \leq cD(x_n, Tx_n) \).

If this constructed sequence is Cauchy and the function \(f(x) = D(x, Tx) \) is lower semicontinuous, then \(T \) has a fixed point.

Now consider the following important remarks, before giving the proof of Theorem 2.1.

Remark 2.2. If \((X, D)\) is a metric space (or dislocated metric space in the sense of Hitzler and Seda [9]) and \(c < b \), then the mentioned sequence in Theorem 2.1 is Cauchy. Indeed, since \(D \) has triangular inequality, for \(m, n \in \mathbb{N} \) with \(m > n \), we get from (iii),
\[
D(x_n, x_m) \leq D(x_n, x_{n+1}) + \cdots + D(x_{m-1}, x_m)
\leq \left(\frac{c}{b}\right)^n D(x_0, x_1) + \cdots + \left(\frac{c}{b}\right)^{m-1} D(x_0, x_1)
\leq \frac{(c/b)^n}{1 - (c/b)} D(x_0, x_1).
\]
Since \(c < b \), then \(\{x_n\} \) is Cauchy sequence.

Remark 2.3. If \((X, D)\) is a \(b \)-metric space with \(b \)-metric constant \(s \) and \(sc < b \), then the mentioned sequence in Theorem 2.1 is Cauchy. Indeed, in this case, we have
\[
D(x, y) \leq s[D(x, z) + D(z, y)]
\]
Therefore, for \(m, n \in \mathbb{N} \) with \(m > n \), we get from (iii),
Assume that $s c < b$, then the sequence $\{x_n\}$ is a Cauchy sequence.

Proof of Theorem 2.1. First observe that, since $Tx \in C(X)$ for all $x \in X$, $I_b^x(T)$ is nonempty. Let $x_0 \in X$ be such that $D(x_0, Tx_0) < \infty$. Then, from (2.2), there exists $x_1 \in I_b^{x_0}(T)$ such that

$$D(x_1, Tx_1) \leq cD(x_0, x_1).$$

Note that, since $x_1 \in I_b^{x_0}(T)$, then $x_1 \in Tx_0$ and

$$bD(x_0, x_1) \leq D(x_0, Tx_0) < \infty.$$

For $x_1 \in X$, there exists $x_2 \in I_b^{x_1}(T)$ such that

$$D(x_2, Tx_2) \leq cD(x_1, x_2).$$

By the way, we can construct a sequence $\{x_n\}$ in X such that $x_{n+1} \in I_b^{x_n}(T)$ and

$$D(x_{n+1}, Tx_{n+1}) \leq cD(x_n, x_{n+1})$$

for all $n \in \mathbb{N}$. Note that, since $D(x_0, Tx_0) < \infty$, then $D(x_n, x_{n+1}) < \infty$ for all $n \in \mathbb{N}$.

Again, since $x_{n+1} \in I_b^{x_n}(T)$, we have $x_{n+1} \in Tx_n$ and

$$bD(x_n, x_{n+1}) \leq D(x_n, Tx_n)$$

for all $n \in \mathbb{N}$. Therefore from (2.3) and (2.4), we get

$$bD(x_{n+1}, x_{n+2}) \leq D(x_{n+1}, Tx_{n+1}) \leq cD(x_n, x_{n+1}),$$

and

$$D(x_{n+1}, Tx_{n+1}) \leq cD(x_n, x_{n+1}) \leq \frac{c}{b}D(x_n, Tx_n).$$

Hence (i), (ii), and (iii) hold. Furthermore, from (2.5) and (2.6), we get

$$\lim_{n \to \infty} D(x_n, x_{n+1}) = \lim_{n \to \infty} D(x_n, Tx_n) = 0.$$

Now, if $\{x_n\}$ is a Cauchy sequence then by the completeness of (X, D), there exists $z \in X$ such that $x_n \in C(D, X, z)$, that is, $\lim_{n \to \infty} D(x_n, z) = 0$. Therefore, by the lower semicontinuity of the function $f(x) = D(x, Tx)$, we get

$$0 \leq D(z, Tz) = f(z) \leq \liminf_{n \to \infty} f(x_n) = \liminf_{n \to \infty} D(x_n, Tx_n) = 0.$$

Since $Tz \in C(X)$, we get $z \in Tz$.

By taking into account Remark 2.2 and Remark 2.3, we obtain the following results from Theorem 2.1.

Corollary 2.4 (Feng-Liu’s fixed point theorem). Let (X, d) be a complete metric space and $T : X \to C(X)$ be multivalued mapping. Suppose there exists a constant $c > 0$ such that for any $x \in X$ there is $y \in I_b^x(T)$ satisfying

$$d(y, Ty) \leq cd(x, y).$$

Then T has a fixed point provided that $c < b$ and the function $f(x) = d(x, Tx)$ is lower semicontinuous.
Corollary 2.5 (Feng-Liu’s fixed point theorem on b-metric space). Let (X,d) be a complete b-metric space with b-metric constant s and $T : X \rightarrow C(X)$ be multivalued mapping. Suppose there exists a constant $c > 0$ such that for any $x \in X$ there is $y \in I^*_b(T)$ satisfying
\[d(y,Ty) \leq cd(x,y). \]
Then T has a fixed point provided that $sc < b$ and the function $f(x) = d(x,Tx)$ is lower semicontinuous.

Corollary 2.6 (Feng-Liu’s fixed point theorem on dislocated metric space). Let (X,d) be a complete dislocated metric space and $T : X \rightarrow C(X)$ be multivalued mapping. Suppose there exists a constant $c > 0$ such that for any $x \in X$ there is $y \in I^*_b(T)$ satisfying
\[d(y,Ty) \leq cd(x,y). \]
Then T has a fixed point provided that $c < b$ and the function $f(x) = d(x,Tx)$ is lower semicontinuous.

Acknowledgment
The authors extend their appreciation to Distinguished Scientist Fellowship Program (DSFP) at King Saud University (Saudi Arabia).

References