Dislocated quasi-b-metric spaces and fixed point theorems for cyclic weakly contractions

Cholatis Suanooma, Chakkrid Klin-eama,b,*, Suthep Suantaic

aDepartment of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand.
bResearch Center for Academic Excellence in Mathematics, Naresuan University, Phitsanulok, 65000, Thailand.
cDepartment of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.

Communicated by R. Saadati

Abstract

In this paper, we introduce the notions of type dqb-cyclic-weak Banach contraction, dqb-cyclic-\(\phi\)-contraction and derive the existence of fixed point theorems on dislocated quasi-b-metric spaces. Our main theorem extends and unifies existing results in the recent literature. ©2016 All rights reserved.

Keywords: Fixed points, dqb-cyclic-\(\phi\)-contraction, dislocated quasi-b-metric spaces, dqb-converges sequence theorems, dqb-Cauchy sequence theorems.

2010 MSC: 47H05, 47H10, 47J25.

1. Introduction and Preliminaries

Banach contraction principle was introduced in 1922 by Banach \cite{ref3}. In 2001, Rhoades \cite{ref7} introduced weakly contractive as follows:

(i) A mapping \(T : X \to X\) is said to be a weakly contractive if for all \(x, y \in X\),

\[
d(Tx, Ty) \leq d(x, y) - \phi(d(x, y)),
\]

where \(\phi : [0, \infty) \to [0, \infty)\) is a continuous and nondecreasing function such that \(\phi(t) = 0\) if and only if \(t = 0\). If one takes \(\phi(t) = (1 - k)t\), where \(0 < k < 1\), a weak contraction reduces to a Banach contraction.

*Corresponding author

Email addresses: Cholatis.Suanoom@gmail.com (Cholatis Suanoom), chakkrid@nu.ac.th (Chakkrid Klin-eam), scmti005@chiangmai.ac.th (Suthep Suantai)

Received 2015-09-18
Now, we recall the definition of cyclic map. Let A and B be nonempty subsets of a metric space (X, d) and $T : A \cup B \to A \cup B$, then T is called a cyclic map iff $T(A) \subseteq B$ and $T(B) \subseteq A$. In 2003, Kirk et al. \cite{Kirk2003} introduced cyclic contraction as follows:

(ii) A cyclic map $T : A \cup B \to A \cup B$ is said to be a cyclic contraction if there exists $a \in [0, 1)$ such that

$$d(Tx, Ty) \leq ad(x, y)$$

for all $x \in A$ and $y \in B$.

In 2013, K. Zoto \cite{Zoto2013} introduced d-cyclic-ϕ-contraction follows:

(iii) A cyclic map $T : A \cup B \to A \cup B$ is said to be a d-cyclic-ϕ-contraction if $\phi \in \Phi$ such that

$$d(Tx, Ty) \leq \phi(d(x, y))$$

for all $x \in A$, $y \in B$, where Φ the family of non-decreasing functions: $\phi : [0, \infty) \to [0, \infty)$ such that $\sum_{n=1}^{\infty} \phi^n(t) < \infty$ for each $t > 0$, where n is the n-th iterate of ϕ.

Lemma 1.1. Suppose that the function $\phi : [0, \infty) \to [0, \infty)$ is non-decreasing, then for each $t > 0$, $\lim_{n \to \infty} \phi^n(t) = 0$ implies $\phi(t) < t$.

If (X, d) is complete metric spaces, at least one of (i), (ii) and (iii) holds, then T has a unique fixed point (see\cite{Kirk2003, Zoto2013}). Recently, Klin-eam and Suanoom \cite{Klin-eam2013} introduced dislocated quasi b-metric spaces, which is a new generalization of quasi b-metric space (see\cite{Bashirov2013}), b-metric-like space (see\cite{Bashirov2012}), b-metric space (see\cite{Bashirov2010}), metric space, etc. as follows:

Definition 1.2 (\cite{Klin-eam2013}). Let X be a nonempty set. Suppose that the mapping $d : X \times X \to [0, \infty)$ such that constant $s \geq 1$ satisfies the following conditions:

1. $d(x, y) = d(y, x) = 0$ implies $x = y$ for all $x, y \in X$;
2. $d(x, y) \leq s[d(x, z) + d(z, y)]$ for all $x, y, z \in X$.

The pair (X, d) is then called a dislocated quasi b-metric space (or simply dqb-metric). The number s is called to be the coefficient of (X, d).

Remark 1.3. When, in addition, the conditions $d(x, y) = d(y, x)$ and $d(x, x) = 0$ are true, then d is a b-metric.

Definition 1.4. Let $\{x_n\}$ be a sequence in a dqb-metric space (X, d).

1. A sequence $\{x_n\}$ dislocated quasi-b-converges (for short, dqb-converges) to $x \in X$ if

$$\lim_{n \to \infty} d(x_n, x) = 0 = \lim_{n \to \infty} d(x, x_n).$$

In this case x is called a dqb-limit of $\{x_n\}$ and we write $(x_n \to x)$.

2. A sequence $\{x_n\}$ is called dislocated quasi-b-Cauchy (for short, dqb-Cauchy), if

$$\lim_{n,m \to \infty} d(x_n, x_m) = 0 = \lim_{n,m \to \infty} d(x_m, x_n).$$

3. A dqb-metric space (X, d) is complete if every dqb-Cauchy sequence is dqb-convergent in X.

Moreover, they introduced the notion of dqb-cyclic-Banach and dqb-cyclic-Kannan mapping and derive the existence of fixed point theorems for such space.

In this paper, we study the properties of dislocated quasi-b-metric spaces and introduce dqb-cyclic-weak Banach contraction, dqb-cyclic-ϕ-contraction and derive the existence of fixed point theorems in dislocated quasi-b-metric spaces. Our main theorem extends and unifies existing results in the recent literature.
2. Main results

Every dislocated quasi-b-metric space \((X, d)\) can be considered as a topological space on which the topology is introduced by taking, for any \(x \in X\), the collection \(\{B_r(x) | r > 0\}\) as a base of the neighborhood filter of the point \(x\). Here the ball \(B_r(x)\) is defined by the equality \(B_r(x) = \{y \in X | \max\{d(x, y), d(y, x)\} < r\}\).

Definition 2.1 \([6]\). Let \(X\) be topological space. Then \(X\) is said to be Hausdorff topological space if for any distinct points \(x, y \in X\), there exists two open sets \(G\) and \(H\) such that \(x \in G\), \(y \in H\) and \(G \cap H = \emptyset\).

Proposition 2.2. Every dqb-metric space is Hausdorff topological space.

Proof. Let \(x\) and \(y\) be two distinct points in \(X\). Then \(d(x, y) > 0\) and \(d(y, x) > 0\). Choose \(\delta = \frac{d(x,y)}{2s}\). Then, there exists
\[
B_\delta(x) = \{z \in X | \max\{d(x, z), d(z, x)\} < \delta\}
\]
and
\[
B_\delta(y) = \{z \in X | \max\{d(y, z), d(z, y)\} < \delta\}
\]
such that \(x \in B_\delta(x)\) and \(y \in B_\delta(y)\).

To show that \(B_\delta(x) \cap B_\delta(y) = \emptyset\), suppose that \(B_\delta(x) \cap B_\delta(y) \neq \emptyset\). Then, there exists \(z \in B_\delta(x) \cap B_\delta(y)\). We have
\[
d(x, y) \leq s d(x, z) + s d(z, y)
\]
\[
\leq s \max\{d(x, z), d(z, x)\} + s \max\{d(y, z), d(z, y)\}
\]
\[
< s \delta + s \delta = d(x, y).
\]
So, \(d(x, y) < d(x, y)\) which is a contradiction. Therefore \(B_\delta(x) \cap B_\delta(y) = \emptyset\). \(\square\)

Proposition 2.3. Every dqb-convergent sequence in a dqb-metric space \((X, d)\) is dqb-Cauchy sequence.

Proof. Suppose that \(\{x_n\}\) is dqb-convergent. Then there exists \(x \in X\) such that \(x_n \to x\), that is
\[
\lim_{n \to \infty} d(x_n, x) = 0 = \lim_{n \to \infty} d(x, x_n).
\]
Consider,
\[
d(x_n, x_m) \leq s d(x_n, x) + s d(x, x_m).
\]
Taking limit as \(n, m \to \infty\) we obtain
\[
\lim_{n,m \to \infty} d(x_n, x_m) = 0.
\]
Similarly,
\[
\lim_{n,m \to \infty} d(x_m, x_n) = 0.
\]
Therefore \(\{x_n\}\) is dqb-Cauchy. \(\square\)

Definition 2.4. A subset \(S\) of a dqb-metric space \((X, d)\) is bounded if there exists \(\bar{x}\), \(M \in (0, \infty)\) such that \(d(x, \bar{x}) \leq M\) for all \(x \in S\).

Proposition 2.5. Every dqb-convergent sequence in a dqb-metric space \((X, d)\) is bounded sequence.

Proof. Suppose that \(\{x_n\}\) is dqb-convergent. Then there exists \(x \in X\) such that \(x_n \to x\), that is
\[
\lim_{n \to \infty} d(x_n, x) = 0 = \lim_{n \to \infty} d(x, x_n).
\]
Let \(\epsilon = 1\). Then there exists \(n_0 \in \mathbb{N}\) such that \(d(x_n, x) < \epsilon\) and \(d(x, x_n) < \epsilon\) for all \(n \geq n_0\). Choose
\[
K = \max\{d(x_1, x), d(x_2, x), ..., d(x_{n_0 - 1}, x), 1\}.
\]
Thus, \(d(x_n, x) \leq K\) for all \(n \in \mathbb{N}\) and so \(\{x_n\}\) is bounded sequence. \(\square\)
Proposition 2.6. Every dqb-Cauchy sequence in a dqb-metric space \((X, d)\) is bounded sequence.

Proof. Suppose that \(\{x_n\}\) is dqb-Cauchy. Then

\[
\lim_{n \to \infty} d(x_n, x_m) = 0 = \lim_{n \to \infty} d(x_m, x_n).
\]

Let \(\epsilon = 1\). Then there exists \(n_0 \in \mathbb{N}\) such that \(d(x_n, x_m) < 1\) and \(d(x_m, x_n) < 1\) for all \(n, m \geq n_0\). Let \(p\) be any point in the space and let

\[
k = \max_{i \leq m} d(x_i, p).
\]

The maximum exists, since \(\{x_i : i \leq m\}\) is a finite set. If \(n \leq m\), then \(d(x_n, p) \leq k\). If \(n > m\), then

\[
d(x_n, p) \leq d(x_n, x_m) + d(x_m, p) \leq 1 + k \quad \text{for all} \quad n \in \mathbb{N}.
\]

Therefore \(\{x_n\}\) is bounded sequence. \(\Box\)

The next two propositions for subsequence follow immediately from definitions of dqb-convergent sequence and dqb-Cauchy sequence respectively.

Proposition 2.7. Every subsequence of dqb-convergent sequence in a dqb-metric space \((X, d)\) is dqb-convergent sequence.

Proposition 2.8. Every subsequence of dqb-Cauchy sequence in a dqb-metric space \((X, d)\) is dqb-Cauchy sequence.

Proposition 2.9. Let \(\{x_n\}\) be sequence in a dqb-metric space \((X, d)\). Then \(x_n \to x\) if and only if \(d(x_n, x) \to 0\) and \(d(x, x_n) \to 0\).

Proof. Suppose that \(x_n \to x\). Then

\[
\lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} d(x, x_n) = 0.
\]

Thus \(d(x_n, x) \to 0\) and \(d(x, x_n) \to 0\).

Conversely, Suppose that \(d(x_n, x) \to 0\) and \(d(x, x_n) \to 0\). Then

\[
\lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} d(x, x_n) = 0.
\]

By definition of dqb-convergent sequence, we get \(x_n \to x\). \(\Box\)

Proposition 2.10. Let \(\{x_n\}\) be sequence in a dqb-metric space \((X, d)\). If \(x_n \to x\) and \(x_n \to y\), then \(x = y\).

Proof. Suppose that \(x_n \to x\) and \(x_n \to y\). Then

\[
\lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} d(x, x_n) = \lim_{n \to \infty} d(x_n, y) = \lim_{n \to \infty} d(y, x_n) = 0.
\]

Consider,

\[
0 \leq d(x, y) \leq sd(x, x_n) + sd(x_n, y)
\]

and

\[
0 \leq d(y, x) \leq sd(y, x_n) + sd(x_n, x).
\]

Taking limit as \(n, m \to \infty\), we obtain

\[
d(x, y) = d(y, x) = 0.
\]

Therefore \(x = y\). \(\Box\)

Now, we begin with introducing the property of a continuous function.

Definition 2.11. Suppose that \((X, d_X)\) and \((Y, d_Y)\) are dislocated quasi-b-metric spaces, \(E \subset X\), \(f : E \to Y\) and \(p \in E\). Then \(f\) is continuous at \(p\) iff for all \(\epsilon > 0\) there exists \(\delta > 0\) such that

\[
\max\{d_Y(f(x), f(p)), d_Y(f(p), f(x))\} < \epsilon
\]

for all \(x \in E\), when \(\max\{d_X(x, p), d_X(p, x)\} < \delta\).
Theorem 2.12. Let \((X,d_X)\) and \((X,d_Y)\) be dislocated quasi-b-metric spaces, \(E \subset X\), \(f: E \to Y\) and \(p \in E\). Then \(f\) is continuous at \(p\) if and only if for every dislocated quasi-b-converges sequence \(\{x_n\}\) in \(X\), \(\lim_{n \to \infty} f x_n = fx\).

Proof. Suppose that \(f\) is continuous at \(p\) and \(\{x_n\}\) converges to \(p\). Let \(\epsilon > 0\). Then there exists \(\delta > 0\) such that \(\max\{d_Y(f x, fp), d_Y(fp, fx)\} < \epsilon\), when \(\max\{d_X(x, p), d_X(p, x)\} < \delta\) for all \(x \in E\).

Since \(\{x_n\}\) converges to \(p\), there exists \(N \in \mathbb{N}\) such that \(\max\{d_X(x_n, p), d_Y(p, x_n)\} < \delta\) for all \(n \geq N\). Since \(f\) is continuous at \(p\), we have \(\max\{d_Y(f x_n, fp), d_Y(fp, fx_n)\} < \epsilon\), for all \(n \geq N\).

Hence \(\lim_{n} f x_n = fx\).

Conversely, let \(x \in X\) and assume in the contrary that

\[\exists \epsilon > 0 \quad \forall \delta > 0: \max\{d_X(x, p), d_X(p, x)\} < \delta, \max\{d_Y(f x, fp), d_Y(fp, fx)\} \geq \epsilon.\]

Applying these successively for all \(\delta = \frac{1}{k}\), we find a sequence \(\{x_k\}\) such that \(\max\{d_X(x_k, p), d_X(p, x_k)\} < \frac{1}{k}\) and \(\max\{d_Y(f x_k, fp), d_Y(fp, fx_k)\} \geq \epsilon\). Thus

\[\lim_{k \to \infty} x_k = p.\]

By assumption, we have

\[\lim_{k \to \infty} f x_k = fp.\]

Hence, there exists a \(k_0\) such that for all \(k > k_0\)

\[\max\{d_Y(f x_k, fp), d_Y(fp, fx_k)\} < \epsilon,\]

which is a contradiction. \(\square\)

Definition 2.14. Let \(A\) and \(B\) be nonempty closed subsets of a dislocated quasi-b-metric spaces \((X,d)\). A cyclic map \(T : A \cup B \to A \cup B\) is said to be a dqb-cyclic-weak contraction or dqb-cyclic-weakly contraction if for all \(x \in A\), \(y \in B\),

\[sd(Tx,Ty) \leq d(x,y) - \psi(d(x,y)),\] \hspace{1cm} (2.1)

where \(\psi: [0, \infty) \to [0, \infty)\) is a continuous and nondecreasing function such that \(\psi(t) = 0\) if and only if \(t = 0\).

Lemma 2.15. Let \((X,d_X)\) and \((Y,d_Y)\) be dislocated quasi-b-metric spaces and \(A\) and \(B\) be nonempty closed subsets of a dislocated quasi-b-metric spaces \((X,d)\). Consider a cyclic map \(T : A \cup B \to A \cup B\). If \(T\) is dqb-cyclic-weak contraction, then \(T\) is continuous.

Proof. Let \(\epsilon > 0\), all \(x \in A \cup B\) and fixed \(p \in A \cup B\). Suppose that \(\max\{d_X(x, p), d_C(p, x)\} < \delta\). Choose \(\epsilon = \frac{\delta}{s}\). Since \(T\) is dqb-cyclic-weak contraction, we have

\[sd(Tx,Tp) \leq d(x,p) - \psi(d(x,p)) \leq d(x,p) < \delta\]

and

\[sd(Tp,Tx) \leq d(p,x) - \psi(d(p,x)) \leq d(p,x) < \delta.\]

So, \(d(Tx,Tp) < \epsilon\) and \(d(Tp,Tx) < \epsilon\). Thus \(T\) is continuous at \(p\) and hence \(T\) is continuous on \(A \cup B\). \(\square\)
Theorem 2.16. Let A and B be nonempty subsets of a complete dislocated quasi-b-metric space (X, d). Let T be a cyclic mapping that satisfies the condition a dqb-cyclic-weak contraction. Then, T has a unique fixed point in $A \cap B$.

Proof. Let $x \in A$ be fixed. Using contractive condition in assumptions, we have

\[
\begin{align*}
 d(T^2x, Tx) &\leq sd(T^2x, Tx) \\
 &= sd(T(Tx), Tx) \\
 &\leq d(Tx, x) - \psi(d(Tx, x)), \\
 &\leq d(Tx, x)
\end{align*}
\]

and

\[
\begin{align*}
 d(Tx, T^2x) &\leq sd(Tx, T^2x) \\
 &= sd(Tx, T(Tx)) \\
 &\leq d(x, Tx) - \psi((x, Tx)), \\
 &\leq d(x, Tx).
\end{align*}
\]

So

\[
 d(T^3x, T^2x) \leq d(T^2x, Tx) - \psi(d(T^2x, Tx))
\]

and

\[
 d(T^2x, T^3x) \leq d(Tx, T^2x) - \psi(d(Tx, T^2x)).
\]

For all $n \in \mathbb{N}$, we get

\[
 d(T^{n+2}x, T^{n+1}x) \leq d(T^{n+1}x, T^nx) - \psi(d(T^{n+1}x, T^nx))
\]

and

\[
 d(T^{n+1}x, T^{n+2}x) \leq d(T^nx, T^{n+1}x) - \psi(d(T^n x, T^{n+1}x)).
\]

Set $\varsigma_n = d(T^{n+1}x, T^nx)$ and $\tau_n = d(T^nx, T^{n+1}x)$. By inequalities (2.6) and (2.7), we get

\[
 \varsigma_{n+1} \leq \varsigma_n - \psi(\varsigma_n) \leq \varsigma_n
\]

and

\[
 \tau_{n+1} \leq \tau_n - \psi(\tau_n) \leq \tau_n.
\]

Thus $\{\varsigma_n\}$ and $\{\tau_n\}$ are decreasing sequences of non-negative real numbers, and hence possess a $\lim_{n \to \infty} \varsigma_n = \varsigma \geq 0$ and $\lim_{n \to \infty} \tau_n = \tau \geq 0$. Suppose that $\varsigma > 0$. Since ψ is nondecreasing, $\psi(\varsigma_n) \geq \psi(\varsigma) > 0$. By inequality (2.5), we have $\varsigma_{n+1} \leq \varsigma_n - \psi(\varsigma)$. Thus $\varsigma_{N+m} \leq \varsigma_m - N\psi(\varsigma)$, a contradiction for N large enough. Therefore $\varsigma = 0$.

Similarly, $\tau = 0$.

Next, we prove that $\{T^nx\}$ is a Cauchy sequence. Suppose that $\{T^nx\}$ is not Cauchy, then there exist $\epsilon > 0$ and subsequence $\{T^{m_k}x\}$ and $\{T^{n_k}x\}$ with $m_k > n_k \geq n$ such that $d(T^{m_k}x, T^{n_k}x) \geq \epsilon$ and $d(T^{m_k-1}x, T^{n_k}x) < \epsilon$. Now, we consider

\[
\begin{align*}
 sd(T^{m_k}x, T^{n_k}x) &\leq d(T^{m_k-1}x, T^{n_k-1}x) - \psi(d(T^{m_k-1}x, T^{n_k-1}x)) \\
 &\leq d(T^{m_k-1}x, T^{n_k-1}x),
\end{align*}
\]
which implies that
\[s\epsilon \leq d(T^{m_k-1}x, T^{n_k-1}x). \] (2.11)

Take limit inferior in (2.11) as \(k \to \infty \), we get
\[\epsilon s \leq \lim \inf d(T^{m_k-1}x, T^{n_k-1}x). \] (2.12)

We have
\[d(T^{m_k-1}x, T^{n_k-1}x) \leq sd(T^{m_k-1}x, T^{n_k}x) + sd(T^{n_k}x, T^{n_k-1}x) \]
\[< s\epsilon + sd(T^{n_k}x, T^{n_k-1}x). \] (2.13)

Take limit superior in (2.13) as \(k \to \infty \), we get
\[\lim \sup d(T^{m_k-1}x, T^{n_k-1}x) \leq s\epsilon. \] (2.14)

By (2.12) and (2.14), we get
\[\lim d(T^{m_k-1}x, T^{n_k-1}x) = s\epsilon. \] (2.15)

Letting \(k \to \infty \) in (2.10), by property of \(\psi \) and (2.15), we get
\[s\epsilon \leq s\epsilon - \psi(s\epsilon) < s\epsilon, \] (2.16)

which is a contradiction. Hence \(\{ T^n x \} \) is a dqb-Cauchy sequence. Since \((X, d) \) is complete, we have \(\{ T^n x \} \) converges to some \(z \in X \). We note that, \(\{ T^{2n} x \} \) is a sequence in \(A \) and \(\{ T^{2n-1} x \} \) is a sequence in \(B \) in a way that both sequences tend to same limit \(z \). Since \(A \) and \(B \) are closed, we have \(z \in A \cap B \) and hence \(A \cap B \neq \emptyset \). The continuity of \(T \) implies that the limit is a fixed point. Finally, to prove the uniqueness of fixed point, let \(z^* \in X \) be another fixed point of \(T \) such that \(Tz^* = z^* \). Then, we have
\[d(z, z^*) = d(Tz, Tz^*) \leq sd(Tz, Tz^*) \leq d(z, z^*) - \psi(d(z, z^*)) \leq d(z, z^*). \] (2.17)

On the other hand,
\[d(z^*, z) = d(Tz^*, Tz) \leq sd(Tz^*, Tz) \leq d(z^*, z) - \psi(d(z, z^*)) \leq d(z^*, z). \] (2.18)

By forms (2.17) and (2.18), we obtain that \(d(z, z^*) = d(z^*, z) = 0 \), this implies that \(z^* = z \). Therefore \(z \) is a unique fixed point of \(T \). This completes the proof. \(\square \)

Example 2.17. Let \(X = [-1, 1] \) and \(T : A \cup B \to A \cup B \) be defined by \(Tx = -\frac{x}{3} \) and \(\psi(t) = \frac{t}{50} \). Suppose that \(A = [-1, 0] \) and \(B = [0, 1] \). Defined the function \(d : X^2 \to [0, \infty) \) by
\[d(x, y) = |x - y|^2 + \frac{|x|}{10} + \frac{|y|}{11}. \]

We see that \(d \) is a dislocated quasi-b-metric on \(X \) (see[5]).

Let \(x \in A \). Then \(-1 \leq x \leq 0 \). So, \(0 \leq \frac{x}{3} \leq \frac{1}{3} \). Thus, \(Tx \in B \). On the other hand, let \(x \in B \). Then \(0 \leq x \leq 1 \). So, \(\frac{1}{3} \leq \frac{x}{3} \leq 0 \). Thus, \(Tx \in A \).

Hence, the map \(T \) is cyclic on \(X \), because \(T(A) \subset B \) and \(T(B) \subset A \).

Next, we consider
\[2d(Tx, Ty) = 2(|Tx - Ty|^2 + \frac{1}{10}|Tx| + \frac{1}{11}|Ty|) \]
\[= 2(|-\frac{x}{3} - \frac{y}{3}|^2 + \frac{1}{10}|\frac{-x}{3}| + \frac{1}{11}|\frac{-y}{3}|) \]
Thus, T satisfies dqb-cyclic-weak contraction of Theorem 2.16 and 0 is the unique fixed point of T.

Definition 2.18. Let A and B be nonempty subsets of a dislocated quasi-b-metric spaces. (X,d). A cyclic mapping T: A ∪ B → A ∪ B is said to be a dqb-cyclic-φ-contraction and if there exists k ∈ [0, 1) and s ≥ 1 such that

\[
\phi(Tx, Tx) \leq \phi(x, y)
\]

(2.19)

for all x ∈ A, y ∈ B, where Φ the family of non-decreasing functions: Φ : [0, ∞) → [0, ∞) such that \(\sum_{n=1}^{\infty} \phi^n(t) < \infty\) for each t > 0, where n is the n-th iterate of \(\phi\).

Theorem 2.19. Let A and B be nonempty closed subsets of a complete dislocated quasi-b-metric space (X,d). Let T be a cyclic mapping that satisfies the condition a dqb-cyclic-φ-contraction. Then, T has a unique fixed point in A ∩ B.

Proof. Let x ∈ A be fixed, then using contractive condition of theorem, we have

\[
sd(Tx, Ty) \leq \phi(d(x, y))
\]

and

\[
sd(Tx, T^2x) = sd(T(Tx), Tx)
\]

\[
\leq \phi(d(Tx, x))
\]

Inductively, we have for all n ∈ N, we get

\[
s^n d(T^{n+1}x, T^nx) \leq \phi^n(d(Tx, x))
\]

and

\[
s^n d(T^nx, T^{n+1}x) \leq \phi^n(d(x, Tx)).
\]

Let \(\epsilon > 0\) be fixed and \(n(\epsilon) \in \mathbb{N}\), such that

\[
\sum_{n \geq n(\epsilon)} \phi^n(d(Tx, x)) < \epsilon
\]

and

\[
\sum_{n \geq n(\epsilon)} \phi^n(d(x, Tx)) < \epsilon.
\]

Let \(n, m \in \mathbb{N}\) with \(m > n > n(\epsilon)\), using the triangular inequality, we have:

\[
d(T^m x, T^n x) \leq s^{m-n} d(T^m x, T^{m-1} x) + s^{m-n-1} d(T^{m-1} x, T^{m-2} x) + ... + d(T^{n+1} x, T^n x)
\]

\[
\leq s^{m-1} d(T^m x, T^{m-1} x) + s^{m-2} d(T^{m-1} x, T^{m-2} x) + ... + s^n d(T^{n+1} x, T^n x)
\]

\[
\leq \phi^{m-1}(d(Tx, x)) + \phi^{m-2}(d(Tx, x)) + \phi^{m-3}(d(Tx, x)) + ... + \phi^n(d(Tx, x))
\]

\[
= \phi^{m-1}(k(d(x, Tx)))
\]

\[
\leq \sum_{n \geq n(\epsilon)} \phi^n(d(x, Tx)) < \epsilon.
\]
Similarly,
\[d(T^n x, T^m x) < \epsilon. \]

Thus \(\{T^n x\} \) is a Cauchy sequence. Since \((X, d)\) is complete, we have \(\{T^n x\} \) converges to some \(z \in X \). We note that \(\{T^{2n} x\} \) is a sequence in \(A \) and \(\{T^{2n-1} x\} \) is a sequence in \(B \) in a way that both sequences tend to same limit \(z \). Since \(A \) and \(B \) are closed, we have \(z \in A \cap B \) and then \(A \cap B \neq \emptyset \). Now, we will show that \(Tz = z \). By using (2.19), consider
\[d(z, Tz) \leq sd(z, T^{2n} x) + sd(T^{2n} x, Tz) \leq sd(z, T^{2n} x) + d(T^{2n-1} x, z). \]

Taking limit as \(n \to \infty \) in above inequality, we have
\[d(z, Tz) = 0. \]

Similarly considering form (2.19), we get
\[d(Tz, z) \leq sd(Tz, T^{2n} x) + sd(T^{2n} x, z) \leq d(Tz, T^{2n-1} x) + sd(T^{2n} x, z). \]

Taking limit as \(n \to \infty \) in above inequality, we have
\[d(Tz, z) = 0. \]

Hence \(d(z, Tz) = d(Tz, z) = 0 \). This implies that \(Tz = z \) that is \(z \) is a fixed point of \(T \).

Finally, to prove the uniqueness of fixed point, let \(z^* \in X \) be another fixed point of \(T \) such that \(Tz^* = z^* \). Then, we have
\[d(z^*, z) \leq sd(Tz^*, T^n x) + sd(T^n x, Tz) \leq \phi(d(Tz^*, T^n x)) + \phi(d(T^n x, Tz)) \]
and on the other hand,
\[d(z^*, z) \leq sd(Tz, T^n x) + sd(T^n x, Tz^*) \leq \phi(d(Tz, T^n x)) + \phi(d(T^n x, Tz^*)). \]

Letting \(n \to \infty \) we obtain that \(d(z^*, z) = d(z^*, z) = 0 \), which implies that \(z^* = z \). Therefore \(z \) is a unique fixed point of \(T \). This completes the proof. \(\square \)

Example 2.20. Let \(X = [-1, 1] \) and \(T : A \cup B \to A \cup B \) be defined by \(Tx = -\frac{x}{5} \). Suppose that \(A = [-1, 0] \) and \(B = [0, 1] \). Defined the function \(d : X^2 \to [0, \infty) \) by
\[d(x, y) = |x - y|^2 + \frac{|x|}{10} + \frac{|y|}{11}. \]

We see that \(d \) is a dislocated quasi-b-metric on \(X \), where \(s = 2 \). Let \(x \in A \). Then \(-1 \leq x \leq 0 \). So, \(0 \leq \frac{x}{s} \leq \frac{1}{5} \).

Thus, \(Tx \in B \). On the other hand, let \(x \in B \). Then \(0 \leq x \leq 1 \). So, \(\frac{1}{5} \leq \frac{x}{s} \leq 0 \). Thus, \(Tx \in A \).

Hence the map \(T \) is cyclic on \(X \), because \(T(A) \subset B \) and \(T(B) \subset A \).

Next, we consider
\[sd(Tx, Ty) = 2d(Tx, Ty) \]
\[= 2(|Tx - Ty|^2 + \frac{1}{10}|Tx| + \frac{1}{11}|Ty|) \]
\[= 2(\frac{-x}{5} - \frac{-y}{5})^2 + \frac{1}{10}\frac{|x|}{5} + \frac{1}{11}\frac{|y|}{5} \]
$$= \frac{2}{3} \left(\frac{3}{25} |x-y|^2 + \frac{3}{50} |x| + \frac{3}{55} |y| \right)$$
$$\leq \frac{2}{3} \left(|x-y|^2 + \frac{5}{50} |x| + \frac{5}{55} |y| \right)$$
$$= \frac{2}{3} \left(|x-y|^2 + \frac{1}{10} |x| + \frac{1}{11} |y| \right)$$
$$= \phi(d(x, y)),$$

where the function $\phi \in \Phi$ is $\phi(t) = \frac{2t}{3}$. Clearly, 0 is the unique fixed point of T.

The following corollary can be taken as a particular case of Theorem 2.19 if we take $\phi(t) = kt$ for all $t \geq 0$ and some $k \in [0, 1)$. That is the dqb-cyclic-Banach contraction, in the setting of dislocated quasi-b-metric spaces.

Corollary 2.21. Let A and B be nonempty closed subsets of a complete dislocated quasi-b-metric space (X, d). Let T be a cyclic mapping that satisfies the condition a dqb-cyclic-Banach contraction; that is, if there exists $k \in [0, 1)$ such that

$$d(Tx, Ty) \leq kd(x, y) \quad (2.22)$$

for all $x \in A$, $y \in B$ and $s \geq 1$ and $sk \leq 1$. Then, T has a unique fixed point in $A \cap B$.

Acknowledgements

The authors would like to thank the Thailand Research Fund under the project RTA5780007 and Science Achievement Scholarship of Thailand, which provides funding for research.

References

