Some properties of the quasicompact-open topology on $C(X)$

Deniz Tokat*, İsmail Osmanoğlu

Department of Mathematics, Faculty of Arts and Sciences, Nevşehir Hacı Bektaş Veli University, 50300 Nevşehir, Turkey.

Communicated by R. Saadati

Abstract

This paper introduces quasicompact-open topology on $C(X)$ and compares this topology with the compact-open topology and the topology of uniform convergence. Then it examines submetrizability, metrizability, separability, and second countability of the quasicompact-open topology on $C(X)$. ©2016 All rights reserved.

Keywords: Function space, set-open topology, compact-open topology, quasicompactness, separability, submetrizability, second countability.

2010 MSC: 54C35, 54D65, 54E35.

1. Introduction and Preliminaries

There are several natural topologies that can be placed on $C(X)$ of all continuous real-valued functions on space X. The idea of defining a topology on $C(X)$ emerges from the studies of convergence of sequences of functions. The two major classes of topologies on $C(X)$ are the set-open topologies and the uniform topologies. The well-known set-open topologies are the point-open topology (or the topology of pointwise convergence) and the compact-open topology. The compact-open topology was introduced by Fox [6] in 1945 and soon after was developed by Arens in [2] and by Arens and Dugundji in [3]. It is shown in [12] that this topology is the proper setting to study sequences of functions converging uniformly on compact subsets. Thus, the compact-open topology is sometimes called the topology of uniform convergence on compact sets. Therefore, there have been many topologies that lie between the compact-open topology and...
the topology of uniform convergence, such as the σ-compact-open topology [9], the bounded-open topology [16], the pseudocompact-open topology [15], and the C-compact-open topology [20].

In the present paper, we introduce quasicompact-open topology on $C(X)$ and compare this topology with the compact-open topology and the topology of uniform convergence. We investigate the properties of the quasicompact-open topology on $C(X)$ such as submetrizability, metrizability, separability, and second countability.

A topological space X is called functionally Hausdorff (or completely Hausdorff) if for any distinct points $x, y \in X$ there exists a continuous real function f on X such that $f(x) = 0$ and $f(y) = 1$, equivalently $f(x) \neq f(y)$. This property lies strictly between the Hausdorffness and the complete regularity.

Unless otherwise stated clearly, throughout this paper, all spaces are assumed to be functionally Hausdorff.

If X and Y are any two topological spaces with the same underlying set, then we use the notation $X = Y$, $X \leq Y$, and $X < Y$ to indicate, respectively, that X and Y have the same topology, that the topology on Y is finer than or equal to the topology on X, and that the topology on Y is strictly finer than the topology on X.

We denote \bar{A} and A° the closure and the interior of a set A, respectively. If $A \subseteq X$ and $f \in C(X)$, then we use the notation $f|_A$ for the restriction of the function f to the set A. As usual, $f(A)$ and $f^{-1}(A)$ are the image and the preimage of the set A under the mapping f, respectively. We denote by \mathbb{N} the set of natural numbers and by \mathbb{R} the real line with the natural topology. Finally, the constant zero function in $C(X)$ is denoted by f_0.

2. The quasicompact-open topology and its comparison with other topologies

In this section, we define the quasicompact-open topology on $C(X)$ and also give some equivalent definitions. Then we compare the quasicompact-open topology with the compact-open topology and the topology of uniform convergence.

A subset A of X is called a zero-set if there is a continuous real-valued function f defined on X such that $A = \{x \in X : f(x) = 0\}$. The complement of a zero-set is called a cozero-set. A space X is said to be quasicompact [7] if every covering of X by cozero-sets admits a finite subcollection which covers X, also known as z-compact space. For more information see [7].

We recall that any compact space is quasicompact and the continuous image of a quasicompact space is quasicompact [4]. We also note that the closure of a quasicompact subset is quasicompact and any quasicompact space is pseudocompact [4].

Let α be a nonempty collection of subsets of a space X. Then various topologies on $C(X)$ has a subbase consisting of the sets $S(A, V) = \{f \in C(X) : f(A) \subseteq V\}$, where $A \in \alpha$ and V is an open subset of real line \mathbb{R}, and the function space $C(X)$ endowed with these topologies is denoted by $C_{\alpha}(X)$. The topology defined in this way is called the set-open topology.

Now let $QC(X)$ denote the collection of all quasicompact subsets of X. For the quasicompact-open topology on $C(X)$, we take as subbase, the collection $\{S(A, V) : A \in QC(X), V \text{ is open in } \mathbb{R}\}$ and we denote the corresponding space by $C_q(X)$. Let $K(X)$ denote the collection of all compact subsets of X. The compact-open topology on $C(X)$ is defined similarly and is denoted by $C_k(X)$.

Let $\alpha = QC(X)$ and $\bar{\alpha} = \{\overline{A} : A \in \alpha\}$. Then note that the quasicompact-open topology is obtained if α is replaced by $\bar{\alpha}$. This is because for each $f \in C(X)$ we have $f(\overline{A}) \subseteq \overline{f(A)} = f(A)$.

The topology of uniform convergence on members of α has as base at each point $f \in C(X)$ the family of all sets of the form $B_A(f, \epsilon) = \{g \in C(X) : \sup |f(x) - g(x)| < \epsilon \text{ for all } x \in A\}$, where $A \in \alpha$ and $\epsilon > 0$. The space $C(X)$ having the topology of uniform convergence on α is denoted by $C_{\alpha,u}(X)$. For $\alpha = QC(X)$, we denote the corresponding space by $C_{q,u}(X)$. In the case that $\alpha = \{X\}$, the topology on $C(X)$ is called the topology of uniform convergence or uniform topology and denoted by $C_u(X)$.

There is another way to consider the quasicompact-open topology on $C(X)$. For each $A \in QC(X)$ and $\epsilon > 0$, we define the seminorm p_A on $C(X)$ and $V_{A,\epsilon}$, as follow: $p_A(f) = \sup \{|f(x)| : x \in A\}$ and...
Thus, there exists an \(W \) and \(C \) such that \((f(x) - \epsilon, f(x) + \epsilon) \subseteq V \) forms a neighborhood base at \(f \). This topology is locally convex since it is generated by a collections of seminorms and it is the same as the quasicompact-open topology on \(C(X) \).

It is also easy to see that this topology is Hausdorff. \(C_q(X) \), being a locally convex Hausdorff space, is a Tychoff space.

Now, we can compare the topologies. We have \(C_k(X) \subseteq C_q(X) \) since \(K(X) \subseteq QC(X) \). But to compare the quasicompact-open topology and the topology of uniform convergence, we need the following theorem.

Theorem 2.1. For any space \(X \), the quasicompact-open topology on \(C(X) \) is the same as the topology of uniform convergence on the quasicompact subsets of \(X \), that is, \(C_q(X) = C_{q,u}(X) \).

Proof. Assume that \(S(A,V) \) is a subsbasic open set in \(C_q(X) \) and \(f \in S(A,V) \). Recall that compact and quasicompact subsets of \(\mathbb{R} \) are equivalent. Since \(f(A) \) is compact and \(f(A) \subseteq V \), there exists \(\epsilon > 0 \) such that \((f(A) - \epsilon, f(A) + \epsilon) \subseteq V \) (see [Corollary 4.1.14]). If \(g \in B_A(f,\epsilon) \) and \(x \in A \), then we obtain \(g(x) \in (f(x) - \epsilon, f(x) + \epsilon) \). Hence, we find \(g(A) \subseteq V \), i.e. \(g \in S(A,V) \). It follows that \(B_A(f,\epsilon) \subseteq S(A,V) \). Consequently, \(C_q(X) \subseteq C_{q,u}(X) \).

Now, let \(B_A(f,\epsilon) \) be a basic neighborhood of \(f \) in \(C_{q,u}(X) \). Then, there exist \(f(x_1), f(x_2), \ldots, f(x_n) \) in \(f(A) \) such that \(f(A) \subseteq \bigcup_{i=1}^n (f(x_i) - \frac{\epsilon}{2}, f(x_i) + \frac{\epsilon}{2}) \) since \(f(A) \) is compact. If we take \(V_i = (f(x_i) - \frac{\epsilon}{2}, f(x_i) + \frac{\epsilon}{2}) \) and \(W_i = (f(x_i) - \frac{\epsilon}{2}, f(x_i) + \frac{\epsilon}{2}) \), we find \(V_i \subseteq W_i \). Also \(f(A) \subseteq \bigcup_{i=1}^n V_i \subseteq \bigcup_{i=1}^n W_i \). Let \(A_i = A \cap f^{-1}(V_i) \), where clearly each \(A_i \) is quasicompact and \(A = \bigcup_{i=1}^n A_i \). We have \(f(A_i) \subseteq V_i \subseteq W_i \) and so \(f \in \bigcap_{i=1}^n S(A_i,W_i) \). Now we need to show that \(\bigcap_{i=1}^n S(A_i,W_i) \subseteq B_A(f,\epsilon) \). Suppose that \(g \in \bigcap_{i=1}^n S(A_i,W_i) \) and \(x \in A \). Thus, there exists an \(i \) such that \(x \in A_i \) and consequently, \(f(x) \in V_i \) and \(g(x) \in W_i \). Since \(|f(x) - g(x)| \leq |f(x) - f(x_i)| + |f(x_i) - g(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \), then \(g \in B_A(f,\epsilon) \). Hence, \(C_{q,u}(X) \subseteq C_q(X) \).

Corollary 2.2. For any space \(X \), \(C_k(X) = C_{q,u}(X) \leq C_u(X) \).

From this result, we obtain the following.

Corollary 2.3. For any space \(X \), \(C_k(X) \leq C_q(X) \leq C_u(X) \).

Note that in a perfectly normal space, every open set is a cozero-set and consequently, a quasicompact space is compact. Thus, for a perfectly normal space \(X \), \(C_k(X) = C_q(X) \).

Theorem 2.4. For any space \(X \), \(C_q(X) = C_u(X) \) if and only if \(X \) is quasicompact.

Proof. Let \(C_q(X) = C_u(X) \). We know that \(C_q(X) = C_{q,u}(X) \) by Theorem 2.1. So, \(C_u(X) = C_{q,u}(X) \).

Thus, \(B_X(f,\epsilon) \) in \(C_u(X) \) is also basic neighborhood of \(f \) in \(C_{q,u}(X) \) and so \(X \) is quasicompact.

Conversely, suppose that \(X \) is quasicompact. It follows that for each \(f \in C(X) \) and each \(\epsilon > 0 \), \(B_X(f,\epsilon) \) is a basic open set in \(C_q(X) \). Consequently, \(C_q(X) = C_u(X) \).

We know that for a compact space \(X \), \(C_k(X) = C_u(X) \). Then we can give the following example.

Example 2.5. For any compact space \(X \), \(C_k(X) = C_q(X) = C_u(X) \).

If \(X \) is both realcompact and pseudocompact, then it is compact [8, Problem 5H]. Also every Lindelöf space is realcompact [8, Theorem 8.2]. Thus, we get the following result.

Theorem 2.6. For any Lindelöf space \(X \), \(C_k(X) = C_q(X) \).

Proof. We know that every quasicompact space is pseudocompact. Considering the above description, Lindelöf quasicompact space is compact and consequently, \(C_k(X) = C_q(X) \) by Example 2.5.

Since every countable or second countable space is Lindelöf, we obtain the following result.

Corollary 2.7. For any countable or second countable space \(X \), \(C_k(X) = C_q(X) \).
Example 2.8. Let X denote the set of positive integers endowed with the particular point topology \cite[Example 9]{22}. The space X is a quasicompact, but not compact. Thus, we obtain $C_k(X) \leq C_q(X) = C_u(X)$.

Example 2.9. Let X be the prime integer topology \cite[Example 61]{22}. The space X is a quasicompact, but not compact \cite{1}. This yields $C_k(X) \leq C_q(X) = C_u(X)$.

Example 2.10. Let $X = \mathbb{R}$ and define a topology on X by requiring that a neighborhood of a point x is any set containing x which contains all the rationals in an open interval around x \cite{21}. The space X is quasicompact, but not compact \cite{4}. It follows that $C_k(X) \leq C_q(X) = C_u(X)$.

Example 2.11. Hewitt’s example \cite{11} of a regular space X on which every continuous real-valued function is constant is a quasicompact space which is not compact \cite{13}. For this space X, we have $C_k(X) \leq C_q(X) = C_u(X)$.

Example 2.12. Let X be the skyline space \cite{10}. The space X is a quasicompact, but not compact \cite{14}. Hence, we obtain $C_k(X) \leq C_q(X) = C_u(X)$.

Example 2.13. Let $X = \mathbb{N}$ and define a topology on X by taking every odd integer to be open and a set U is open if for every even integer $p \in U$, the predecessor and the successor of p are also in U \cite{14}. From this it follows that $C_k(X) \leq C_q(X) = C_u(X)$.

3. Main Results on $C_q(X)$

In this section, we study the submetrizability, metrizability, separability, and second countability of $C_q(X)$. First, we provide some natural functions which play a useful role in studying the topological properties of function spaces.

If $f : X \to Y$ is a continuous function, then the induced function of f, denoted by $f^* : C(Y) \to C(X)$ is defined by $f^*(g) = g \circ f$ for all $g \in C(Y)$.

Given a nonempty set X a topological space Y, a function $f : X \to Y$ is called almost onto if $f(X)$ is dense in Y.

Theorem 3.1. Let $f : X \to Y$ be a continuous function between two spaces X and Y. Then we have the following.

1. $f^* : C_q(Y) \to C_q(X)$ is continuous;
2. for normal space Y, if f is one-to-one, then $f^* : C_q(Y) \to C_q(X)$ is almost onto;
3. $f^* : C(Y) \to C(X)$ is one-to-one if and only if f is almost onto \cite{19}.

Proof. (1) Let $g \in C_q(Y)$ and $S(A,V)$ be a basic neighborhood of $f^*(g)$ in $C_q(X)$. It is easily seen that $f^*(g) = g \circ f \in S(A,V)$ if and only if $g \in S(f(A), V)$. Then $f^*(S(f(A), V)) = S(A,V)$ and consequently, f^* is continuous.

The proof of (2) is similar to 2(a) in \cite{18}.\hfill \square

Another kind of useful function on function spaces is the sum function. Let $\{X_i : i \in I\}$ be a family of topological spaces. If $\oplus X_i$ denotes their topological sum, then the sum function s is defined by $s : C(\oplus X_i) \to \prod\{C(X_i) : i \in I\}$ where $s(f) = f|_{X_i}$ for each $f \in C(\oplus X_i)$.

Theorem 3.2. Let $\{X_i : i \in I\}$ be a family of spaces. Then the sum function $s : C(\oplus X_i) \to \prod\{C(X_i) : i \in I\}$ is a homeomorphism.

Proof. The proof is similar to Theorem 4.10 in \cite{15}.\hfill \square

A space X is said to be submetrizable if it has a weaker metrizable topology, equivalently if there exists a metrizable space Y and a continuous bijection $f : X \to Y$ from the space X onto Y.

In a topological space a G_δ-set is a set which can be written as the intersection of a countable collection of open sets.
Remark 3.3.

1. For any space X, if the set $\{(x,x) : x \in X\}$ is a G_δ-set (resp. zero-set) in the product space $X \times X$, then X is said to have a G_δ-diagonal (resp. zero-set diagonal). Every submetrizable space X has a G_δ-diagonal. Consequently, every submetrizable space X has a zero-set diagonal since a zero-set is a G_δ-set.

2. A space X is called an E_0-space if every point in the space is a G_δ-set. The submetrizable spaces are E_0-spaces.

Proposition 3.4. If X is a submetrizable space then all quasicompact subsets of X are G_δ-sets.

Proof. Let X be submetrizable. Then there exists a continuous bijection $f : X \to Y$ from the space X onto a metrizable space Y. Let A be a quasicompact subset of X. Then $f(A)$ is compact in the metric space Y. Since a closed set in a metric space is a G_δ set, $f(A)$ is a G_δ-set in Y. In other words, $f(A) = \cap_{n=1}^\infty G_n$, where G_n is an open subset of Y for each n. It follows that $A = \cap_{n=1}^\infty f^{-1}(G_n)$ and so A is a G_δ-set.

A space X is called σ-quasicompact if there exists a sequence $\{A_n\}$ of quasicompact sets in X such that $X = \cup_{n=1}^\infty A_n$. By using this fact we obtain the following result.

Theorem 3.5. For any space X, the following are equivalent.

1. $C_q(X)$ is submetrizable.
2. Every quasicompact subset of $C_q(X)$ is a G_δ-set in $C_q(X)$.
3. Every compact subset of $C_q(X)$ is a G_δ-set in $C_q(X)$.
4. $C_q(X)$ is an E_0-space.
5. X is σ-quasicompact.
6. $C_q(X)$ has a zero-set diagonal.
7. $C_q(X)$ has a G_δ-diagonal.

Proof. The implications (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) follow from Proposition 3.4

(4) \Rightarrow (5) If $C_q(X)$ is an E_0-space, then the constant zero function f_0 defined on X is a G_δ-set. Suppose that $\cap_{n=1}^\infty B_{A_n}(f_0,\epsilon_n) = \{f_0\}$ where each A_n is quasicompact subset in X and $\epsilon_n > 0$. We need to show that $X = \cup_{n=1}^\infty A_n$. Assume that $x_0 \in X \setminus \cup_{n=1}^\infty A_n$. Hence there exists a continuous function $f_1 : X \to [0,1]$ such that $f_1(x) = 0$ for all $x \in \cup_{n=1}^\infty A_n$ and $f_1(x_0) = 1$. Since $f_1(x) = 0$ for all $x \in A_n$, $f_1 \in B_{A_n}(f_0,\epsilon_n)$ for all n and thus, $f_1 \in \cap_{n=1}^\infty B_{A_n}(f_0,\epsilon_n) = \{f_0\}$, that is, f_1 is the zero function on X. But $f_1(x_0) = 1$. This contradicts the hypothesis, hence X is σ-quasicompact.

(5) \Rightarrow (4) Assume that X is σ-quasicompact and $f \in C_q(X)$. Now we need to prove that $\{f\} = \cap_{n=1}^\infty B_{A_n}(f,\frac{1}{n})$. Let $g \in \cap_{n=1}^\infty B_{A_n}(f,\frac{1}{n})$ and $x \in X$. Then there exists $m \in \mathbb{N}$ such that $x \in A_m$ for all $n \geq m$. Then we find $|g(x) - f(x)| \leq \frac{1}{n}$ for all $n \geq m$. Thus $g(x) = f(x)$ and consequently $C_q(X)$ is an E_0-space.

(5) \Rightarrow (1) Suppose that $X = \cup_{n=1}^\infty A_n$, where each A_n is quasicompact. Let $S = \oplus\{A_n : n \in \mathbb{N}\}$ be the topological sum of the A_n and let $\phi : S \to X$ be the natural function. Thus, the induced function $\phi^* : C_q(X) \to C_q(S)$ defined by $\phi^*(f) = f \circ \phi$ is continuous. We need to show that ϕ^* is one-to-one. Let $\phi^*(g_1) = \phi^*(g_2)$. So, g_1 and g_2 are equal on $\cup_{n=1}^\infty A_n$. So $g_1 - g_2 \in \cap_{n=1}^\infty B_{A_n}(f_0,\epsilon_n) = \{f_0\}$. Hence, $g_1 = g_2$ and consequently, ϕ^* is one-to-one. By Theorem 3.2, $C_q(\oplus\{A_n : n \in \mathbb{N}\})$ is homeomorphic to $\prod\{C_q(A_n) : n \in \mathbb{N}\}$. But each $C_q(A_n)$ is metrizable by Theorem 2.4. Since $C_q(S)$ is metrizable and ϕ^* is a continuous injection, $C_q(X)$ is submetrizable.

The implications (1) \Rightarrow (6) \Rightarrow (7) \Rightarrow (4) are immediate from Remark 3.3.

Lemma 3.6. In a completely regular submetrizable space, the notions of compactness and quasicompactness coincide.
Proof. Since pseudocompact completely regular submetrizable space is metrizable \cite{17} Corollary 2.7] and every quasicompact space is pseudocompact, then the notions of compactness and quasicompactness coincide.

Corollary 3.7. Let \(X \) be \(\sigma \)-quasicompact. Then compact and quasicompact subsets of \(C_q(X) \) are equivalent.

Proof. If \(X \) is \(\sigma \)-quasicompact, then \(C_q(X) \) is submetrizable by Theorem 3.5. Also we know that \(C_q(X) \) is Tychonoff (completely regular Hausdorff). Hence, compact and quasicompact subsets of \(C_q(X) \) are equivalent by Lemma 3.6.

A space \(X \) is called a \(q \)-space if for each point \(x \in X \), there exists a sequence \(\{U_n : n \in \mathbb{N}\} \) of neighborhoods of \(x \) such that if \(x_n \in U_n \) for each \(n \), then \(\{x_n : n \in \mathbb{N}\} \) has a cluster point. This fact yields the following theorem.

Theorem 3.8. For any space \(X \), the following are equivalent.
1. \(C_q(X) \) is metrizable.
2. \(C_q(X) \) is first countable.
3. \(C_q(X) \) is a \(q \)-space.
4. \(X \) is hemiquasicompact; that is, there exists a sequence of quasicompact sets \(\{A_n\} \) in \(X \) such that for any quasicompact subset \(A \) of \(X \), \(A \subseteq A_n \) holds for some \(n \).

Proof. (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3) are all immediate.

(3) \(\Rightarrow \) (4) Suppose that \(C_q(X) \) is a \(q \)-space. Hence, there exists a sequence \(\{U_n : n \in \mathbb{N}\} \) of neighborhoods of the zero function \(f_0 \) in \(C_q(X) \) such that if \(g_n \in U_n \) for each \(n \), then \(\{g_n : n \in \mathbb{N}\} \) has a cluster point in \(C_q(X) \). Now for each \(n \), there exists a quasicompact subset \(A_n \) of \(X \) and \(\epsilon_n > 0 \) such that \(f_0 \in B_{A_n}(f_0, \epsilon_n) \subseteq U_n \). Let \(A \) be a quasicompact subset of \(X \). If possible, suppose that \(A \) is not a subset of \(A_n \) for any \(n \in \mathbb{N} \). Then for each \(n \in \mathbb{N} \), there exists \(a_n \in A \setminus A_n \). So for each \(n \in \mathbb{N} \), there exists a continuous function \(g_n : X \to \mathbb{R} \) such that \(g_n(a_n) = n \) and \(g_n(x) = 0 \) for all \(x \in A_n \). It is clear that \(g_n \in B_{A_n}(f_0, \epsilon_n) \). Suppose that this sequence has a cluster point \(g \) in \(C_q(X) \). Then for each \(k \in \mathbb{N} \), there exists a positive integer \(n_k > k \) such that \(g_{n_k} \in B_A(g, 1) \). Thus, \(g(a_{n_k}) > g_{n_k}(a_{n_k}) - 1 = n_k - 1 \geq k \) for all \(k \in \mathbb{N} \). But this means that \(g \) is unbounded on the quasicompact set \(A \). Hence, the sequence \(\{g_n\}_{n \in \mathbb{N}} \) cannot have a cluster point in \(C_q(X) \) and consequently, \(C_q(X) \) fails to be a \(q \)-space. Thus, \(X \) must be hemiquasicompact.

(4) \(\Rightarrow \) (1) Here we need the well-known result which says that if the topology of a locally convex Hausdorff space is generated by a countable family of seminorms, then it is metrizable(see page 119 in \cite{23}). Now the locally convex topology on \(C(X) \) generated by the countable family of seminorms \(\{p_{A_n} : n \in \mathbb{N}\} \) is metrizable and weaker than the quasicompact-open topology. But since for each quasicompact set \(A \) in \(X \), there exists \(A_n \) such that \(A \subseteq A_n \), the locally convex topology generated by the family of seminorms \(\{p_A : A \in QC(X)\} \), that is, the quasicompact-open topology is weaker than the topology generated by the family of seminorms \(\{p_{A_n} : n \in \mathbb{N}\} \). Hence, \(C_q(X) \) is metrizable.

Proposition 3.9. Let \(X \) be locally compact and second countable. Then \(C_q(X) \) is second countable.

Proof. Since regular second countable space \(X \) is metrizable by Urysohn’s Metrization Theorem, then \(C_k(X) = C_q(X) \). We know that \(C_k(X) \) is second countable by \cite{18} it follows that \(C_q(X) \) is second countable.

Theorem 3.10. For any space \(X \), the following are equivalent.
1. \(C_q(X) \) is separable.
2. \(C_k(X) \) is separable.
3. \(X \) has a weaker separable metrizable topology.
Proof. (1) ⇒ (2) is straightforward and proof of (2) ⇒ (3) was given in [18].

(3) ⇒ (1). If X has a weaker separable metrizable topology, then X is embeddable into Hilbert cube I^ω (see [5] Theorem 4.2.10). Let $f : X \to I^\omega$ be a continuous injection. Then the induced function $f^* : C(I^\omega) \to C_q(X)$ is almost onto by Theorem 3.1. Since $C(I^\omega)$ is second countable by Proposition 3.9, then $C_q(X)$ must be separable.

\[\text{Corollary 3.11. Let } X \text{ be completely regular space. If } C_q(X) \text{ is separable, then } C_k(X) = C_q(X). \]

Proof. If $C_q(X)$ is separable, X is submetrizable. Since X is completely regular and submetrizable, compact and quasicompact subsets of X are equivalent by Lemma 3.6. Consequently, $C_k(X) = C_q(X)$.

\[\text{Example 3.12. Since } \mathbb{R} \text{ is a separable metric space, } C_q(\mathbb{R}) \text{ is separable. Thus, we have } C_k(\mathbb{R}) = C_q(\mathbb{R}). \]

\[\text{Example 3.13. Let } X \text{ be a countable discrete space. Then } C_q(X) \text{ is separable and so } C_k(X) = C_q(X). \]

\[\text{Corollary 3.14. Let } X \text{ be quasicompact space. If } X \text{ is metrizable, then } C_q(X) \text{ is separable.} \]

Proof. If X is metrizable and quasicompact, then X is compact. Since X is compact and metrizable, then X is separable and consequently, $C_q(X)$ is separable.

Note that converse of Corollary 3.14 is not always true. If $C_q(X)$ is separable, then X is submetrizable. But a quasicompact submetrizable space need not be metrizable. An example of this, the space $E \cap [0,1]$ of [8] Problem 3J is quasicompact and submetrizable, but not metrizable. If X is completely regular, then it is metrizable by Corollary 2.7 in [17]. Then we can give the following theorem.

\[\text{Theorem 3.15. Let } X \text{ be quasicompact and completely regular space. } C_q(X) \text{ is separable if and only if } X \text{ is compact and metrizable.} \]

Proof. If $C_q(X)$ is separable, then X is submetrizable by Theorem 3.10. Since quasicompact completely regular submetrizable space is metrizable, X is metrizable and by Lemma 3.6, X is compact.

The sufficiency part follows from Corollary 3.14.

A topological space is said to be hemicompact if it has a sequence of compact subsets such that every compact subset of the space lies inside some compact set in the sequence.

\[\text{Theorem 3.16. For a locally compact space } X, \text{ the following are equivalent.} \]

1. $C_q(X)$ is second countable.
2. $C_k(X)$ is second countable.
3. X is hemicompact and submetrizable.

Proof. (1) ⇔ (2) If either $C_q(X)$ or $C_k(X)$ is second countable, then it is separable and submetrizable by Theorem 3.10. We know that regular separable space is normal. Consequently, $C_k(X) = C_q(X)$.

(2) ⇒ (3) If $C_k(X)$ is second countable, then it is submetrizable as well as it is separable. Hence, X is hemicompact and submetrizable.

(3) ⇒ (2) If X is hemicompact, then $C_k(X)$ is metrizable. Note that X, being hemicompact, is Lindelöf. Since X is also submetrizable, X has a separable metrizable compression and consequently, $C_k(X)$ is separable. Thus, $C_k(X)$ is second countable.

Considering Corollary 3.11, we obtain the following result.

\[\text{Corollary 3.17. Let } X \text{ be a completely regular space. If } C_q(X) \text{ is second countable, then } C_k(X) = C_q(X). \]

Note that if X is locally compact, then X is hemicompact if and only if X is either Lindelöf or σ-compact in [5] Exercises 3.8.C]. Hence, by using Theorem 3.16 and Proposition 3.9, we have the following result.
Theorem 3.18. For a locally compact space X, the following statements are equivalent.

1. $C_q(X)$ is second countable.
2. $C_k(X)$ is second countable.
3. X is hemicompact and submetrizable.
4. X is σ-compact and submetrizable.
5. X is Lindelöf and submetrizable.
6. X is second countable.

Proof. From Theorem 3.16, we obtain $(1) \iff (2) \iff (3)$. Also by [5, Exercises 3.8.C], we get $(3) \iff (4) \iff (5)$. It is easy to see that $(6) \implies (1)$ from Proposition 3.9.

Now, it is sufficient to show that $(5) \implies (6)$. Since X is locally compact, for each $x \in X$, there exists an open set V_x in X such that $x \in V_x$ and V_x is compact. Note that $\{V_x : x \in X\}$ is an open cover of X. But X is Lindelöf and consequently, there exists a countable subset $\{x_n : n \in \mathbb{N}\}$ of X such that $X = \bigcup_{n=1}^{\infty} V_{x_n}$. Since X is separable submetrizable by Theorem 3.10 and each V_{x_n} is compact, each V_{x_n} is metrizable and so each V_{x_n} is second countable. Consequently, each V_{x_n} is also second countable and X becomes the union of a countable family of second countable open subsets of X. Hence, X is second countable.

Acknowledgement

The authors would like to thank the referee for his (or her) valuable suggestions which greatly improved the paper.

References