Some results on fixed points of nonlinear operators and solutions of equilibrium problems

Peng Chenga,*, Zhaocui Minb

aSchool of Mathematics and Information Science, North China University of Water Resources and Electric Power, Henan, China.
bSchool of Science, Hebei University of Engineering, Hebei, China.

Communicated by Y. J. Cho

Abstract

The purpose of this paper is to investigate fixed points of an asymptotically quasi-ϕ-nonexpansive mapping in the intermediate sense and a bifunction equilibrium problem. We obtain a strong convergence theorem of solutions in the framework of Banach spaces. ©2016 All rights reserved.

Keywords: Asymptotically quasi-ϕ-nonexpansive mapping, equilibrium problem, fixed point, variational inequality, iterative process.

1. Introduction and Preliminaries

Let E be a real Banach space and let C be a convex closed subset of E. Let $B : C \times C \to \mathbb{R}$, where \mathbb{R} denotes the set of real numbers, be a bifunction. Recall that the following equilibrium problem in the terminology of Blum and Oettli [4]. Find $\bar{x} \in C$ such that

$$B(\bar{x}, y) \geq 0, \forall y \in C. \quad (1.1)$$

In this paper, we use $\text{Sol}(B)$ to denote the solution set of equilibrium problem (1.1). That is, $\text{Sol}(B) = \{x \in C : B(x, y) \geq 0, \forall y \in C\}$.

The following restrictions on bifunction B are essential in this paper.

(Q1) $B(a, a) \equiv 0, \forall a \in C$;
Equilibrium problem (1.1), which includes complementarity problems, variational inequality problems and inclusion problems as special cases, provides us a natural and unified framework to study a wide class of problems arising in physics, economics, finance, transportation, network, elasticity and optimization; see [3], [8], [10], [12], [14], [23], [28], and the references therein. Recently, equilibrium problem (1.1) has been extensively investigated based on fixed point algorithms in Banach spaces; see [9], [11], [13], [15]-[18], [24]-[27], [29]-[32] and the references therein.

Let E^* be the dual space of E. Let S^E be the unit sphere of E. Recall that E is said to be a strictly convex space iff $\|x+y\| < 2$ for all $x, y \in S^E$ and $x \neq y$. Recall that E is said to have a Gâteaux differentiable norm iff $\lim_{t \to 0} \frac{1}{t}(\|x\| - \|x + ty\|)$ exists for each $x, y \in S^E$. In this case, we also say that E is smooth. E is said to have a uniformly Gâteaux differentiable norm if for each $y \in B_E$, the limit is attained uniformly for all $x \in S^E$. E is also said to have a uniformly Fréchet differentiable norm iff the above limit is attained uniformly for $x, y \in S^E$. In this case, we say that E is uniformly smooth.

Recall that the normalized duality mapping J from E to 2^{E^*} is defined by

$$Jx = \{y \in E^* : \|y\|^2 = \langle x, y \rangle = \|x\|^2\}.$$

It is known

- if E is uniformly smooth, then J is uniformly norm-to-norm continuous on every bounded subset of E;
- if E is a strictly convex Banach space, then J is strictly monotone;
- if E is a smooth Banach space, then J is single-valued and demicontinuous, i.e., continuous from the strong topology of E to the weak star topology of E;
- if E is a reflexive and strictly convex Banach space with a strictly convex dual E^* and $J^* : E^* \to E$ is the normalized duality mapping in E^*, then $J^{-1} = J^*$;
- if E is a smooth, strictly convex and reflexive Banach space, then J is single-valued, one-to-one and onto.

Recall that p is said to be a fixed point of T if and only if $p = Tp$. p is said to be an asymptotic fixed point [22] of T if and only if C contains a sequence $\{x_n\}$, such that for some $p \in C$ such that $x_n - Tx_n \to 0$. From now on, we use $Fix(T)$ to stand for the fixed point set and $\tilde{Fix}(T)$ to stand for the asymptotic fixed point set.

Next, we assume that E is a smooth Banach space which means J is single-valued. Study the functional

$$\phi(x, y) := \|x\|^2 + \|y\|^2 - 2\langle x, Jy \rangle, \quad \forall x, y \in E.$$

Let C be a closed convex subset of a real Hilbert space H. For any $x \in H$, there exists a unique nearest point in C, denoted by P_Cx, such that $\|x - P_Cx\| \leq \|x - y\|$, for all $y \in C$. The operator P_C is called the metric projection from H onto C. It is known that P_C is firmly nonexpansive. In [2], Alber studied a new mapping $Proj_C$ in a Banach space E which is an analogue of P_C, the metric projection, in Hilbert spaces. Recall that the generalized projection $Proj_C : E \to C$ is a mapping that assigns to an arbitrary point $x \in E$ the minimum point of $\phi(x, y)$, which implies from the definition of ϕ that

$$(\|y\|^2 + \|x\|^2) \geq \phi(x, y) \geq (\|x\|^2 - \|y\|^2), \quad \forall x, y \in E.$$

Recall that T is said to be relatively nonexpansive [6], [7] iff

$$Fix(T) = \tilde{Fix}(T) \neq \emptyset, \phi(p, Tx) \leq \phi(p, x), \quad \forall x \in C, \forall p \in Fix(T).$$
T is said to be relatively asymptotically nonexpansive [1] iff

$$\text{Fix}(T) = \overline{\text{Fix}}(T) \neq \emptyset, \phi(p,T^n x) \leq (\mu_n + 1) \phi(p,x), \; \forall x \in C, \forall p \in \text{Fix}(T), \forall n \geq 1,$$

where \(\{\mu_n\} \subset [0, \infty)\) is a sequence such that \(\mu_n \to 0\) as \(n \to \infty\).

T is said to be relatively asymptotically nonexpansive in the intermediate sense iff $\text{Fix}(T) = \overline{\text{Fix}}(T) \neq \emptyset$ and

$$\limsup_{n \to \infty} \sup_{p \in \text{Fix}(T), x \in C} (\phi(p,T^n x) - \phi(p,x)) \leq 0.$$

Putting \(\xi_n = \max\{0, \sup_{p \in \text{Fix}(T), x \in C} (\phi(p,T^n x) - \phi(p,x))\}\), we see \(\xi_n \to 0\) as \(n \to \infty\).

T is said to be quasi-ϕ-nonexpansive [19] iff

$$\text{Fix}(T) \neq \emptyset, \phi(p,Tx) \leq \phi(p,x), \; \forall x \in C, \forall p \in \text{Fix}(T).$$

T is said to be asymptotically quasi-ϕ-nonexpansive [20] iff there exists a sequence \(\{\mu_n\} \subset [0, \infty)\) with \(\mu_n \to 0\) as \(n \to \infty\) such that

$$\text{Fix}(T) \neq \emptyset, \phi(p,T^n x) \leq (\mu_n + 1) \phi(p,x), \; \forall x \in C, \forall p \in \text{Fix}(T), \forall n \geq 1.$$

T is said to be asymptotically quasi-ϕ-nonexpansive in the intermediate sense [21] iff $\text{Fix}(T) \neq \emptyset$ and

$$\limsup_{n \to \infty} \sup_{p \in \text{Fix}(T), x \in C} (\phi(p,T^n x) - \phi(p,x)) \leq 0.$$

Putting \(\xi_n = \max\{0, \sup_{p \in \text{Fix}(T), x \in C} (\phi(p,T^n x) - \phi(p,x))\}\), we see \(\xi_n \to 0\) as \(n \to \infty\).

Remark 1.1. The class of relatively asymptotically nonexpansive mappings covers the class of relatively nonexpansive mappings. The class of (asymptotically) quasi-ϕ-nonexpansive mappings (in the intermediate sense) is more desirable than the class of relatively (asymptotically) nonexpansive mappings (in the intermediate sense) because of restriction $\text{Fix}(T) = \overline{\text{Fix}}(T)$.

Remark 1.2. The class of asymptotically quasi-ϕ-nonexpansive mappings in the intermediate sense is reduced to the class of asymptotically quasi-nonexpansive mappings in the intermediate sense, which was considered in [5] as a non-Lipschitz continuous mappings, in the framework of Hilbert spaces.

Lemma 1.3 ([2]). Let E be a strictly convex, reflexive, and smooth Banach space and let C be a closed and convex subset of E. Let $x \in E$. Then

\[\phi(y,x) - \phi(\Pi_C x, x) \geq \phi(y, \Pi_C x), \; \forall y \in C, \]

\[\langle y - x_0, Jx - Jx_0 \rangle \leq 0, \; \forall y \in C \text{ if and only if } x_0 = \Pi_C x. \]

Lemma 1.4 ([21]). Let E be a strictly convex, smooth, and reflexive Banach space and let C be a closed convex subset of E. Let B be a function with restrictions $(Q1)$, $(Q2)$, $(Q3)$ and $(Q4)$. Let $x \in E$ and let $r > 0$. Then there exists $z \in C$ such that $rB(z,y) + \langle z - y, Jz - Jx \rangle \leq 0, \forall y \in C$ Define a mapping $W^{B,r}$ by

$$W^{B,r} x = \{z \in C : rB(z,y) + \langle y - z, Jz - Jx \rangle \geq 0, \; \forall y \in C\}.$$

The following conclusions hold:

1. $W^{B,r}$ is single-valued quasi-ϕ-nonexpansive.

2. $\text{Sol}(B) = \text{Fix}(W^{B,r})$ is closed and convex.

Lemma 1.5 ([21]). Let E be a strictly convex, smooth and reflexive Banach space such that both E^* and E have the KK property. Let C be a convex and closed subset of E and let T be an asymptotically quasi-ϕ-nonexpansive mapping in the intermediate sense on C. Then $\text{Fix}(T)$ is convex.
2. Main results

Theorem 2.1. Let E be a smooth, strictly convex, and reflexive Banach space such that both E and E^* have the KK property and let C be a convex and closed subset of E. Let B be a bifunction satisfying (Q1), (Q2), (Q3) and (Q4) and let T be an asymptotically quasi-ϕ-nonexpansive mapping in the intermediate sense on C. Assume that T is uniformly asymptotically regular and closed and $Fix(T) \cap Sol(B) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by

\[
\begin{align*}
 x_0 &\in E \text{ chosen arbitrarily,} \\
 C_1 &= C, x_1 = \text{Proj}_C x_0, \\
 r_n B(u_n, \mu) &\geq \langle u_n - \mu, J u_n - J x_n \rangle, \mu \in C, \\
 J y_n &= \alpha_n J T^n u_n + (1 - \alpha_n) J x_n, \\
 C_{n+1} &= \{z \in C : \phi(z, x_n) + \xi_n \geq \phi(z, y_n)\}, \\
 x_{n+1} &= \text{Proj}_{C_{n+1}} x_1,
\end{align*}
\]

where $\xi_n = \max\{\sup_{p \in Fix(T), x \in C} (\phi(p, T^n x) - \phi(p, x)), 0\}$. $\{\alpha_n\}$ is a real sequence in $[a, 1]$, where $a \in (0, 1]$ is a real number, and $\{r_n\} \subset [r, \infty)$ is a real sequence, where r is some positive real number. Then $\{x_n\}$ converges strongly to $\text{Proj}_{Fix(T) \cap Sol(B)} x_1$.

Proof. The proof is split into seven steps.

Step 1. Prove $Sol(B) \cap Fix(T)$ is convex and closed.

Using Lemma 1.4 and Lemma 1.5, we find that $Sol(B)$ is convex and closed and $Fix(T)$ is convex. Since T is closed, one has $Fix(T)$ is also closed. So, $Sol(B) \cap Fix(T)$ is convex and closed. $\text{Proj}_{Sol(B) \cap Fix(T)} x$ is well defined, for any element x in E.

Step 2. Prove C_n is convex and closed.

It is obvious that $C_1 = C$ is convex and closed. Assume that C_m is convex and closed for some $m \geq 1$. Let $p_1, p_2 \in C_{m+1}$. It follows that $p = sp_1 + (1 - s)p_2 \in C_m$, where $s \in (0, 1)$. Notice that $\phi(p_1, y_m) - \phi(p_1, x_m) \leq \xi_m$, and $\phi(p_2, y_m) - \phi(p_2, x_m) \leq \xi_m$. Hence, one has

\[
\xi_m + \|x_m\|^2 - \|y_m\|^2 \geq 2 \langle p_1, Jx_m - Jy_m \rangle,
\]

and

\[
\xi_m + \|x_m\|^2 - \|y_m\|^2 \geq 2 \langle p_2, Jx_m - Jy_m \rangle.
\]

Using the above two inequalities, one has $\phi(p, x_m) + \xi_m \geq \phi(z, y_m)$. This shows that C_{m+1} is closed and convex. Hence, C_n is a convex and closed set. This proves that $\text{Proj}_{C_{n+1}} x_1$ is well defined.

Step 3. Prove $Sol(B) \cap Fix(T) \subset C_n$.

Note that $Sol(B) \cap Fix(T) \subset C_1 = C$ is clear. Suppose that $Sol(B) \cap Fix(T) \subset C_m$ for some positive integer m. For any $w \in Sol(B) \cap Fix(T) \subset C_m$, we see that

\[
\phi(w, y_m) = \| (1 - \alpha_m) Jx_m + \alpha_m J T^m u_m \|^2 + \| w \|^2 - 2 \langle w, (1 - \alpha_m) Jx_m + \alpha_m J T^m u_m \rangle \\
\leq \| w \|^2 - 2 \alpha_m \| w, J T^m u_m \| - 2 (1 - \alpha_m) \langle w, Jx_m \rangle \\
+ \alpha_m \| T^m u_m \|^2 + (1 - \alpha_m) \| x_m \|^2 \\
\leq \alpha_m \phi(w, u_m) + \alpha_m \xi_m + (1 - \alpha_m) \phi(w, x_m) \\
\leq \phi(w, x_m) + \xi_m,
\]

where $\xi_m = \max\{\sup_{p \in Fix(T), x \in C} (\phi(p, T^m x) - \phi(p, x)), 0\}$. This shows that $w \in C_{m+1}$. This implies that $Sol(B) \cap Fix(T) \subset C_n$.

Step 4. Prove $\{x_n\}$ is bounded.
Using Lemma 1.3, one has \(\langle z - x_n, Jx_1 - Jx_n \rangle \leq 0 \), for any \(z \in C_n \). It follows that
\[
0 \geq \langle w - x_n, Jx_1 - Jx_n \rangle, \forall w \in \text{Sol}(B) \cap \text{Fix}(T) \subset C_n.
\]

Using Lemma 1.3 yields that
\[
\phi(\Pi_{\text{Fix}(T) \cap \text{Sol}(B)} x_1, x_1) \geq \phi(x_n, x_1) \geq 0,
\]
which implies that \(\{ \phi(x_n, x_1) \} \). Hence \(\{ x_n \} \) is also a bounded sequence. Without loss of generality, we may assume \(x_n \rightarrow \tilde{x} \). Since \(C_n \) is convex and closed, we see \(\tilde{x} \in C_n \).

Step 5. Prove \(\tilde{x} \in \text{Fix}(T) \).

Using the fact \(\phi(x_n, x_1) \leq \phi(\tilde{x}, x_1) \), one has
\[
\phi(\tilde{x}, x_1) \geq \limsup_{n \to \infty} \phi(x_n, x_1) \geq \liminf_{n \to \infty} \phi(x_n, x_1) = \liminf_{n \to \infty}(\|x_n\|^2 + \|x_1\|^2 - 2\langle x_n, Jx_1 \rangle) \geq \phi(\tilde{x}, x_1).
\]

It follows that \(\lim_{n \to \infty} \phi(x_n, x_1) = \phi(\tilde{x}, x_1) \). Hence, we have
\[
\phi(x_{n+1}, x_1) - \phi(x_n, x_1) \geq \phi(x_{n+1}, x_n) \geq 0.
\]

Therefore, we have \(\lim_{n \to \infty} \phi(x_{n+1}, x_n) = 0 \). Since \(x_{n+1} \in C_{n+1} \), one sees that
\[
\phi(x_{n+1}, x_n) + \xi_n \geq \phi(x_{n+1}, y_n) \geq 0.
\]

It follows that \(\lim_{n \to \infty} \phi(x_{n+1}, y_n) = 0 \). Hence, one has \(\lim_{n \to \infty}(\|y_n\| - \|x_{n+1}\|) = 0 \). This implies that
\[
\|\tilde{x}\| = \|J\tilde{x}\| = \lim_{n \to \infty} \|Jy_n\| = \lim_{n \to \infty} \|y_n\|.
\]

This implies that \(\{ Jy_n \} \) is bounded. Assume that \(\{ Jy_n \} \) converges weakly to \(y^* \in E^* \). In view of the reflexivity of \(E \), we see that \(J(E) = E^* \). This shows that there exists an element \(u \in E \) such that \(Jy = y^* \).

It follows that \(\phi(x_{n+1}, y_n) + 2\langle x_{n+1}, Jy_n \rangle = \|x_{n+1}\|^2 + \|Jy_n\|^2 \). Taking \(\liminf_{n \to \infty} \), one has \(0 \geq \|\tilde{x}\|^2 - 2\langle \tilde{x}, y^* \rangle + \|y^*\|^2 = \|\tilde{x}\|^2 + \|Jy\|^2 - 2\langle \tilde{x}, Jy \rangle = \phi(\tilde{x}, y) \geq 0 \). That is, \(\tilde{x} = y \), which in turn implies that \(J\tilde{x} = y^* \). Hence, \(Jy_n \rightharpoonup J\tilde{x} \in E^* \). Using the KK property, we obtain \(\lim_{n \to \infty} Jy_n = J\tilde{x} \). Since \(J^{-1} \) is demi-continuous and \(E \) has the KK property, one gets \(y_n \rightharpoonup \tilde{x} \), as \(n \to \infty \). Using the restriction on \(\{ \alpha_n \} \), one has \(\lim_{n \to \infty} \|Jx_n - JT^*u_n\| = 0 \). This implies that \(\lim_{n \to \infty} \|JT^*u_n - J\tilde{x}\| = 0 \). Since \(J^{-1} \) is demi-continuous, one has \(T^*u_n \rightharpoonup \tilde{x} \).

Step 6. Prove \(\tilde{x} \in \text{Sol}(B) \).

Since \(\alpha_n \phi(x_{n+1}, u_n) \leq \phi(x_{n+1}, x_1) + \xi_n \), one has \(\lim_{n \to \infty} \phi(x_{n+1}, u_n) = 0 \). Hence, one has \(\lim_{n \to \infty}(\|u_n\| - \|x_{n+1}\|) = 0 \). This implies that
\[
\|\tilde{x}\| = \|J\tilde{x}\| = \lim_{n \to \infty} \|Ju_n\| = \lim_{n \to \infty} \|u_n\|.
\]

This implies that \(\{ Ju_n \} \) is bounded. Assume that \(\{ Ju_n \} \) converges weakly to \(u^* \in E^* \). In view of the reflexivity of \(E \), we see that \(J(E) = E^* \). This shows that there exists an element \(u \in E \) such that \(Ju = u^* \).

It follows that
\[
\phi(x_{n+1}, u_n) + 2\langle x_{n+1}, Ju_n \rangle = \|x_{n+1}\|^2 + \|Ju_n\|^2.
\]

Taking \(\liminf_{n \to \infty} \), one has
\[
0 \geq \|\tilde{x}\|^2 - 2\langle \tilde{x}, u^* \rangle + \|u^*\|^2 = \|\tilde{x}\|^2 + \|Ju\|^2 - 2\langle \tilde{x}, Ju \rangle = \phi(\tilde{x}, u) \geq 0.
\]
That is, $\bar{x} = u$, which in turn implies that $u^* = J\bar{x}$. Hence, $Ju_n \to J\bar{x} \in E^*$. Using the KK property, we obtain $\lim_{n \to \infty} Ju_n = J\bar{x}$. Since J^{-1} is demi-continuous and E has the KK property, one gets $u_n \to \bar{x}$, as $n \to \infty$. Since

$$r_n B(y, u_n) + \langle u_n - y, Ju_n - Jy_n \rangle \geq 0, \forall y \in C_n,$$

we see that $B(y, \bar{x}) \leq 0$. Let $0 < t < 1$ and define $y_t = ty + (1 - t)\bar{x}$. It follows that $y_t \in C$, which yields that $B(y_t, \bar{x}) \leq 0$. It follows from the (Q1) and (Q4) that

$$0 = B(y_t, y_t) \leq tB(y_t, y) + (1 - t)B(y_t, \bar{x}) \leq tB(y_t, y).$$

That is, $B(y_t, y) \geq 0$. It follows from (Q3) that $B(\bar{x}, y) \geq 0, \forall y \in C$. This implies that $\bar{x} \in Sol(B)$. This completes the proof that $\bar{x} \in Sol(B) \cap Fix(T)$.

Step 7. Prove $\bar{x} = \text{Proj}_{Sol(B) \cap Fix(T)} x_1$.

Note the fact $\langle w - x_n, Jx_1 - Jx_n \rangle \leq 0, \forall w \in Sol(B) \cap Fix(T)$. It follows that

$$\langle x - w, Jx_1 - J\bar{x} \rangle \geq 0, \quad \forall w \in Fix(T) \cap Sol(B).$$

Using Lemma 1.3, we find that that $\bar{x} = \text{Proj}_{Fix(T) \cap Sol(B)} x_1$. This completes the proof. \square

From Theorem 2.1 the following results are not hard to derive.

Corollary 2.2. Let E be a smooth, strictly convex, and reflexive Banach space such that both E and E^* have the KK property and let C be a convex and closed subset of E. Let B be a bifunction satisfying (Q1), (Q2), (Q3) and (Q4). Assume that $Sol(B) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_0 \in E \text{ chosen arbitrarily}, \\ C_1 = C, x_1 = \text{Proj}_{C_1} x_0, \\ r_n B(u_n, \mu) \geq \langle u_n - \mu, Ju_n - Jx_n \rangle, \mu \in C, \\ Jy_n = \alpha_n Ju_n + (1 - \alpha_n)Jx_n, \\ C_{n+1} = \{z \in C_n : \phi(z, x_n) \geq \phi(z, y_n)\}, \\ x_{n+1} = \text{Proj}_{C_{n+1}} x_1, \end{cases}$$

where $\{\alpha_n\}$ is a real sequence in $[a, 1], a \in (0, 1]$ is a real number and $\{r_n\} \subset [r, \infty)$ is a real sequence, where r is some positive real number. Then $\{x_n\}$ converges strongly to $\text{Proj}_{Sol(B)} x_1$.

Corollary 2.3. Let E be a Hilbert space and let C be a convex and closed subset of E. Let B be a bifunction satisfying (Q1), (Q2), (Q3) and (Q4) and let T be an asymptotically quasi-nonexpansive mapping in the intermediate sense on C. Assume that T is uniformly asymptotically regular and closed and $Fix(T) \cap Sol(B) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_0 \in E \text{ chosen arbitrarily}, \\ C_1 = C, x_1 = P_C x_0, \\ r_n B(u_n, \mu) \geq \langle u_n - \mu, u_n - x_n \rangle, \mu \in C, \\ y_n = \alpha_n Tu_n + (1 - \alpha_n)x_n, \\ C_{n+1} = \{z \in C_n : \|z - x_n\|^2 + \xi_n \geq \|z - y_n\|^2\}, \\ x_{n+1} = P_{C_{n+1}} x_1, \end{cases}$$

where $\xi_n = \max\{\sup_{p \in Fix(T), x \in C} \left(\|p - T^n x\|^2 - \|p - x\|^2\right), 0\}, \{\alpha_n\}$ is a real sequence in $[a, 1], a \in (0, 1]$ is a real number, and $\{r_n\} \subset [r, \infty)$ is a real sequence, where r is some positive real number. Then $\{x_n\}$ converges strongly to $P_{Fix(T) \cap Sol(B)} x_1$.
Acknowledgement

The authors are grateful to the reviewers for the useful suggestions which improve the contents of this article.

References

