Fixed points of Bregman relatively nonexpansive mappings and solutions of variational inequality problems

Mohammed Ali Alghamdia, Naseer Shahzad$^{a, *}$, Habtu Zegeyeb

aOperator Theory and Applications Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.

bDepartment of Mathematics, University of Botswana, Pvt. Bag 00704 Gaborone, Botswana.

Communicated by Y. J. Cho

Abstract

In this paper, we propose an iterative scheme for finding a common point of the fixed point set of a Bregman relatively nonexpansive mapping and the solution set of a variational inequality problem for a continuous monotone mapping. We prove a strong convergence theorem for the sequences produced by the method. Our results improve and generalize various recent results. ©2016 All rights reserved.

Keywords: Bregman distance function, Bregman relatively nonexpansive mapping, fixed points of mappings, strong convergence, monotone mapping.

2010 MSC: 47H05, 47H09, 47J25, 49J40.

1. Introduction.

Let E denote a real reflexive Banach space with norm $||.||$ and E^* stands for the (topological) dual of E endowed with the induced norm $||.||_*$. Let C be a nonempty subset of E. A mapping $A : C \to E^*$ is said to be monotone if for any $x, y \in C$, we have

$$\langle Ax - Ay, x - y \rangle \geq 0.$$
We note that the class of monotone mappings includes the class of \(\gamma \)-inverse strongly monotone mappings, where a mapping \(A : C \to E^* \) is called \(\gamma \)-inverse strongly monotone if there exists a positive real number \(\gamma \) such that,
\[
\langle Ax - Ay, x - y \rangle \geq \gamma \|Ax - Ay\|^2, \quad \text{for all } x, y \in C.
\] (1.1)

The monotone mapping \(A \) is called maximal, if its graph \(G(A) = \{(x, y) : y \in Ax\} \) is not properly contained in the graph of any other monotone mapping.

The variational inequality problem for a monotone mapping \(A \) is the problem of finding a point \(x^* \in C \) satisfying
\[
\forall x \in C, \quad \langle Ax^*, x - x^* \rangle \geq 0.
\] (1.2)

We denote the solution set of this problem by \(VI(C, A) \). We note that if \(A \) is a continuous monotone mapping then the solution set \(VI(C, A) \) is always closed and convex.

The monotone variational inequalities were initially investigated by Kinderlehrer and Stampacchia in [9] and are related with the convex minimization problems, the zeros of monotone mappings and the complementarity problems. Consequently, many researchers have studied variational inequality problems for monotone mappings (see, e.g., [26, 27, 28, 31, 32]).

In this paper, \(f : E \to (-\infty, +\infty] \) is always a proper, lower semi-continuous and convex function with \(\text{dom} f = \{x \in E : f(x) < \infty\} \). For any \(x \in \text{int}(\text{dom} f) \) and any \(y \in E \), let \(f^0(x, y) \) be the right-hand derivative of \(f \) at \(x \) in the direction of \(y \), that is,
\[
f^0(x, y) := \lim_{t \to 0^+} \frac{f(x + ty) - f(x)}{t}.
\] (1.3)

The function \(f \) is said to be Gâteaux differentiable at \(x \), if \(\lim_{t \to 0} \frac{f(x + ty) - f(x)}{t} \) exists for any \(y \). In this case, \(f^0(x, y) \) coincides with \(\nabla f(x) \), the value of the gradient \(\nabla f \) of \(f \) at \(x \). The function \(f \) is said to be Gâteaux differentiable if it is Gâteaux differentiable everywhere. The function \(f \) is said to be Fréchet differentiable at \(x \in E \) (see, for example, [1]), if for all \(\epsilon > 0 \), there exists \(\delta > 0 \) such that \(\|x - y\| \leq \delta \) implies that
\[
|f(x) - f(y) - \langle x - y, \nabla f(y) \rangle| \leq \epsilon \|x - y\|.
\] (1.4)

The function \(f \) is said to be Fréchet differentiable, if it is Fréchet differentiable everywhere. The function \(f \) is said to be strongly coercive if
\[
\lim_{\|x\| \to \infty} \frac{f(x)}{\|x\|} = \infty.
\] (1.5)

Let \(f : E \to (-\infty, +\infty] \) be a Gâteaux differentiable function. The function \(Df : \text{dom} f \times \text{int}(\text{dom} f) \to [0, +\infty) \) defined by
\[
Df(x, y) := f(x) - f(y) - \langle \nabla f(y), x - y \rangle,
\]
is called the Bregman distance with respect to \(f \) [3]. A Bregman projection [3] of \(x \in \text{int}(\text{dom} f) \) onto the nonempty closed and convex set \(C \subset \text{dom} f \) is the unique vector \(P_C^f(x) \in C \) satisfying
\[
D_f(P_C^f(x), x) = \inf\{D_f(y, x) : y \in C\}.
\]

If \(E \) is a smooth Banach space, setting \(f(x) = \|x\|^2 \) for all \(x \in E \), we have \(\nabla f(x) = 2Jx \), where \(J \) is the normalized duality mapping from \(E \) into \(2E^* \) defined by \(Jx := \{x^* \in E^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\} \) and hence \(D_f(x, y) \) reduces to \(\phi(x, y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2 \) for all \(x, y \in E \), which is the Lyapunov function introduced by Alber [1]. In this case, the Bregman projection is called the generalized projection, \(\Pi_C \) (see [1]). If, in addition, \(E = H \), a Hilbert space, then \(D_f(x, y) \) becomes \(\phi(x, y) = \|x - y\|^2 \) for \(x, y \in H \) and the Bregman projection reduces to the metric projection \(P_C \) from \(E \) onto \(C \).

A point \(x \in C \) is a fixed point of \(T : C \to C \) if \(Tx = x \) and we denote by \(F(T) \) the set of fixed points of \(T \); that is, \(F(T) = \{x \in C : Tx = x\} \). A point \(p \) in \(C \) is said to be an asymptotic fixed point of \(T \) (see...
follows. A mapping $T : C \to \text{int}(\text{dom } f)$ with $F(T) := \{ x \in D(T) : Tx = x \} \neq \emptyset$ is called:

(i) **quasi-Bregman nonexpansive** \[21\] if,

$$D_f(p, Tx) \leq D_f(p, x), \forall x \in C, p \in F(T);$$

(ii) **Bregman relatively nonexpansive** \[21\] if,

$$D_f(p, Tx) \leq D_f(p, x), \forall x \in C, p \in F(T), \text{ and } \hat{F}(T) = F(T).$$

When E is a smooth Banach space and $f(x) = ||x||^2$ for all $x \in E$, the above definitions reduce to the following definitions using Lyapunov function.

A mapping $T : C \to \text{int}(\text{dom } f)$ with $F(T) \neq \emptyset$ is called:

(i) **quasi-nonexpansive** \[21\] if,

$$\phi(p, Tx) \leq \phi(p, x), \forall x \in C, p \in F(T);$$

(ii) **relatively nonexpansive** \[21\] if,

$$\phi(p, Tx) \leq \phi(p, x), \forall x \in C, p \in F(T), \text{ and } \hat{F}(T) = F(T).$$

Various methods have been introduced for approximating fixed points of relatively nonexpansive and quasi-nonexpansive mappings (see, e.g., \[8, 10, 13, 15, 21, 24, 30\]). In 2011, Zhang et al. \[39\] introduced an iteration method for finding fixed point of relatively nonexpansive mappings in a Banach space setting as follows.

Theorem 1.1 (\[39\]). **Let C be a nonempty, closed and convex subset of a uniformly convex and uniformly smooth Banach space E and let $T : C \to C$ be a relatively nonexpansive mapping. Let $\{x_n\}$ be a sequence in C defined by $x_1 \in C$ and

\begin{align*}
x_{n+1} &= J^{-1}(\alpha_n Jx_n + (1 - \alpha_n)JTx_n), n \geq 1, \quad (1.6)
\end{align*}

where $\{\alpha_n\}$ is a sequence in $(0, 1)$ such that $\lim_{n \to \infty} \alpha_n = 0$. If the interior of $F(T)$ is nonempty, then they proved that the sequence $\{x_n\}$ converges strongly to a fixed point of T.**

In 2005, Matsushita and Takahashi \[14\] proposed the following hybrid iteration method for a relatively nonexpansive mapping T in a Banach space E. Let C be a nonempty, closed and convex subset of a uniformly convex and uniformly smooth Banach space E. Define the sequences $\{x_n\}$ by

\begin{align*}
x_0 &\in C = C_1, \text{ chosen arbitrary}, \\
y_n &= J^{-1}(\alpha_n Jx_n + (1 - \alpha_n)JTx_n), \\
C_n &= \{ z \in C : \phi(z, y_n) \leq \phi(z, x_n) \}, \\
Q_n &= \{ z \in C : \langle x_n - z, Jx_0 - Jx_n \rangle \geq 0 \}, \\
x_{n+1} &= \Pi_{C_n \cap Q_n}(x_0), n \geq 1. \quad (1.7)
\end{align*}

They proved that the sequence $\{x_n\}$ generated by (1.7) converges strongly to the point $\Pi_{F(T)}(x_0)$, where $\Pi_{F(T)}$ is the generalized projection from C onto $F(T)$.

More recently, many authors have also considered the problem of finding a common element of the fixed point set of a relatively nonexpansive or a Bregman relatively nonexpansive mapping and the solution set of a variational inequality problem for γ--inverse strongly monotone mapping (see, e.g., \[7, 11, 12, 26, 27, 28, 32, 33, 34, 35\]). For other related results, we refer to \[22, 23, 36, 37\].
In 2009, Inoue et al. [8] proposed the following hybrid iteration method in a uniformly convex and uniformly smooth Banach space E for a sequence $\{x_n\}$ as follows:

$$
\begin{align*}
 x_0 &\in C = C_1, \text{ chosen arbitrary,} \\
 u_n & = J^{-1}(\alpha_n Jx_n + (1 - \alpha_n)JT_n x_n), \\
 C_n & = \{z \in C_n : \phi(z,u_n) \leq \phi(z,x_n)\}, \\
 Q_n & = \{z \in C : \langle x_n - z, Jx_n - Jx_0 \rangle \geq 0\}, \\
 x_{n+1} & = \Pi_{C_n \cap Q_n}(x_0), n \geq 1,
\end{align*}
$$

(1.8)

where $T : C \to C$ is a relatively nonexpansive mapping and $J_r = (I + rB)^{-1}J$, for $B : C \to E^*$ maximal monotone mapping and $r > 0$. They proved that the sequence $\{x_n\}$ converges strongly to the point $\Pi_{F(T) \cap B^{-1}(0)}(x_0)$, where $\Pi_{F(T)}$ is the generalized projection from C onto $F(T)$.

In this paper, it is our purpose to investigate an iterative scheme for finding a common point of the fixed point set of a Bregman relatively nonexpansive mapping and the solution set of a variational inequality problem for a continuous monotone mapping in reflexive Banach spaces. We prove a strong convergence theorem for the sequence produced by the method. Our results improve and generalize various recent results (see, e.g., [3] [12]).

2. Preliminaries

Legendre function f from a general Banach space E into $(-\infty, +\infty]$ were defined in [2]. The Fenchel conjugate of f is the function $f^* : E^* \to (-\infty, +\infty]$ defined by $f^*(y) = \sup\{(y,x) - f(x) : x \in E\}$. If E is a reflexive Banach space and $f : E \to (-\infty, +\infty]$ is a Legendre function, then in view of [2],

$$
\nabla f = (\nabla f^*)^{-1}, \text{ ran } \nabla f = \text{dom}\nabla f^* = \text{int}(\text{dom} f^*) \text{ and ran}\nabla f^* = \text{int}(\text{dom} f),
$$

where ran∇f denotes the range of ∇f. When E is a smooth and strictly convex Banach space, one important and interesting example of Legendre function is $f(x) := \frac{1}{p}||x||^p(1 < p < \infty)$. In this case the gradient ∇f of f coincides with the generalized duality mapping of E, i.e., $\nabla f = J_2(1 < p < \infty)$. In particular, $\nabla f = I$, the identity mapping in Hilbert spaces.

Lemma 2.1 ([24]). Let $f : E \to \mathbb{R}$ be a continuous convex function which is strongly coercive. Then the following assertions are equivalent:

(i) f is bounded on bounded subsets and uniformly smooth on bounded subsets of E;

(ii) f^* is Fréchet differentiable and ∇f^* is uniformly norm-to-norm continuous on bounded subsets of E^*;

(iii) dom$f^* = E^*$, f^* is strongly coercive and uniformly convex on bounded subsets of E^*.

Let $f : E \to (-\infty, +\infty]$ be a Gâteaux differentiable function. The modulus of total convexity of f at $x \in \text{dom} f$ is the function $\nu_f(x,.) : [0, +\infty) \to [0, +\infty]$ defined by

$$
 \nu_f(x,t) := \inf\{D_f(y,x) : y \in \text{dom} f, \|y - x\| = t\}.
$$

The function f is called totally convex at x if $\nu_f(x,t) > 0$, whenever $t > 0$. The function f is called totally convex if it is totally convex at any point $x \in \text{int}(\text{dom} f)$ and is said to be totally convex on bounded sets if $\nu_f(B,t) > 0$ for any nonempty bounded subset B of E and $t > 0$, where the modulus of total convexity of the function f on the set B is the function $\nu_f : \text{int}(\text{dom} f) \times [0, +\infty) \to [0, +\infty]$ defined by

$$
 \nu_f(B,t) := \inf\{\nu_f(x,t) : x \in B \cap \text{dom} f\}.
$$

We know that f is totally convex on bounded sets if and only if f is uniformly convex on bounded sets (see [5], Theorem 2.10).
Let $B_r := \{ z \in E : ||z|| \leq r \}$, for all $r > 0$ and $S_E = \{ x \in E : ||x|| = 1 \}$. Then a function $f : E \to \mathbb{R}$ is said to be uniformly convex on bounded subsets of E ([29], pp. 203) if $\rho_r(t) > 0$ for all $r, t > 0$, where $\rho_r : [0, \infty) \to [0, \infty)$ is defined by

$$\rho_r(t) := \inf_{x,y \in B_r, ||x-y||=t, \alpha \in (0,1)} \frac{\alpha f(x) + (1-\alpha)f(y) - f(\alpha x + (1-\alpha)y)}{\alpha(1-\alpha)}$$

for all $t \geq 0$.

In the sequel, we shall need the following lemmas.

Lemma 2.2 ([15]). Let E be a Banach space, let $r > 0$ be a constant and let $f : E \to \mathbb{R}$ be a uniformly convex on bounded subsets of E. Then

$$f\left(\sum_{k=0}^{n} \alpha_k x_k\right) \leq \sum_{k=0}^{n} \alpha_k f(x_k) - \alpha_i \alpha_j \rho_r(||x_i - y_j||)$$

for all $i, j \in \{0, 1, 2, ..., n\}$, $x_k \in B_r, \alpha_k \in (0, 1)$ and $k = 0, 1, 2, ..., n$ with $\sum_{k=0}^{n} \alpha_k = 1$, where ρ_r is the gauge of uniform convexity of f.

Lemma 2.3 ([19]). Let $f : E \to (-\infty, +\infty]$ be uniformly Fréchet differentiable and bounded on bounded sets of E. Then ∇f is uniformly continuous on the strong topology of E to the strong topology of E^*.

Lemma 2.4 ([18]). Let $f : E \to (-\infty, +\infty]$ be a Legendre function. Let C be a nonempty closed convex subset of $\text{int}(\text{dom} f)$ and $T : C \to C$ be a quasi-Bregman nonexpansive mapping. Then $F(T)$ is closed and convex.

Lemma 2.5 ([3]). The function $f : E \to (-\infty, +\infty)$ is totally convex on bounded subsets of E if and only if for any two sequences $\{x_n\}$ and $\{y_n\} \subset \text{int}(\text{dom} f)$ and $\text{dom} f$, respectively, such that the first one is bounded,

$$\lim_{n \to \infty} D_f(y_n, x_n) = 0 \implies \lim_{n \to \infty} ||y_n - x_n|| = 0.$$

Lemma 2.6 ([16]). Let $f : E \to (-\infty, +\infty]$ be a proper, lower semi-continuous and convex function, then $f^* : E^* \to (-\infty, +\infty]$ is a proper, weak* lower semi-continuous and convex function. Thus, for all $z \in E$, we have

$$D_f(z, \nabla f^* \left(\sum_{i=1}^{N} t_i \nabla f(x_i)\right)) \leq \sum_{i=1}^{N} t_i D_f(z, x_i).$$

Lemma 2.7 ([13]). Let $f : E \to \mathbb{R}$ be a Gâteaux differentiable on $\text{int}(\text{dom} f)$ such that ∇f^* is bounded on bounded subsets of $\text{dom} f^*$. Let $x \in E$ and $\{x_n\} \subset E$. If $\{D_f(x, x_n)\}$ is bounded, so is the sequence $\{x_n\}$.

Lemma 2.8 ([5]). Let C be a nonempty, closed and convex subset of E. Let $f : E \to \mathbb{R}$ be a Gâteaux differentiable and totally convex function and let $x \in E$. Then

(i) $z = P_C^f(x)$ if and only if $\langle \nabla f(x) - \nabla f(z), y - z \rangle \leq 0, \forall y \in C$.

(ii) $D_f(y, P_C^f(x)) + D_f(P_C^f(x), x) \leq D_f(y, x), \forall y \in C$.

Let $f : E \to \mathbb{R}$ be a Legendre and Gâteaux differentiable function. Following [1] and [9], we make use of the function $V_f : E \times E^* \to [0, +\infty)$ associated with f, which is defined by

$$V_f(x, x^*) = f(x) - \langle x, x^* \rangle + f^*(x^*), \forall x \in E, x^* \in E^*.$$ \hspace{1cm} (2.1)$$

Then V_f is nonnegative and

$$V_f(x, x^*) = D_f(x, \nabla f^*(x^*)) \text{ for all } x \in E \text{ and } x^* \in E^*.$$ \hspace{1cm} (2.2)$$
Moreover, by the subdifferential inequality,
\begin{equation}
V_f(x, x^*) + \langle y^*, \nabla f^*(x^*) - x \rangle \leq V_f(x, x^* + y^*),
\end{equation}
\(\forall x \in E\) and \(x^*, y^* \in E^*\) (see [10]).

Lemma 2.9 ([25]). Let \(\{a_n\}\) be a sequence of nonnegative real numbers satisfying the following relation:
\[a_{n+1} \leq (1 - \alpha_n)a_n + \alpha_n\delta_n, \quad n \geq n_0, \]
where \(\{\alpha_n\} \subset (0, 1)\) and \(\{\delta_n\} \subset \mathbb{R}\) satisfying the following conditions: \(\lim_{n \to \infty} \alpha_n = 0\), \(\sum_{n=1}^{\infty} \alpha_n = \infty\), and \(\limsup_{n \to \infty} \delta_n \leq 0\). Then, \(\lim_{n \to \infty} a_n = 0\).

Lemma 2.10 ([12]). Let \(\{a_n\}\) be sequences of real numbers such that there exists a subsequence \(\{n_i\}\) of \(\{n\}\) such that \(a_{n_i} < a_{n_i+1}\) for all \(i \in \mathbb{N}\). Then there exists an increasing sequence \(\{m_k\} \subset \mathbb{N}\) such that \(m_k \to \infty\) and the following properties are satisfied by all (sufficiently large) numbers \(k \in \mathbb{N}\):
\[a_{m_k} \leq a_{m_{k+1}} \text{ and } a_k \leq a_{m_{k+1}}. \]
In fact, \(m_k\) is the largest number \(n\) in the set \(\{1, 2, \ldots, k\}\) such that the condition \(a_n \leq a_{n+1}\) holds.

Following the agreement in [20] we have the following lemma.

Lemma 2.11. Let \(f : E \to (-\infty, +\infty]\) be a coercive Legendre function and \(C\) be a nonempty, closed and convex subset of \(E\). Let \(A : C \to E^*\) be a continuous monotone mapping. For \(r > 0\) and \(x \in E\), define the mapping \(F_r : E \to C\) as follows:
\[F_r x := \{ z \in C : \langle Az, y - z \rangle + \frac{1}{r}\langle \nabla f(z) - \nabla f(x), y - z \rangle \geq 0, \forall y \in C \} \]
for all \(x \in E\). Then the following hold:

1. \(F_r\) is single-valued;
2. \(F(F_r) = VI(C, A)\);
3. \(D_f(p, F_r x) + D_f(F_r x, x) \leq \phi(p, x), \forall p \in F(F_r)\);
4. \(VI(C, A)\) is closed and convex.

3. Main Results

Let \(C\) be a nonempty, closed and convex subset of a smooth, strictly convex and reflexive real Banach space \(E\). Let \(A : C \to E^*\) be a continuous monotone mapping and let \(f : E \to \mathbb{R}\) be a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of \(E\). Then in what follows, for each \(n\), let \(F_{r_n} : E \to C\) be defined by
\[F_{r_n} x := \{ z \in C : \langle Az, y - z \rangle + \frac{1}{r_n}\langle \nabla f(z) - \nabla f(x), y - z \rangle \geq 0, \forall y \in C \}, \]
for all \(x \in E\), where \(\{r_n\} \subset (a, \infty)\) for some \(a > 0\).

We now prove the following theorem.
Similarly, we get that

\begin{equation}
\begin{aligned}
y_n &= \nabla f^*(a_n \nabla f(x_n) + b_n \nabla f(F_{r_n}(x_n)) + c_n \nabla f(T(x_n))), \\
x_{n+1} &= P_{F}^f \nabla f^*(a_n \nabla f(u) + (1 - a_n) \nabla f(y_n)), \forall n \geq 0,
\end{aligned}
\end{equation}

where \(\{a_n\}, \{b_n\}, \{c_n\} \subset [c, d] \subset (0, 1)\) such that \(a_n + b_n + c_n = 1\) and \(\{a_n\} \subset (0, 1)\) satisfies \(\lim_{n \to \infty} a_n = 0\), \(\sum_{n=1}^{\infty} a_n = \infty\). Then, \(\{x_n\}\) converges strongly to \(p = P_{f}^f(u)\).

Proof. From Lemmas 2.4 and 2.11 we get that \(\mathcal{F}\) is closed and convex. Thus, \(P_{\mathcal{F}}^f\) is well-defined. Let \(p = P_{\mathcal{F}}^f(u)\) and \(u_n = F_{r_n}(x_n)\). Now, since \(f\) is bounded and uniformly smooth on bounded subsets of \(E\) by Lemma 2.1 we get that \(f^*\) is uniformly convex on bounded subsets of \(E^*\). Then, from (3.1), (2.1), (2.2) and Lemmas 2.2, 2.11 together with the property of \(D_f\) we obtain

\[
D_f(p, y_n) = D_f(p, \nabla f(x_n)) = V_f(p, \nabla f(x_n)) + b_n \nabla f(y_n)) + c_n \nabla f(T(x_n)))
\]

\[
\leq f(p) - \langle p, a_n \nabla f(x_n) + b_n \nabla f(u_n) + c_n \nabla f(T(x_n)))
\]

\[
+ f^*(a_n \nabla f(x_n) + b_n \nabla f(u_n) + c_n \nabla f(T(x_n)))
\]

\[
\leq f(p) - a_n \langle p, \nabla f(x_n) - \nabla f(u_n)) - b_n \langle p, \nabla f(u_n) - \nabla f(T(x_n)\rangle),
\]

\[
+ a_n f^*(\nabla f(x_n)) + b_n f^*(\nabla f(u_n)) + c_n f^*(\nabla f(T(x_n)))
\]

\[
- a_n b_n \rho^*_f(\nabla f(x_n) - \nabla f(u_n)))
\]

and

\[
D_f(p, y_n) \leq a_n V_f(p, \nabla f(x_n)) + b_n V_f(p, \nabla f(u_n)) + c_n V_f(p, \nabla f(T(x_n)))
\]

\[
- a_n b_n \rho^*_f(\nabla f(x_n) - \nabla f(u_n))
\]

\[
= a_n D_f(p, x_n) + b_n D_f(p, u_n) + c_n D_f(p, T(x_n))
\]

\[
- a_n b_n \rho^*_f(\nabla f(x_n) - \nabla f(u_n))
\]

\[
\leq a_n D_f(p, x_n) + b_n D_f(p, u_n) + c_n D_f(p, x_n)
\]

\[
- a_n b_n \rho^*_f(\nabla f(x_n) - \nabla f(u_n))
\]

\[
\leq D_f(p, x_n) - a_n b_n \rho^*_f(\nabla f(x_n) - \nabla f(u_n)) \leq D_f(p, x_n).
\]

Similarly, we get that

\[
D_f(p, y_n) \leq D_f(p, x_n) - a_n c_n \rho^*_f(\nabla f(x_n) - \nabla f(T(x_n))) \leq D_f(p, x_n).
\]

In addition, from (3.1), (3.3) and Lemmas 2.6, 2.8 we have

\[
D_f(p, x_{n+1}) = D_f(p, F_{C}^f \nabla f^*(a_n \nabla f(u) + (1 - a_n) \nabla f(y_n)))
\]

\[
\leq D_f(p, \nabla f^*(a_n \nabla f(u) + (1 - a_n) \nabla f(y_n))
\]

\[
\leq a_n D_f(p, u) + (1 - a_n) D_f(p, y_n)
\]

\[
\leq a_n D_f(p, u) + (1 - a_n) \left[D_f(p, x_n) - a_n b_n \rho^*_f(\nabla f(x_n) - \nabla f(u_n)) \right]
\]

\[
\leq a_n D_f(p, x_n) + (1 - a_n) D_f(p, x_n).
\]

Thus, by induction,

\[
D_f(p, x_{n+1}) \leq \max\{D_f(p, u), D_f(p, x_0)\}, \forall n \geq 0,
\]
which implies that \(\{x_n\} \) is bounded. Now, let \(z_n = \nabla f^*(\alpha_n \nabla f(u) + (1 - \alpha_n)\nabla f(y_n)) \). Then we have that \(x_{n+1} = P_{C}z_n \), for all \(n \in \mathbb{N} \). Since \(f \) is strongly coercive, uniformly convex, uniformly Fréchet differentiable and bounded, by Lemmas 2.3 and \ref{2.1} we get that \(\nabla f \) and \(\nabla f^* \) are bounded and hence \(\{z_n\} \) and \(\{y_n\} \) are bounded. Furthermore, using \(\ref{2.2} \), \(\ref{2.3} \) and property of \(D_f \) we obtain that

\[
D_f(p, x_{n+1}) \leq D_f(p, z_n) = D_f(p, \nabla f^*(\alpha_n \nabla f(u) + (1 - \alpha_n)\nabla f(y_n))) \\
= V_f(p, \alpha_n \nabla f(u) + (1 - \alpha_n)\nabla f(y_n)) \\
= V_f(p, \alpha_n \nabla f(u) + (1 - \alpha_n)\nabla f(y_n) - \alpha_n(\nabla f(u) - \nabla f(p)) - \langle \alpha_n(\nabla f(u) - \nabla f(p), z_n - p) \\
= V_f(p, \alpha_n \nabla f(p) + (1 - \alpha_n)\nabla f(y_n)) + \alpha_n(\nabla f(u) - \nabla f(p), z_n - p) \\
= D_f(p, \nabla f^*(\alpha_n \nabla f(p) + (1 - \alpha_n)\nabla f(y_n))) \\
+ \alpha_n(\nabla f(u) - \nabla f(p), z_n - p) \\
\leq D_f(p, p) + (1 - \alpha_n)D_f(p, y_n) + \alpha_n(\nabla f(u) - \nabla f(p), z_n - p) \\
\leq (1 - \alpha_n)D_f(p, y_n) + \alpha_n(\nabla f(u) - \nabla f(p), z_n - p).
\]

Thus, from \(\ref{3.3} \), \(\ref{3.4} \) and \(\ref{3.5} \) we get

\[
D_f(p, x_{n+1}) \leq (1 - \alpha_n)D_f(p, x_n) + \alpha_n(\nabla f(u) - \nabla f(p), z_n - p) \\
- \alpha_n b_n \rho^*_n(||\nabla f(x_n) - \nabla f(u_n)||) \\
\leq (1 - \alpha_n)D_f(p, x_n) + \alpha_n(\nabla f(u) - \nabla f(p), z_n - p),
\]

or

\[
D_f(p, x_{n+1}) \leq (1 - \alpha_n)D_f(p, x_n) + \alpha_n(\nabla f(u) - \nabla f(p), z_n - p) \\
- \alpha_n \delta_n \rho^*_n(||\nabla f(x_n) - \nabla f(T(x_n))||) \\
\leq (1 - \alpha_n)D_f(p, x_n) + \alpha_n(\nabla f(u) - \nabla f(p), z_n - p).
\]

The rest of the proof is divided into two cases:

Case 1. Suppose that there exists \(n_0 \in \mathbb{N} \) such that \(\{D_f(p, x_n)\} \) is non-increasing for all \(n \geq n_0 \). Thus, we get that \(\{D_f(p, x_n)\} \) is convergent. Now, from \(\ref{3.6} \) and \(\ref{3.8} \) we have that

\[
a_n b_n \rho^*_n(||\nabla f(x_n) - \nabla f(u_n)||) \to 0,
\]

and

\[
a_n \delta_n \rho^*_n(||\nabla f(x_n) - \nabla f(T(x_n))||) \to 0,
\]

which give by the property of \(\rho^*_n \) that

\[
\nabla f(x_n) - \nabla f(u_n) \to 0, \nabla f(x_n) - \nabla f(T(x_n)) \to 0 \text{ as } n \to \infty.
\]

Moreover, from \(\ref{3.1} \) and \(\ref{3.11} \) we have that

\[
||\nabla f(y_n) - \nabla f(x_n)|| \leq a_n ||\nabla f(x_n) - \nabla f(x_n)|| + b_n ||\nabla f(u_n) - \nabla f(x_n)|| \\
+ c_n ||\nabla f(T(x_n)) - \nabla f(x_n)|| \to 0 \text{ as } n \to \infty.
\]

In addition, since \(f \) is strongly coercive and uniformly convex on bounded subsets of \(E \) we have that \(f^* \) is uniformly Fréchet differentiable on bounded subsets of \(E^* \) and by Lemma 2.1 we get that \(\nabla f^* \) is uniformly continuous. Thus, this with \(\ref{3.11} \) and \(\ref{3.12} \) give that

\[
x_n - u_n \to 0, x_n - T(x_n) \to 0, x_n - y_n \to 0 \text{ as } n \to \infty.
\]
Furthermore, Lemma 2.6, property of \(D_f \) and the fact that \(\alpha_n \to 0 \) as \(n \to \infty \), imply that
\[
D_f(y_n, z_n) = D_f(y_n, \nabla f^*(\alpha_n \nabla f(u) + (1 - \alpha_n) \nabla f(y_n))) \\
\leq \alpha_n D_f(x_n, u) + (1 - \alpha_n) D_f(y_n, y_n) \\
\leq \alpha_n D_f(x_n, u) + (1 - \alpha_n) D_f(y_n, y_n) \to 0 \quad \text{as} \quad n \to \infty,
\]
and hence by Lemma 2.5 we get that
\[
y_n - z_n \to 0 \quad \text{as} \quad n \to \infty.
\]

Now, since \(\{z_n\} \) is bounded and \(E \) is reflexive, we choose a subsequence \(\{z_{n_i}\} \) of \(\{z_n\} \) such that \(z_{n_i} \to z \) and \(\limsup_{n \to \infty} \langle \nabla f(u) - \nabla f(p), z_n - p \rangle = \lim_{i \to \infty} \langle \nabla f(u) - \nabla f(p), z_{n_i} - p \rangle \). Then, from (3.15) and (3.13) we get that
\[
x_{n_i} \to z, \quad \text{as} \quad i \to \infty.
\]
Thus, from (3.13) and the fact that \(T \) is Bregman relatively nonexpansive we obtain that \(z \in F(T) \).

Now, we show that \(z \in VI(C, A) \). By definition we have that
\[
\langle Au_n, y - u_n \rangle + \langle \nabla f(u_n) - \nabla f(x_n), y - u_n \rangle \geq 0, \quad \forall \ y \in C,
\]
and hence
\[
\langle Au_n, y - u_n \rangle + \langle \nabla f(u_n) - \nabla f(x_n), y - u_n \rangle \geq 0, \quad \forall \ y \in C.
\]

Set \(v_t = ty + (1 - t)z \) for all \(t \in (0, 1] \) and \(y \in C \). Consequently, we get that \(v_t \in C \). Now, from (3.18) it follows that
\[
\langle Av_t, v_t - u_n \rangle \geq \langle Av_t, v_t - u_{n_i} \rangle - \langle Av_{n_i}, v_t - u_{n_i} \rangle - \langle \nabla f(u_{n_i}) - \nabla f(x_{n_i}), v_t - u_{n_i} \rangle
\]
\[
= \langle Av_t - Av_{n_i}, v_t - u_{n_i} \rangle - \langle \nabla f(u_{n_i}) - \nabla f(x_{n_i}), v_t - u_{n_i} \rangle.
\]

But, from (3.13) have that
\[
\frac{\nabla f(u_{n_i}) - \nabla f(x_{n_i})}{r_{n_i}} \to 0 \quad \text{as} \quad i \to \infty \quad \text{and the monotonicity of} \ A \quad \text{implies that}
\]
\[
\langle Av_t - Av_{n_i}, v_t - u_{n_i} \rangle \geq 0. \quad \text{Thus, it follows that}
\]
\[
0 \leq \lim_{i \to \infty} \langle Av_t, v_t - u_{n_i} \rangle = \langle Av_t, v_t - z \rangle,
\]
and hence
\[
\langle Av_t, y - z \rangle \geq 0, \quad \forall \ y \in C.
\]

If \(t \to 0 \), the continuity of \(A \) implies that
\[
\langle Az, y - z \rangle \geq 0, \quad \forall \ y \in C.
\]

This implies that \(z \in VI(C, A) \) and hence \(z \in F = F(T) \cap VI(C, A) \).

Therefore, by Lemma 2.8, we immediately obtain that \(\limsup_{n \to \infty} \langle \nabla f(u) - \nabla f(p), z_n - p \rangle = \lim_{i \to \infty} \langle \nabla f(u) - \nabla f(p), z_{n_i} - p \rangle = \langle \nabla f(u) - \nabla f(p), z - p \rangle \leq 0 \). It follows from Lemma 2.9 and (3.7) that \(D_f(p, x_n) \to 0 \), as \(n \to \infty \). Consequently, by Lemma 2.5 we obtain that, \(x_n \to p \).

Case 2. Suppose that there exists a subsequence \(\{n_i\} \) of \(\{n\} \) such that
\[
D_f(p, x_{n_i}) < D_f(p, x_{n_{i+1}})
\]
for all \(i \in \mathbb{N} \). Then, by Lemma 2.10, there exists a nondecreasing sequence \(\{m_k\} \subset \mathbb{N} \) such that \(m_k \to \infty \), \(D_f(p, x_{m_k}) \leq D_f(p, x_{m_k+1}) \) and \(D_f(p, x_k) \leq D_f(p, x_{m_k+1}) \), for all \(k \in \mathbb{N} \). Then from (3.6), (3.8) and the fact that \(\alpha_n \to 0 \) we obtain that

\[
\rho^*_r(||\nabla f(x_{m_k}) - \nabla f(Tx_{m_k})||) \to 0 \text{ and } \rho^*_r(||\nabla f(x_{m_k}) - \nabla f(u_{m_k})||) \to 0,
\]

as \(k \to \infty \). Thus, following the method of proof in Case 1, we obtain that \(x_{m_k} - Tx_{m_k} \to 0 \), \(x_{m_k} - u_{m_k} \to 0 \), \(x_{m_k} - y_{m_k} \to 0 \), \(y_{m_k} - z_{m_k} \to 0 \) as \(k \to \infty \), and hence we obtain that

\[
\limsup_{k \to \infty} (\nabla f(u) - \nabla f(p), z_{m_k} - p) \leq 0.
\]

(3.19)

Now, from (3.7) we have that

\[
D_f(p, x_{m_k+1}) \leq (1 - \alpha_{m_k})D_f(p, x_{m_k}) + \alpha_{m_k} (\nabla f(u) - \nabla f(p), z_{m_k} - p),
\]

(3.20)

and since \(D_f(p, x_{m_k}) \leq D_f(p, x_{m_k+1}) \), inequality (3.20) implies

\[
\alpha_{m_k}D_f(p, x_{m_k}) \leq D_f(p, x_{m_k}) - D_f(p, x_{m_k+1}) + \alpha_{m_k} (\nabla f(u) - \nabla f(p), z_{m_k} - p)
\]

\[
\leq \alpha_{m_k} (\nabla f(u) - \nabla f(p), z_{m_k} - p).
\]

In particular, since \(\alpha_{m_k} > 0 \), we get

\[
D_f(p, x_{m_k}) \leq (\nabla f(u) - \nabla f(p), z_{m_k} - p).
\]

Hence, from (3.19) we get \(D_f(p, x_{m_k}) \to 0 \) as \(k \to \infty \). This together with (3.20) gives \(D_f(p, x_{m_k+1}) \to 0 \) as \(k \to \infty \). But \(D_f(p, x_k) \leq D_f(p, x_{m_k+1}) \) for all \(k \in \mathbb{N} \), thus we obtain that \(x_k \to p \). Therefore, from the above two cases, we can conclude that \(\{x_n\} \) converges strongly to \(p = P_F^f(u) \) and the proof is complete.

If, in Theorem 3.1, we assume that \(T = I \), the identity mapping on \(C \), we obtain the following corollary.

Corollary 3.2. Let \(C \) be a nonempty, closed and convex subset of \(\text{int}(\text{dom} f) \). Let \(A : C \to E^* \) be a continuous monotone mapping. Assume that \(V(C, A) \) is nonempty. For \(u, x_0 \in C \) let \(\{x_n\} \) be a sequence generated by

\[
\begin{align*}
\{y_n\} &= \nabla f^*(a_n \nabla f(x_n) + (1 - a_n) \nabla f(F_n(x_n))), \forall n \geq 0, \\
\{x_{n+1}\} &= \nabla f^*(\alpha_n \nabla f(u) + (1 - \alpha_n) \nabla f(y_n)), \forall n \geq 0.
\end{align*}
\]

(3.21)

where \(\{a_n\} \subset [c, d] \subset (0, 1) \) and \(\{\alpha_n\} \subset (0, 1) \) satisfies \(\lim_{n \to \infty} \alpha_n = 0 \), \(\sum_{n=1}^{\infty} \alpha_n = \infty \). Then, \(\{x_n\} \) converges strongly to \(p = P_{V(C, A)}^f(u) \).

If, in Theorem 3.1, we assume that \(C = E \), the projection mapping \(P_C^f \) is not required and \(VI(C, A) = A^{-1}(0) \) hence we get the following corollary.

Corollary 3.3. Let \(T : E \to E \) be a Bregman relatively nonexpansive mapping and \(A : E \to E^* \) be a continuous monotone mapping. Assume that \(F := F(T) \cap A^{-1}(0) \) is nonempty. For \(u, x_0 \in C \) let \(\{x_n\} \) be a sequence generated by

\[
\begin{align*}
\{y_n\} &= \nabla f^*(a_n \nabla f(x_n) + b_n \nabla f(F_n(x_n)) + c_n \nabla f(T(x_n))), \forall n \geq 0, \\
\{x_{n+1}\} &= \nabla f^*(\alpha_n \nabla f(u) + (1 - \alpha_n) \nabla f(y_n)), \forall n \geq 0,
\end{align*}
\]

(3.22)

where \(\{a_n\}, \{b_n\}, \{c_n\} \subset [c, d] \subset (0, 1) \) such that \(a_n + b_n + c_n = 1 \) and \(\{\alpha_n\} \subset (0, 1) \) satisfies \(\lim_{n \to \infty} \alpha_n = 0 \), \(\sum_{n=1}^{\infty} \alpha_n = \infty \). Then, \(\{x_n\} \) converges strongly to \(p = P_F^f(u) \).
We also note that the method of proof of Theorem 3.1 provides the following theorem for approximating the minimum-norm common point of the fixed point set of a Bregman relatively nonexpansive mapping and the solution set of a variational inequality problem for a continuous monotone mapping.

Theorem 3.4. Let C be a nonempty, closed and convex subset of $\text{int}(\text{dom} f)$. Let $T : C \to E$ be a Bregman relatively nonexpansive mapping and $A : C \to E^*$ be a continuous monotone mapping. Assume that $F := F(T) \cap V(C, A)$ is nonempty. For $x_0 \in C$ let $\{x_n\}$ be a sequence generated by

$$
\begin{align*}
\left\{ \begin{array}{l}
y_n &= \nabla f^* (a_n \nabla f(x_n) + b_n \nabla f(F_{r_n}(x_n)) + c_n \nabla f(T(x_n))), \\
x_{n+1} &= P_C \nabla f^* ((1 - \alpha_n) \nabla f(y_n)), \forall n \geq 0,
\end{array} \right.
\end{align*}
$$

where $\{a_n\}, \{b_n\}, \{c_n\} \subset [c, d] \subset (0, 1)$ such that $a_n + b_n + c_n = 1$ and $\{\alpha_n\} \subset (0, 1)$ satisfies $\lim_{n \to \infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$. Then, $\{x_n\}$ converges strongly to the minimum-norm point p of F with respect to the Bregman distance.

Remark 3.5. Theorem 3.1 improves and extends the corresponding results of Inoue et al. [8] to the class of Bregman relatively nonexpansive mappings and to the class of continuous monotone mappings in reflexive Banach spaces.

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. (275-130-1436-G). The authors, therefore, acknowledge with thanks the DSR technical and financial support.

References

