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Abstract
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1. Introduction

Let f : I ⊆ R → R be a convex function on an interval I and let a, b ∈ I such that a < b. Then the
double inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x) dx ≤ f(a) + f(b)

2

holds. This double inequality is known in the literature as the Hermite–Hadamard integral inequality.

Definition 1.1. If a positive function f : I ⊆ R→ R+ = (0,∞) satisfies

f(λx+ (1− λ)y) ≤ [f(x)]λ[f(y)]1−λ

for all x, y ∈ I and λ ∈ [0, 1], then we say that f is a logarithmically convex (or simply, log-convex) function
on I. If the above inequality is reversed, then we say that f is a log-concave function.
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Equivalently, a function f is log-convex on I if and only if f is positive and its logarithm ln f is convex
on I. Moreover, if the second derivative f ′′ exists on I, then f is log-convex if and only if ff ′′ − (f ′)2 ≥ 0.

A corresponding version of the Hermite–Hadamard integral inequality for log-convex functions was given
in [5] as follows.

Theorem 1.2 ([5]). Suppose that f : [a, b] ⊆ R→ R+ is a log-convex function on [a, b]. Then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x) dx ≤ L(f(a), f(b)),

where L(x, y) is the logarithmic mean

L(x, y) =


y − x

ln y − lnx
, x 6= y,

x, x = y.

In [3, 4], the so-called convex functions on co-ordinates were introduced as follows.

Definition 1.3 ([3, 4]). A function f : ∆ = [a, b]× [c, d] ⊆ R2 → R is said to be convex on co-ordinates on
∆ with a < b and c < d if the partial mappings

fy : [a, b]→ R, fy(u) = fy(u, y) and fx : [c, d]→ R, fx(v) = fx(x, v)

are convex for all x ∈ (a, b) and y ∈ (c, d).

Definition 1.4 ([3, 4]). A function f : ∆ = [a, b]× [c, d] ⊆ R2 → R is said to be convex on co-ordinates on
∆ with a < b and c < d if the inequality

f(tx+ (1− t)z, λy + (1− λ)w) ≤ tλf(x, y) + t(1− λ)f(x,w) + (1− t)λf(z, y) + (1− t)(1− λ)f(z, w)

holds for all t, λ ∈ [0, 1] and (x, y), (z, w) ∈ ∆.

An inequality of the Hermite–Hadamard type for convex function on co-ordinates on a rectangle from
the plane R2 was established in [3, 4] as follows.

Theorem 1.5 ([3, 4, Theorem 2.2]). Let f : ∆ = [a, b] × [c, d] ⊆ R2 → R be convex on co-ordinates on ∆
with a < b and c < d. Then one has

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

[
1

b− a

∫ b

a
f

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c
f

(
a+ b

2
, y

)
d y

]
≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c
f(x, y) d y dx

≤ 1

4

[
1

b− a

∫ b

a

[
f(x, c) + f(x, d)

]
dx+

1

d− c

∫ d

c

[
f(a, y) + f(b, y)

]
d y

]
≤ 1

4

[
f(a, c) + f(b, c) + f(a, d) + f(b, d)

]
.

In [1], Alomari and Darus introduced a class of log-convex functions on co-ordinates as follows.

Definition 1.6 ([1]). A function f : ∆ = [a, b] × [c, d] ⊆ R2 → R+ is called log-convex on co-ordinates on
∆ with a < b and c < d if

f(tx+ (1− t)z, λy + (1− λ)w) ≤ [f(x, y)]tλ[f(x,w)]t(1−λ)[f(z, y)](1−t)λ[f(z, w)](1−t)(1−λ)

holds for all t, λ ∈ [0, 1] and (x, y), (z, w) ∈ ∆.
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Remark 1.7. If f and g are both log-convex on co-ordinates on ∆, then their composite f ◦g is also log-convex
on co-ordinates on ∆.

An inequality of the Hermite–Hadamard type for log-convex functions on co-ordinates on a rectangle
from the plane R2 was established by Alomari and Darus in [1] as follows.

Theorem 1.8 ([1, Theorem 3.3]). Suppose that f : ∆ = [a, b] × [c, d] ⊆ R2 → R+ is log-convex on co-
ordinates on ∆ for a < b and c < d. Let

A =
f(a, c)f(b, d)

f(b, c)f(a, d)
, B =

f(a, d)

f(b, d)
, and C =

f(b, c)

f(b, d)
.

Then the inequality

I =
1

(b− a)(d− c)

∫ d

c

∫ b

a
f(x, y) dx d y ≤ f(b, d)×



1, A = B = C = 1,
B − 1

lnB

C − 1

lnC
, A = 1,

H(C), B = 1,

H(B), C = 1,
C − 1

lnC
, A = B = 1,

B − 1

lnB
, A = C = 1,

γ + ln(− lnA) + Ei(1,− lnA)

lnA
, B = C = 1,

1

2

[
B − 1

lnB
+
AB − 1

ln(AB)

]
, A,B,C > 0,

∫ 1

0
Cβ

AB − 1

ln(AB)
dβ, otherwise

holds, where γ is the Euler constant,

H(x) =
Ei(1,− lnA) + ln lnx− Ei(1,− ln(Ax))− ln ln(Ax)

lnA
+


2 ln lnA− ln(− lnA)

lnA
, −1 <

lnx

lnA
< 0,

0, otherwise;

and

Ei(x) = V.P.

∫ ∞
−x

e−t

t
d t

is the exponential integral function.

For more and detailed information on this topic, please refer to the newly published papers [2, 6–25] and
plenty of references therein.

2. Some new integral inequalities of the Hermite–Hadamard type

In this section, we prove some new inequalities of the Hermite–Hadamard type for log-convex functions
on co-ordinates.
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Theorem 2.1. Let f : ∆ = [a, b]× [c, d] ⊆ R2 → R+ for a < b and c < d be log-convex on co-ordinates on
∆. Then one has

1

(b− a)(d− c)

∫ d

c

∫ b

a
f(x, y) dx d y

≤ 1

2

[
1

b− a

∫ b

a
L
(
f(x, c), f(x, d)

)
dx+

1

d− c

∫ d

c
L(f(a, y), f(b, y)) d y

]
≤ 1

4

[
1

b− a

∫ b

a

[
f(x, c) + f(x, d)

]
dx+

1

d− c

∫ d

c

[
f(a, y) + f(b, y)

]
d y

]
≤ 1

4

[
L(f(a, c), f(b, c)) + L(f(a, d), f(b, d)) + L

(
f(a, c), f(a, d)

)
+ L

(
f(b, c), f(b, d)

)]
≤ 1

4
[f(a, c) + f(b, c) + f(a, d) + f(b, d)],

where L(u, v) is the logarithmic mean.

Proof. For all x, y > 0, it is known that L(x, y) ≤ x+y
2 . Setting y = λc + (1 − λ)d for all 0 ≤ λ ≤ 1, using

the log-convexity of f , and by the arithmetic-geometric mean inequality, we obtain

1

(b− a)(d− c)

∫ d

c

∫ b

a
f(x, y) dx d y =

1

b− a

∫ 1

0

∫ b

a
f(x, λc+ (1− λ)d) dx dλ

≤ 1

b− a

∫ b

a

∫ 1

0
[f(x, c)]λ[f(x, d)]1−λ dλ dx

=
1

b− a

∫ b

a
L(f(x, c), f(x, d)) dx

≤ 1

2(b− a)

∫ b

a
[f(x, c) + f(x, d)] dx.

Since f(x, c) ≤ [f(a, c)]t[f(b, c)]1−t and f(x, d) ≤ [f(a, d)]t[f(b, d)]1−t for each t ∈ [0, 1], we have

1

2(b− a)

∫ b

a
[f(x, c+ f(x, d)] dx ≤ 1

2

∫ 1

0

{
[f(a, c)]t[f(b, c)]1−t + [f(a, d)]t[f(b, d)]1−t

}
dx

=
1

2

[
L(f(a, c), f(b, c)) + L(f(a, d), f(b, d))

]
≤ 1

4
[f(a, c) + f(b, c) + f(a, d) + f(b, d)].

By a similar argument, we can obtain

1

(b− a)(d− c)

∫ d

c

∫ b

a
f(x, y) dx d y ≤ 1

d− c

∫ d

c
L(f(a, y), f(b, y)) d y

≤ 1

2(d− c)

∫ d

c
[f(a, y) + f(b, y)] d y

≤ 1

2

[
L
(
f(a, c), f(a, d)

)
+ L

(
f(b, c), f(b, d)

)]
≤ 1

4
[f(a, c) + f(b, c) + f(a, d) + f(b, d)].

The proof of Theorem 2.1 is thus complete.

Example 2.2. The function f(x, y) = x2y2 + 1 is log-convex on co-ordinates on ∆ = [−1, 1]2. In Theo-
rem 1.8, since A = B = C = 1, we have

1

(b− a)(d− c)

∫ d

c

∫ b

a
f(x, y) dx d y =

10

9
< 2 = f(b, d).
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By Theorem 2.1, we obtain

1

(b− a)(d− c)

∫ d

c

∫ b

a
f(x, y) dx d y =

10

9
<

4

3

=
1

2

[
1

b− a

∫ b

a
L
(
f(x, c), f(x, d)

)
dx+

1

d− c

∫ d

c
L(f(a, y), f(b, y)) d y

]
< 2.

Theorem 2.3. Let f : ∆ = [a, b]× [c, d] ⊆ R2 → R+ with a < b and c < d be log-convex on co-ordinates on
∆. Then

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

{
1

b− a

∫ b

a

[
f

(
x,
c+ d

2

)
f

(
a+ b− x, c+ d

2

)]1/2
dx

+
1

d− c

∫ d

c

[
f

(
a+ b

2
, y

)
f

(
a+ b

2
, c+ d− y

)]1/2
d y

}
≤ 1

2

[
1

b− a

∫ b

a
f

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c
f

(
a+ b

2
, y

)
d y

]
≤ 1

2(b− a)(d− c)

∫ d

c

∫ b

a

{
[f(x, y)f(x, c+ d− y)]1/2

+ [f(x, y)f(a+ b− x, y)]1/2
}

dx d y

≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a
f(x, y) dx d y.

(2.1)

Proof. Utilizing the log-convexity of f leads to

f

(
a+ b

2
,
c+ d

2

)
= f

(
1

2
[ta+ (1− t)b+ (1− t)a+ tb],

1

2

(
c+ d

2
+
c+ d

2

))
≤
[
f

(
ta+ (1− t)b, c+ d

2

)
f

(
(1− t)a+ tb,

c+ d

2

)]1/2 (2.2)

for all 0 ≤ t ≤ 1. On using the change of the variable x = ta + (1 − t)b for 0 ≤ t ≤ 1, integrating the
inequality (2.2) over t on [0, 1], and by the arithmetic-geometric mean inequality, we procure

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

∫ 1

0

[
f

(
ta+ (1− t)b, c+ d

2

)
f

(
(1− t)a+ tb,

c+ d

2

)]1/2
d t

=
1

b− a

∫ b

a

[
f

(
x,
c+ d

2

)
f

(
a+ b− x, c+ d

2

)]1/2
dx

≤ 1

b− a

∫ b

a
f

(
x,
c+ d

2

)
dx.

(2.3)

Using the log-convexity of f , we find

f

(
x,
c+ d

2

)
≤
[
f(x, λc+ (1− λ)d)f(x, (1− λ)c+ λd)

]1/2
(2.4)

for all 0 ≤ λ ≤ 1 and x ∈ [a, b].
Integrating the inequality (2.4) with respect to (x, λ) on [a, b]× [0, 1] and using the inequality (2.3) give

1

b− a

∫ b

a
f

(
x,
c+ d

2

)
dx ≤ 1

b− a

∫ 1

0

∫ b

a

[
f(x, λc+ (1− λ)d)f(x, (1− λ)c+ λd)

]1/2
dx dλ

=
1

(b− a)(d− c)

∫ d

c

∫ b

a

[
f(x, y)f

(
x, c+ d− y

)]1/2
dx d y

≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a
f(x, y) dx d y.

(2.5)



Y.-M. Bai, F. Qi, J. Nonlinear Sci. Appl. 9 (2016), 5900–5908 5905

Similarly, we obtain

f

(
a+ b

2
,
c+ d

2

)
≤ 1

d− c

∫ d

c

[
f

(
a+ b

2
, y

)
f

(
a+ b

2
, c+ d− y

)]1/2
d y

≤ 1

d− c

∫ d

c
f

(
a+ b

2
, y

)
d y

≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a

[
f(x, y)f

(
a+ b− x, y

)]1/2
dx d y

≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a
f(x, y) dx d y.

A combination of (2.3), (2.5), and the last inequality gives the desired inequality (2.1). Theorem 2.3 is thus
proved.

Making use of Theorem 2.3, we derive the following corollary.

Corollary 2.4. Let f, g : ∆ = [a, b]× [c, d] ⊆ R2 → R+ with a < b and c < d be log-convex on co-ordinates
on ∆. Then

f

(
a+ b

2
,
c+ d

2

)
g

(
a+ b

2
,
c+ d

2

)
≤ 1

2

{
1

b− a

∫ b

a

[
f

(
x,
c+ d

2

)
g

(
x,
c+ d

2

)
f

(
a+ b− x, c+ d

2

)
g

(
a+ b− x, c+ d

2

)]1/2
dx

+
1

d− c

∫ d

c

[
f

(
a+ b

2
, y

)
g

(
a+ b

2
, y

)
f

(
a+ b

2
, c+ d− y

)
g

(
a+ b

2
, c+ d− y

)]1/2
d y

}
≤ 1

2

[
1

b− a

∫ b

a
f

(
x,
c+ d

2

)
g

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c
f

(
a+ b

2
, y

)
g

(
a+ b

2
, y

)
d y

]
≤ 1

2(b− a)(d− c)

∫ d

c

∫ b

a

{
[f(x, y)g(x, y)f(x, c+ d− y)g(x, c+ d− y)]1/2

+ [f(x, y)g(x, y)f(a+ b− x, y)g(a+ b− x, y)]1/2
}

dx d y

≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a
f(x, y) dx d y.

Theorem 2.5. Let f : ∆ = [a, b]× [c, d] ⊆ R2 → R+ with a < b and c < d be log-convex on co-ordinates on
∆. Then

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

[
1

b− a

∫ b

a

[
f

(
x,
c+ d

2

)
f

(
a+ b− x, c+ d

2

)]1/2
dx

+
1

d− c

∫ d

c

[
f

(
a+ b

2
, y

)
f

(
a+ b

2
, c+ d− y

)]1/2
d y

]
≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a

[
f(x, y)f(x, c+ d− y)f(a+ b− x, y)f(a+ b− x, c+ d− y)

]1/4
dx d y

≤ 1

2(b− a)(d− c)

∫ d

c

∫ b

a

{
[f(x, y)f(x, c+ d− y)]1/2 + [f(x, y)f(a+ b− x, y)]1/2

}
dx d y

≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a
f(x, y) dx d y.
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Proof. Since f is log-convex on co-ordinates on ∆, using the inequalities (2.3), (2.5), and the arithmetic-
geometric inequality figures out

f

(
a+ b

2
,
c+ d

2

)
≤ 1

b− a

∫ b

a

[
f

(
x,
c+ d

2

)
f

(
a+ b− x, c+ d

2

)]1/2
dx

≤ 1

b− a

∫ 1

0

∫ b

a

[
f(x, λc+ (1− λ)d)f(x, (1− λ)c+ λd)

× f(a+ b− x, λc+ (1− λ)d)f(a+ b− x, (1− λ)c+ λd)
]1/4

dx dλ

=
1

(b− a)(d− c)

∫ d

c

∫ b

a

[
f(x, y)f(x, c+ d− y)f(a+ b− x, y)

× f(a+ b− x, c+ d− y)
]1/4

dx d y

≤ 1

2(b− a)(d− c)

∫ d

c

∫ b

a

{
[f(x, y)f(x, c+ d− y)]1/2 + [f(x, y)f(a+ b− x, y)]1/2

}
dx d y

≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a
f(x, y) dx d y.

Similarly, we obtain

f

(
a+ b

2
,
c+ d

2

)
≤ 1

d− c

∫ d

c

[
f

(
a+ b

2
, y

)
f

(
a+ b

2
, c+ d− y

)]1/2
d y

≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a

[
f(x, y)f(x, c+ d− y)f(a+ b− x, y)

× f(a+ b− x, c+ d− y)
]1/4

dx d y

≤ 1

2(b− a)(d− c)

∫ d

c

∫ b

a

{
[f(x, y)f(x, c+ d− y)]1/2 + [f(x, y)f(a+ b− x, y)]1/2

}
dx d y

≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a
f(x, y) dx d y.

Hence, the proof of Theorem 2.5 is complete.

Corollary 2.6. Let f, g : ∆ = [a, b]× [c, d] ⊆ R2 → R+ with a < b and c < d be log-convex on co-ordinates
on ∆. Then

f

(
a+ b

2
,
c+ d

2

)
g

(
a+ b

2
,
c+ d

2

)
≤ 1

2

[
1

b− a

∫ b

a

[
f

(
x,
c+ d

2

)
g

(
x,
c+ d

2

)
f

(
a+ b− x, c+ d

2

)
g

(
a+ b− x, c+ d

2

)]1/2
dx

+
1

d− c

∫ d

c

[
f

(
a+ b

2
, y

)
g

(
a+ b

2
, y

)
f

(
a+ b

2
, c+ d− y

)
g

(
a+ b

2
, c+ d− y

)]1/2
d y

]
≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a

[
f(x, y)g(x, y)f(x, c+ d− y)g(x, c+ d− y)

× f(a+ b− x, y)g(a+ b− x, y)f(a+ b− x, c+ d− y)g(a+ b− x, c+ d− y)
]1/4

dx d y

≤ 1

2(b− a)(d− c)

∫ d

c

∫ b

a

{
[f(x, y)g(x, y)f(x, c+ d− y)g(x, c+ d− y)]1/2

+ [f(x, y)g(x, y)f(a+ b− x, y)g(a+ b− x, y)]1/2
}

dx d y

≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a
f(x, y) dx d y.
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Theorems 2.1 and 2.3 can be improved as follows.

Corollary 2.7. Under the conditions of Theorems 2.1 and 2.3, if f(x, y) = f1(x)g1(y) for (x, y) ∈ ∆, then

f1

(
a+ b

2

)
g1

(
c+ d

2

)
≤ 1

2

[(
1

b− a

∫ b

a

[
f1(x)f1(a+ b− x)

]1/2
dx

)
g1

(
c+ d

2

)
+

(
1

d− c

∫ d

c

[
g1(x)g1(c+ d− y)

]1/2
d y

)
f1

(
c+ d

2

)]
≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a

[
f1(x)g1(y)f1(a+ b− x)g1(c+ d− y)

]1/2
dx d y

≤ 1

(b− a)(d− c)

∫ d

c

∫ b

a
f1(x)g1(y) dx d y

≤ 1

2

[
1

b− a

∫ b

a
L
(
f1(x)g1(c), f1(x)g1(d)

)
dx

+
1

d− c

∫ d

c
L(f1(a)g1(y), f1(b)g1(y)) d y

]
≤ 1

4

[
g1(c) + g1(d)

b− a

∫ b

a
f1(x) dx+

f1(a) + f1(b)

d− c

∫ d

c
g1(y) d y

]
≤ 1

4

[
L(f1(a), f1(b))[g1(c) + g1(d)] + [f1(a) + f1(b)]L(g1(c), g1(d))

]
≤ 1

4

[
[f1(a) + f1(b)][g1(c) + g1(d)]

]
.

3. Conclusions

By the arithmetic-geometric inequality and other techniques, we establish some new integral inequalities
for log-convex functions on co-ordinates. These newly-established inequalities are connected with integral
inequalities of the Hermite–Hadamard type for log-convex functions on co-ordinates.
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