Positive solutions to a class of q-fractional difference boundary value problems with ϕ-Laplacian operator

Jidong Zhao

Department of Foundation, Shandong Yingcai University, Jinan, Shandong 250104, P. R. China.

Communicated by R. Saadati

Abstract

By virtue of the upper and lower solutions method, as well as the Schauder fixed point theorem, the existence of positive solutions to a class of q-fractional difference boundary value problems with ϕ-Laplacian operator is investigated. The conclusions here extend existing results. ©2016 All rights reserved.

Keywords: Fractional q-difference, ϕ-Laplacian operator, upper and lower solutions method, Schauder fixed point theorem, positive solution.

2010 MSC: 34A08, 34B18, 39A13.

1. Introduction

In recent years, the fractional q-difference boundary value problems have received more attention as a new research direction by scholars both at home and abroad (see [1, 2, 4–6]). In [2], the author studied positive solutions to a class of q-fractional difference boundary value problems. In [6], the authors used u_0-concave operator fixed point theorem to study the following fractional difference boundary value problems

$$\begin{cases}
(D^\alpha_q y)(x) = -f(x, y(x)), & 0 < x < 1, \quad 2 < \alpha \leq 3, \\
y(0) = (D^\alpha_q y)(0) = 0, & (D^\alpha_q y)(1) = 0.
\end{cases}$$

An iterative sequence of positive solutions was established. In [4], the authors used a fixed point theorem on posets to study the existence and uniqueness of positive solutions to a class of q-fractional difference boundary value problems with p-Laplacian operator:

Email address: zhaojiday@163.com (Jidong Zhao)

Received 2016-01-14
\[
\begin{cases}
D_q^\gamma (\phi_{\mu} (D_q^\alpha u(t))) + f(t,u(t)) = 0, & 0 < t < 1, 2 < \alpha < 3, \\
u(0) = (D_q u)(0) = 0, & (D_q u)(1) = \beta (D_q u)(\eta).
\end{cases}
\]

Motivated by the aforementioned work, we investigate the existence of positive solutions to a class of q-fractional difference boundary value problems with \(\phi\)-Laplacian operator:

\[
\begin{cases}
D_q^\gamma (\phi_{\mu} (D_q^\alpha u(t))) = f(t,u(t)), & 0 < t < 1, \\
u(0) = u(1) = (D_q u)(0) = (D_q u)(1) = 0,
\end{cases}
\]

where \(1 < \alpha, \beta < 2, D_q^\gamma\) is the Riemann–Liouville fractional order derivative, the nonlinear term \(f(t,u(t))\) \(\in ([0,1] \times [0, +\infty), (0, +\infty))\) and \(\phi\)-Laplacian is defined by

\[
\phi_{\mu}(s) = |s|^{\mu - 2}s, \mu > 1, (\phi_{\mu})^{-1} = \phi_v, 1/\mu + 1/v = 1.
\]

2. Preliminaries

In the following section we give the definition of Riemann–Liouville fractional q-order derivative for \(q \in [0,1]\). One can refer to [3] for other related definitions and basic knowledge.

Definition 2.1. The q-derivative of a function \(f(x)\) is given by

\[
(D_q f)(x) = \frac{f(x) - f(qx)}{(1 - q)x}, (D_q f)(0) = \lim_{x \to 0} (D_q f)(x),
\]

and higher order q-derivatives are defined by

\[
(D_q^n f)(x) = f(x), \quad (D_q^n f)(x) = D_q(D_q^{n-1} f)(x), \quad n \in \mathbb{N}.
\]

Definition 2.2. The q-integral of \(f(x)\) on the interval \([0, b]\) is given by

\[
(I_q f)(x) = \int_{0}^{x} f(t) d_q t = x(1-q) \sum_{n=0}^{\infty} f(xq^n)q^n, \quad x \in [0, b].
\]

If the q-integral for the function \(f(x)\) on the interval \([a, b]\) exists, then

\[
\int_{a}^{b} f(t) d_q t = \sum_{n=0}^{\infty} \int_{0}^{a} f(t) d_q t - \int_{0}^{b} f(t) d_q t, \quad a \in [0, b].
\]

\[
(I_q^0 f)(x) = f(x), \quad (I_q^n f)(x) = I_q(I_q^{n-1} f)(x), \quad n \in \mathbb{N}.
\]

Definition 2.3. Let \(\alpha > 0\) and \(f(x)\) be a function defined on \([0,1]\). The fractional q-integral of the Riemann–Liouville type is

\[
(I_q^0 f)(x) = f(x),
\]

\[
(I_q^\alpha f)(x) = \frac{1}{\Gamma_q(\alpha)} \int_{0}^{x} (x - qt)^{(\alpha - 1)} f(t) d_q t, \quad \alpha > 0, \quad x \in [0,1],
\]

where the \(\Gamma_q(\alpha)\) function is defined by

\[
\Gamma_q(\alpha) = \frac{(1-q)^{\alpha - 1}}{(1-q)^{\alpha - 1}},
\]

and \((1-q)^{\alpha}\) is defined by

\[
(1-q)^{0} = 1, \quad (1-q)^{\alpha} = \prod_{k=0}^{\alpha-1} (1-q^k), \quad \alpha \in \mathbb{N} \setminus \{0, -1, -2, \ldots\}.
\]
Definition 2.4. The fractional q-derivative of the Riemann–Liouville type of order $\alpha > 0$ is defined by
\[
(D_q^\alpha f)(x) = (D_q^m I_q^{m-\alpha} f)(x), \quad \alpha > 0, \quad x \in [0, 1],
\]
where m is the smallest integer greater than or equal to α. In the particular case,
\[
(t_0^\alpha f)(x) = f(x).
\]
Let
\[
(G_\alpha)(t, s) = \begin{cases}
(t(1-s))^{\alpha-1} - (t-s)^{\alpha-1}, & 0 < s \leq t \leq 1, \\
(t(1-s))^{\alpha-1}, & 0 < t \leq s \leq 1, \quad \alpha > 0.
\end{cases}
\]
G_α is a nonnegative continuous function on $[0, 1] \times [0, 1]$.

Lemma 2.5 [2]. Let $1 < \alpha \leq 2$ and suppose that $y(t) \in C[0, 1]$. Then
\[
\begin{cases}
(D_q^\alpha u)(t) + y(t) = 0, & 0 < t < 1, \\
u(0) = u(1) = 0,
\end{cases}
\]
is equivalent to
\[
u(t) = \int_0^1 G_\alpha(t, qs)y(s)d_qs.
\]
If $y(t) \geq 0, t \in [0, 1]$, then $\nu(t) \geq 0, t \in [0, 1]$.

Lemma 2.6 [5]. Let $y(t) \in C[0, 1], 1 < \alpha, \beta \leq 2$. Then the fractional q-difference
\[
\begin{cases}
(D_q^\alpha u)(t) + y(t) = 0, & 0 < t < 1, \\
u(0) = u(1) = 0, \quad (D_q^\alpha u)(0) = (D_q^\alpha u)(1) = 0
\end{cases}
\]
is equivalent to
\[
u(t) = \int_0^1 \left(G_\alpha(t, qs)\phi_\psi \left(\int_0^1 G_\beta(s, q\tau)y(\tau)d_q\tau\right)\right)d_qs.
\]
Suppose
\[
E = \{ u|u, \phi_\mu(D_q^\alpha u) \in C^2[0, 1] \}.
\]
The following definitions are about the upper and lower solutions to problem (1.1).

Definition 2.7. A function $\varphi(t) \in E$ is called a lower solution to (1.1), if it satisfies
\[
\begin{cases}
(D_q^\alpha \phi_\mu(D_q^\alpha \varphi(t))) \leq f(t, \varphi(t)), & 0 < t < 1, \\
\varphi(0) \leq 0, \quad \varphi(1) \leq 0, \quad D_q^\alpha \varphi(0) \geq 0, \quad D_q^\alpha \varphi(1) \geq 0.
\end{cases}
\]

Definition 2.8. A function $\psi(t) \in E$ is called an upper solution to (1.1), if it satisfies
\[
\begin{cases}
(D_q^\alpha \phi_\mu(D_q^\alpha \psi(t))) \geq f(t, \psi(t)), & 0 < t < 1, \\
\psi(0) \leq 0, \quad \psi(1) \leq 0, \quad D_q^\alpha \psi(0) \geq 0, \quad D_q^\alpha \psi(1) \geq 0.
\end{cases}
\]

3. Main results

According to Lemma 2.6, we can define an operator as follows:
\[
Tu(t) = \int_0^1 \left(G_\alpha(t, qs)\phi_\psi \left(\int_0^1 G_\beta(s, q\tau)f(\tau, u(\tau))d_q\tau\right)\right)d_qs, \quad u \in E.
\]
By the continuity of G_α, G_β, f and using the Arzela–Ascoli theorem, we can get that $T : E \to E$ is completely
continuous operator, and the existence of a solution to problem (1.1) is equivalent to the existence of a fixed point of T.

Suppose that the following assumptions are satisfied

(H1) $f(t,u) \in C([0,1] \times [0, +\infty), [0, +\infty))$, and f is increasing with respect to the second variable.

(H2) there exists a $c < 1$ and a $k \in [0, 1]$, such that

$$f(t,ku) \geq k^{c(\mu-1)}f(t,u), \; \forall t \in [0,1],$$

where $\mu > 1$.

Lemma 3.1. If u is a positive solution to (1.1), then there exist $m_1, m_2 > 0$, such that

$$m_1 \rho(t) \leq u(t) \leq m_2 \rho(t),$$

where

$$\rho(t) = \int_0^1 \left(G_\alpha(t,qs)\phi_v \left(\int_0^1 G_\beta(s,q\tau)y(\tau)dq\tau \right) \right) dqds.$$

Proof. It follows from $u \in C[0,1]$, so there exist an $M > 0$ such that $|u(t)| \leq M, t \in [0,1]$. By (H2) we can take

$$m_1 = \min_{t \in [0,1], u \in [0,M]} v^{-\frac{1}{2}}f(t,u(t)) > 0,$$

$$m_2 = \max_{t \in [0,1], u \in [0,M]} v^{-\frac{1}{2}}f(t,u(t)) > 0.$$

So

$$m_1 \rho(t) \leq u(t) = \int_0^1 \left(G_\alpha(t,qs)\phi_v \left(\int_0^1 G_\beta(s,q\tau)y(\tau)dq\tau \right) \right) dqds \leq m_2 \rho(t).$$

This completes the proof.

Theorem 3.2. Suppose that (H1) and (H2) are satisfied. Then (1.1) has a positive solution.

Proof. We prove the theorem in three steps as follows.

Step 1. The existence of upper and lower solutions for (1.1). Let

$$\eta(t) = \int_0^1 \left(G_\alpha(t,qs)\phi_v \left(\int_0^1 G_\beta(s,q\tau)y(\tau)dq\tau \right) \right) dqds.$$

Then by Lemma 2.6 we obtain a positive solution to the problem

$$\begin{cases} D^\beta_q(\phi_t(D^\alpha_qu(t))) = f(t,\rho(t)), \; 0 < t < 1, \\ u(0) = u(1) = 0, \; D^\alpha_qu(0) = D^\alpha_qu(1) = 0. \end{cases}$$

(3.1)

Furthermore,

$$\eta(0) = \eta(1) = 0, \; D^\alpha_q\eta(0) = D^\alpha_q\eta(1) = 0.$$ (3.2)

By Lemma 3.1 there exist $k_1, k_2 > 0$, such that

$$k_1 \rho(t) \leq \eta(t) \leq k_2 \rho(t), \; \forall t \in [0,1].$$

Let

$$\xi_1(t) = \delta_1 \eta(t), \; \xi_2(t) = \delta_2 \eta(t),$$

where

$$0 < \delta_1 < \min\left\{ \frac{1}{k_2}, \frac{1}{k_1} \right\}, \; \delta_2 > \max\left\{ \frac{1}{k_1}, \frac{1}{k_2} \right\}. $$
From (3.3), we have

\[f(t, \xi_1(t)) = f(t, \delta_1(t)) = f(t, \frac{\eta(t)}{\rho(t)}) \]

\[\geq (\delta_1 \frac{\eta(t)}{\rho(t)})^{c(\mu-1)} f(t, \rho(t)) \]

\[\geq (\delta_1 k_1)^{c(\mu-1)} f(t, \rho(t)) \geq \delta_1^{-1} f(t, \rho(t)). \]

(3.3)

and

\[D_q^\beta (\phi_\mu (D_q^\alpha \xi_1(t))) = D_q^\beta (\phi_\mu (D_q^\alpha \delta_1 \eta(t))) = \delta_1^{-1} D_q^\beta (\phi_\mu (D_q^\alpha \eta(t))) \]

From (3.3), we have

\[\xi_1(0) = \xi_1(1) = 0, \quad D_q^\alpha \xi_1(0) = D_q^\alpha \xi_1(1) = 0. \]

By Definition 2.7, \(\xi_1(t) \) is a lower solution to [1.1].

On the other hand, by the definition of \(\xi_2(t) \), we can obtain

\[\delta_2^{-1} f(t, \rho(t)) = \delta_2^{-1} f(t, \frac{\rho(t)}{\rho_2(t)}) \xi_2(t) = \delta_2^{-1} f(t, \frac{\rho(t)}{\delta_2 \xi_2(t)}) \delta_2 \xi_2(t) \]

\[\geq \delta_2^{-1} \left(\frac{\rho(t)}{\delta_2 \eta(t)} \right)^{c(\mu-1)} f(t, \xi_2(t)) \geq \delta_2^{-1} \left(\frac{\rho(t)}{\delta_2 k_2} \right)^{c(\mu-1)} f(t, \xi_2(t)) \]

\[\geq \delta_2^{-1} \left(\frac{1}{\delta_2 \eta(t)} \right)^{c(\mu-1)} f(t, \xi_2(t)) \geq \delta_2^{-1} \left(\frac{1}{\delta_2} \right)^{c(\mu-1)} f(t, \xi_2(t)) \]

\[= f(t, \xi_2(t)). \]

So

\[D_q^\beta (\phi_\mu (D_q^\alpha \xi_2(t))) = D_q^\beta (\phi_\mu (D_q^\alpha \delta_2 \eta(t))) \]

\[= \delta_2^{-1} D_q^\beta (\phi_\mu (D_q^\alpha \eta(t))) = \delta_2^{-1} f(t, \rho(t)) \]

\[\geq f(t, \xi_2(t)). \]

Similarly

\[\xi_2(0) = \xi_2(1) = 0, \quad D_q^\alpha \xi_2(0) = D_q^\alpha \xi_2(1) = 0. \]

By Definition 2.8, \(\xi_2(t) \) is an upper solution to [1.1].

Step 2. We prove that the following problem has a positive solution:

\[\begin{cases}
D_q^\beta (\phi_\mu (D_q^\alpha u(t))) = g(t, u(t)), & 0 < t < 1, \\
u(0) = u(1) = 0, & D_q^\alpha u(0) = D_q^\alpha u(1) = 0.
\end{cases} \]

(3.4)

where

\[g(t, u(t)) = \begin{cases}
f(t, \xi_1(t)), & u(t) < \xi_1(t), \\
f(t, u(t)), & \xi_1(t) \leq u(t) \leq \xi_2(t), \\
f(t, \xi_2(t)), & u(t) > \xi_2(t).
\end{cases} \]

By Lemma 2.6, we need the following operator

\[Au(t) = \int_0^1 \left(G_\alpha(t,qs) \phi_v \left(\int_0^1 G_\beta(s,\tau) g(\tau, u(\tau)) d_q \tau \right) \right) d_q s, \quad u \in C[0, 1]. \]

Now, we use the Schauder fixed point theorem to prove the existence of a fixed point of \(Au(t) \). In fact \(f(t, u) \) is increasing with respect to \(u \), so for any \(u \in C([0, 1], [0, +\infty)) \), there exist \(g(t, u(t)) \) such that

\[f(t, \xi_1(t)) \leq g(t, u(t)) \leq f(t, \xi_2(t)). \]
Since G_α, G_β and f are continuous, then by the Arzela–Ascoli theorem, A is a compact operator. Thus, by using the Schauder fixed point theorem, A has a fixed point, i.e., equation (3.4) has a positive solution, denoted by u^*.

Step 3.
To prove that u^* is also a solution to (1.1), we only need to prove that
\[\xi_1(t) \leq u^*(t) \leq \xi_2(t), \quad t \in [0, 1]. \] (3.5)

First we prove $u^*(t) \leq \xi_2(t), \ t \in [0, 1]$; one can prove another inequality in the same way.

Suppose $u^*(t) > \xi_2(t), \ t \in [0, 1]$; we have $g(t, u^*(t)) = f(t, \xi_2(t))$. We obtain
\[D_q^\beta(\phi_\mu(D_q^\alpha u^*(t))) = f(t, \xi_2(t)). \]

On the other hand, $\xi_2(t)$ is an upper solution, so we have
\[D_q^\beta(\phi_\mu(D_q^\alpha \xi_2(t))) \geq f(t, \xi_2(t)). \]

Let $z(t) = \phi_\mu(D_q^\alpha (D_q^\beta \xi_2(t))) - \phi_\mu(D_q^\alpha u^*(t)), \ t \in [0, 1]$. Therefore,
\[D_q^\beta z(t) = D_q^\beta(\phi_\mu(D_q^\alpha \xi_2(t))) - D_q^\beta(\phi_\mu(D_q^\alpha u^*(t))) \geq f(t, \xi_2(t)) - f(t, \xi_2(t)) = 0. \]

Combined with the boundary conditions, $z(0) = z(1) = 0$ and by Lemma 2.5, we have $z(t) \leq 0, \ t \in [0, 1]$, which implies that
\[\phi_\mu(D_q^\alpha \xi_2(t)) \leq \phi_\mu(D_q^\alpha u^*(t)), \ t \in [0, 1]. \]

Since ϕ_μ is monotone increasing, we obtain $D_q^\alpha(\xi_2(t)) \leq D_q^\alpha(u^*(t)), \ t \in [0, 1], \ t \in [0, 1]$. Using Lemma 2.5, we get $\xi_2(t) - u^*(t) \geq 0, \ t \in [0, 1]$, a contradiction.

Inequality (3.5) shows that u^* is also a positive solution to (1.1). Furthermore $f(t, 0) \neq 0$, that is to say, 0 is not a fixed point of the operator T, therefore, u^* is a positive solution to (1.1). This completes the proof. \qed

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Nos. 61503227 and 61402271) and the Natural Science Foundation of Shandong Province (No. ZR2015JL023).

References

