Well-posedness and general decay of solution for a transmission problem with viscoelastic term and delay

Danhua Wang, Gang Li*, Biqing Zhu
College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China.

Communicated by M. Jleli

Abstract

In this paper, we consider a transmission problem in a bounded domain with a viscoelastic term and a delay term. Under appropriate hypotheses on the relaxation function and the relationship between the weight of the damping and the weight of the delay, we prove the well-posedness result by using FaedoGalerkin method. By introducing suitable Lyapunov functionals, we establish a general decay result, from which the exponential and polynomial types of decay are only special cases. © 2016 All rights reserved.

Keywords: Wave equation, transmission problem, general decay, viscoelastic term, delay.
2010 MSC: 35B37, 35L55, 93D15, 93D20.

1. Introduction

In this paper, we study the transmission system with a viscoelastic term and a delay term

$$
\left\{\begin{array}{rlrl}
u_{t t}(x, t)-a u_{x x}(x, t) & +\int_{0}^{t} g(t-s) u_{x x}(x, s) \mathrm{d} s & & \tag{1.1}\\
& +\mu_{1} u_{t}(x, t)+\mu_{2} u_{t}(x, t-\tau)=0, & & (x, t) \in \Omega \times(0,+\infty) \\
v_{t t}(x, t)-b v_{x x}(x, t)=0, & & (x, t) \in\left(L_{1}, L_{2}\right) \times(0,+\infty),
\end{array}\right.
$$

[^0]under the boundary and transmission conditions
\[

$$
\begin{cases}u(0, t)=u\left(L_{3}, t\right)=0, \tag{1.2}\\ u\left(L_{i}, t\right)=v\left(L_{i}, t\right), & i=1,2 \\ \left(a-\int_{0}^{t} g(s) \mathrm{d} s\right) u_{x}\left(L_{i}, t\right)=b v_{x}\left(L_{i}, t\right), & i=1,2\end{cases}
$$
\]

and the initial conditions

$$
\begin{cases}u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), & x \in \Omega \tag{1.3}\\ u_{t}(x, t-\tau)=f_{0}(x, t-\tau), & x \in \Omega, \quad t \in[0, \tau] \\ v(x, 0)=v_{0}(x), \quad v_{t}(x, 0)=v_{1}(x), & x \in\left(L_{1}, L_{2}\right)\end{cases}
$$

where $0<L_{1}<L_{2}<L_{3}, \Omega=\left(0, L_{1}\right) \cup\left(L_{2}, L_{3}\right), a, b, \mu_{1}, \mu_{2}$ are positive constants, and $\tau>0$ is the delay.

Figure 1: The configuration.

The transmission problems like $(1.1)-(1.3)$ related to the wave propagation over a body consists of two different types of materials: the elastic part and the viscoelastic part.

In recent years, many authors have investigated wave equations with viscoelastic damping and showed that the dissipation produced by the viscoelastic part can produce the decay of the solution, see [5, 6, 7, [8, 11, 16, 18, 20, 22, 26, 27, 28] and the references therein. For example, Cavalcanti et al. 8] studied the following equation:

$$
u_{t t}-\Delta u+\int_{0}^{t} g(t-\tau) \Delta u(\tau) \mathrm{d} \tau+a(x) u_{t}+|u|^{\gamma} u=0, \quad \text { in } \quad \Omega \times(0, \infty)
$$

where $a: \Omega \rightarrow \mathbb{R}_{+}$. Under the conditions that $a(x) \geq a_{0}>0$ on $\omega \subset \Omega$, with ω satisfying some geometry restrictions and

$$
-\xi_{1} g(t) \leq g^{\prime}(t) \leq-\xi_{2} g(t), \quad t \geq 0
$$

the authors showed the exponential decay. Then Berrimi and Messaoudi [5] proved the same result under weaker conditions on both a and g. Berrimi and Messaoudi [6] considered the equation

$$
u_{t t}-\Delta u+\int_{0}^{t} g(t-\tau) \Delta u(\tau) \mathrm{d} \tau=|u|^{\gamma} u, \quad \text { in } \quad \Omega \times(0, \infty)
$$

with only the viscoelastic dissipation and proved that the solution energy decays exponentially or polynomially depending on the rate of the decay of the relaxation function g. In all previous works, the rates of decay of relaxation functions were either exponential or polynomial type. For a wider class of relaxation functions, Messaoudi [22] investigated the following viscoelastic equation:

$$
u_{t t}-\Delta u+\int_{0}^{t} g(t-\tau) \Delta u(\tau) \mathrm{d} \tau=0, \quad \text { in } \quad \Omega \times(0, \infty)
$$

in a bounded domain, and established a more general decay result, from which the usual exponential and polynomial decay rates are only special cases.

It is well known that delay effects, which arise in many practical problems, may be sources of instability. Hence, the control of PDEs with time delay effects has become an active area of research in recent years. For example, it was proved in [10, $15,17,19,24$ that an arbitrarily small delay may destabilize a system which is uniformly asymptotically stable in the absence of delay unless additional conditions or control terms were used. A boundary stabilization problem for the wave equation with interior delay was studied in [1]. The authors proved an exponential stability result under some Lions geometric condition. Kirane and Said-Houari [12] considered the viscoelastic wave equation with a delay

$$
u_{t t}(x, t)-\Delta u(x, t)+\int_{0}^{t} g(t-s) \Delta u(x, t-s) \mathrm{d} s+\mu_{1} u_{t}(x, t)+\mu_{2} u_{t}(x, t-\tau)=0, \quad \text { in } \quad \Omega \times(0, \infty)
$$

where μ_{1} and μ_{2} are positive constants. They established a general energy decay result under the condition that $0 \leq \mu_{2} \leq \mu_{1}$. Later, Liu [14] improved this result by considering the equation with a time-varying delay term, with not necessarily positive coefficient μ_{2} of the delay term.

Transmission problems related to (1.1)-(1.3) have also been extensively studied. Bastos and Raposo [4] investigated the transmission problem with frictional damping and showed the well-posedness and exponential stability of the total energy. Muñoz Rivera and Portillo Oquendo [23] considered the transmission problem of viscoelastic waves and proved that the dissipation produced by the viscoelastic part can produce exponential decay of the solution, no matter how small its size is. Bae [3] studied the transmission problem, in which one component is clamped and the other is in a viscoelastic fluid producing a dissipative mechanism on the boundary, and established a decay result which depends on the rate of the decay of the relaxation function.

Motivated by the above results, we intend to consider the well-posedness and the general decay result of problem (1.1)-1.3 under some hypotheses in this paper. The main difficulty we encounter here arises from the simultaneous appearance of the viscoelastic term and the delay term. Our first intention is to study the well-posedness of problem (1.1)-(1.3) by making use of Faedo-Galerkin procedure, that is Faedo-Galerkin approximation together with energy estimates. For asymptotic behavior, we prove a general decay result from which the exponential and polynomial types of decay are only special cases by introducing suitable Lyapunov functionals.

The paper is organized as follows. In Section 2, we give some materials needed for our work and state our main results. In Section 3, we prove the well-posedness of the problem. The general decay result is proved in Section 4 .

2. Preliminaries and main results

In this section, we present some materials that shall be used in order to prove our main results. Let us first introduce the following notations:

$$
\begin{aligned}
& (g * h)(t):=\int_{0}^{t} g(t-s) h(s) \mathrm{d} s \\
& (g \diamond h)(t):=\int_{0}^{t} g(t-s)|h(t)-h(s)| \mathrm{d} s \\
& (g \square h)(t):=\int_{0}^{t} g(t-s)|h(t)-h(s)|^{2} \mathrm{~d} s
\end{aligned}
$$

We easily see that the above operators satisfy

$$
\begin{aligned}
& (g * h)(t)=\left(\int_{0}^{t} g(s) \mathrm{d} s\right) h(t)-(g \diamond h)(t) \\
& |(g \diamond h)(t)|^{2} \leq\left(\int_{0}^{t}|g(s)| \mathrm{d} s\right)(|g| \square h)(t)
\end{aligned}
$$

Lemma 2.1 (9$])$. For any $g, h \in C^{1}(\mathbb{R})$, the following equation holds

$$
2[g * h] h^{\prime}=g^{\prime} \square h-g(t)|h|^{2}-\frac{d}{d t}\left\{g \square h-\left(\int_{0}^{t} g(s) \mathrm{d} s\right)|h|^{2}\right\}
$$

Proof. Differentiating the expression

$$
g \square h-\left(\int_{0}^{t} g(s) \mathrm{d} s\right)|h|^{2},
$$

we get the result.
For the relaxation function g, we assume the conditions
(G1) $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a C^{1} function satisfying

$$
g \in L^{1}(0, \infty), \quad g(0)>0, \quad 0<\beta(t):=a-\int_{0}^{t} g(s) \mathrm{d} s \quad \text { and } \quad 0<\beta_{0}:=a-\int_{0}^{\infty} g(s) \mathrm{d} s
$$

(G2) There exists a nonincreasing differentiable function $\xi(t): \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

$$
g^{\prime}(t) \leq-\xi(t) g(t), \quad \forall t \geq 0 \quad \text { and } \quad \int_{0}^{\infty} \xi(t) \mathrm{d} t=+\infty
$$

These hypotheses imply that

$$
\begin{equation*}
\beta_{0} \leq \beta(t) \leq a \tag{2.1}
\end{equation*}
$$

As in [24], we introduce the following variable:

$$
z(x, \rho, t)=u_{t}(x, t-\tau \rho), \quad(x, \rho, t) \in \Omega \times(0,1) \times(0, \infty)
$$

Then the above variable z satisfies

$$
\begin{equation*}
\tau z_{t}(x, \rho, t)+z_{\rho}(x, \rho, t)=0, \quad(x, \rho, t) \in \Omega \times(0,1) \times(0, \infty) \tag{2.2}
\end{equation*}
$$

Thus, system 1.1 becomes

$$
\left\{\begin{array}{rlrl}
u_{t t}(x, t)-a u_{x x}(x, t)+g * u_{x x} \tag{2.3}\\
& +\mu_{1} u_{t}(x, t)+\mu_{2} z(x, 1, t)=0, & & (x, t) \in \Omega \times(0,+\infty) \\
v_{t t}(x, t)-b v_{x x}(x, t)=0, & & (x, t) \in\left(L_{1}, L_{2}\right) \times(0,+\infty) \\
\tau z_{t}(x, \rho, t)+z_{\rho}(x, \rho, t)=0, & & (x, \rho, t) \in \Omega \times(0,1) \times(0,+\infty)
\end{array}\right.
$$

and the boundary and transmission conditions 1.2 becomes

$$
\begin{cases}u(0, t)=u\left(L_{3}, t\right)=0, & i=1,2, \tag{2.4}\\ u\left(L_{i}, t\right)=v\left(L_{i}, t\right), & t \in(0,+\infty), \\ \left(a-\int_{0}^{t} g(s) \mathrm{d} s\right) u_{x}\left(L_{i}, t\right)=b v_{x}\left(L_{i}, t\right), & i=1,2, \\ z \in(0,+\infty), \\ z(x, 0, t)=u_{t}(x, t), & (x, t) \in \Omega \times(0,+\infty), \\ z(x, 1, t)=f_{0}(x, t-\tau), & (x, t) \in \Omega \times(0, \tau)\end{cases}
$$

Similar to [25], we denote the Hilbert spaces

$$
\begin{aligned}
\mathcal{V}=\{ & (u, v) \in H^{1}(\Omega) \cap H^{1}\left(L_{1}, L_{2}\right): u(0, t)=u\left(L_{3}, 0\right)=0, u\left(L_{i}, t\right)=v\left(L_{i}, t\right) \\
& \left.\left(a-\int_{0}^{t} g(s) \mathrm{d} s\right) u_{x}\left(L_{i}, t\right)=b v_{x}\left(L_{i}, t\right), i=1,2\right\}
\end{aligned}
$$

and

$$
\mathcal{L}^{2}=L^{2}(\Omega) \times L^{2}\left(L_{1}, L_{2}\right)
$$

Then the existence result reads as follows:
Theorem 2.1. Assume that $\mu_{2} \leq \mu_{1},(G 1)$ and $(G 2)$ hold. Then given $\left(u_{0}, v_{0}\right) \in \mathcal{V},\left(u_{1}, v_{1}\right) \in \mathcal{L}^{2}$, and $f_{0} \in L^{2}((0,1), \Omega)$, there exists a unique weak solution (u, v, z) of problem (2.3)-2.4) such that

$$
\begin{aligned}
& (u, v) \in C(0, \infty ; \mathcal{V}) \cap C^{1}\left(0, \infty ; \mathcal{L}^{2}\right) \\
& z \in C\left(0, \infty ; L^{2}((0,1), \Omega)\right)
\end{aligned}
$$

For any regular solution of (1.1)-(1.3), we define the energy as

$$
\begin{align*}
E(t)= & \frac{1}{2} \int_{\Omega} u_{t}^{2}(x, t) \mathrm{d} x+\frac{1}{2} \beta(t) \int_{\Omega} u_{x}^{2}(x, t) \mathrm{d} x+\frac{1}{2} \int_{\Omega}\left(g \square u_{x}\right) \mathrm{d} x \\
& +\frac{1}{2} \int_{L_{1}}^{L_{2}}\left[v_{t}^{2}(x, t)+b v_{x}^{2}(x, t)\right] \mathrm{d} x+\frac{\zeta}{2} \int_{\Omega} \int_{0}^{1} z^{2}(x, \rho, t) \mathrm{d} \rho \mathrm{~d} x \tag{2.5}
\end{align*}
$$

where ζ is a positive constant such that

$$
\begin{equation*}
\tau \mu_{2}<\zeta<\tau\left(2 \mu_{1}-\mu_{2}\right) \tag{2.6}
\end{equation*}
$$

Our decay result reads as follows:
Theorem 2.2. Let (u, v, z) be the solution of problem (1.1)-(1.3). Assume that $\mu_{2}<\mu_{1},(G 1)$, (G2) and

$$
\begin{equation*}
b>\frac{8\left(L_{2}-L_{1}\right)}{L_{1}+L_{3}-L_{2}} \beta_{0}, \quad a>\frac{8\left(L_{2}-L_{1}\right)}{L_{1}+L_{3}-L_{2}} \beta_{0} \tag{2.7}
\end{equation*}
$$

hold, then there exist constants $K, k>0$ such that, for all $t \in \mathbb{R}_{+}$,

$$
\begin{equation*}
E(t) \leq K e^{-k \int_{0}^{t} \xi(s) \mathrm{d} s} \tag{2.8}
\end{equation*}
$$

3. Well-posedness of the problem

In this section, we will prove the existence and uniqueness of problem (1.1)-(1.3) by using Faedo-Galerkin method.

Proof of Theorem 2.1. We divide the proof of Theorem 2.1 into two steps: the Faedo-Galerkin approximation and the energy estimates.

Step 1: Faedo-Galerkin approximation.
We construct approximations of the solution (u, v, z) by the Faedo-Galerkin method as follows. For $n \geq 1$, let $W_{n}=\operatorname{span}\left\{w_{1}, \ldots, w_{i}\right\}$ be a Hilbertian basis of the space $H^{1}(\Omega)$ and $Y_{n}=\operatorname{span}\left\{\psi_{1}, \ldots, \psi_{i}\right\}$ be a Hilbertian basis of the space $H^{1}\left(L_{1}, L_{2}\right)$.

Now, we define for $1 \leq j \leq n$ the sequence $\varphi_{j}(x, \rho)$ as follows:

$$
\varphi_{j}(x, 0)=w_{j}(x)
$$

Then we may extend $\varphi_{j}(x, 0)$ by $\varphi_{j}(x, \rho)$ over $L^{2}((0,1), \Omega)$ and denote $V_{n}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$.
We choose sequences $\left(u_{0}^{(n)}\right),\left(u_{1}^{(n)}\right)$ in $W_{n},\left(v_{0}^{(n)}\right),\left(v_{1}^{(n)}\right)$ in Y_{n} and a sequence $\left(z_{0}^{(n)}\right)$ in V_{n} such that $\left(u_{0}^{(n)}, u_{1}^{(n)}, v_{0}^{(n)}, v_{1}^{(n)}\right) \rightarrow\left(u_{0}, u_{1}, v_{0}, v_{1}\right)$ strongly in \mathcal{V} and $z_{0}^{(n)} \rightarrow f_{0}$ strongly in $L^{2}((0,1), \Omega)$.

We define the approximations

$$
\left(u^{(n)}(x, t), v^{(n)}(x, t)\right)=\sum_{i=1}^{n} h_{i}^{(n)}(t)\left(w_{i}(x), \psi_{i}(x)\right) \quad \text { and } \quad z^{(n)}(x, \rho, t)=\sum_{i=1}^{n} f_{i}^{(n)}(t) \varphi_{i}(x)
$$

where $\left(u^{(n)}(t), v^{(n)}(t), z^{(n)}(t)\right)$ is a solution to the following Cauchy problem:

$$
\left\{\begin{array}{l}
\int_{\Omega} u_{t t}^{(n)} w_{i} \mathrm{~d} x-\left[\left(a u_{x}^{(n)}-g * u_{x}^{(n)}\right) w_{i}\right]_{\partial \Omega}+\int_{\Omega} a u_{x}^{(n)} w_{i x} \mathrm{~d} x-\int_{\Omega}\left(g * u_{x}^{(n)}\right) w_{i x} \mathrm{~d} x \\
+\int_{\Omega} \mu_{1} u_{t}^{(n)} w_{i} \mathrm{~d} x+\int_{\Omega} \mu_{2} z^{(n)}(x, 1, t) w_{i} \mathrm{~d} x=0 \\
\int_{L_{1}}^{L_{2}} v_{t t}^{(n)} \psi_{i} \mathrm{~d} x+\int_{L_{1}}^{L_{2}} b v_{x}^{(n)} \psi_{i x} \mathrm{~d} x-\left[b v_{x}^{(n)} \psi_{i}\right]_{L_{1}}^{L_{2}}=0 \tag{3.1}\\
z^{(n)}(x, 0, t)=u_{t}^{(n)}(x, t) \\
\left(u^{(n)}(0), u_{t}^{(n)}(0)\right)=\left(u_{0}^{(n)}, u_{1}^{(n)}\right)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\int_{\Omega}\left(\tau z_{t}^{(n)}(x, \rho, t)+z_{\rho}^{(n)}(x, \rho, t)\right) \varphi_{i} \mathrm{~d} x=0 \tag{3.2}\\
z^{(n)}(\rho, 0)=z_{0}^{(n)}
\end{array}\right.
$$

Similar to [21], according to the standard theory of ordinary differential equations, the finite dimensional problem (3.1)-3.2 have a solution $\left(h_{i}^{(n)}(t), f_{i}^{(n)}(t)\right)_{i=1, \ldots, n}$ defined on $\left[0, t_{n}\right)$.

Step 2: Energy estimates.
Multiplying the first and the second equation of (3.1) by $\left(h_{i}^{(n)}\right)^{\prime}(t)$, we have

$$
\begin{align*}
& \int_{\Omega} u_{t t}^{(n)} u_{t}^{(n)} \mathrm{d} x-\left[\left(a u_{x}^{(n)}-g * u_{x}^{(n)}\right) w_{i}\right]_{\partial \Omega} \times\left(h_{i}^{(n)}\right)^{\prime}(t)+\int_{\Omega} a u_{x}^{(n)} u_{x t}^{(n)} \mathrm{d} x \\
& -\int_{\Omega}\left(g * u_{x}^{(n)}\right) u_{x t}^{(n)} \mathrm{d} x+\int_{\Omega} \mu_{1} u_{t}^{(n)} u_{t}^{(n)} \mathrm{d} x+\int_{\Omega} \mu_{2} z^{(n)}(x, 1, t) u_{t}^{(n)} \mathrm{d} x=0 \tag{3.3}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{L_{1}}^{L_{2}} v_{t t}^{(n)} v_{t}^{(n)} \mathrm{d} x+\int_{L_{1}}^{L_{2}} b v_{x}^{(n)} v_{x t}^{(n)} \mathrm{d} x-\left[b v_{x}^{(n)} \psi_{i}\right]_{L_{1}}^{L_{2}} \times\left(h_{i}^{(n)}\right)^{\prime}(t)=0 \tag{3.4}
\end{equation*}
$$

Multiplying the first equation of (3.2) by $\frac{\zeta}{\tau} f_{i}^{(n)}(t)$ and integrating over $(0, t) \times(0,1)$, we get

$$
\begin{equation*}
\frac{\zeta}{2} \int_{\Omega} \int_{0}^{1}\left(z^{(n)}\right)^{2}(x, \rho, t) \mathrm{d} \rho \mathrm{~d} x+\frac{\zeta}{\tau} \int_{0}^{t} \int_{\Omega} \int_{0}^{1} z_{\rho}^{(n)} z^{(n)}(x, \rho, s) \mathrm{d} \rho \mathrm{~d} x \mathrm{~d} s=\frac{\zeta}{2} \int_{\Omega} \int_{0}^{1}\left(z_{0}^{(n)}\right)^{2} \mathrm{~d} \rho \mathrm{~d} x \tag{3.5}
\end{equation*}
$$

To handle the last term in the left-hand side of (3.5), we remark that

$$
\begin{align*}
\int_{0}^{t} \int_{\Omega} \int_{0}^{1} z_{\rho}^{(n)} z^{(n)}(x, \rho, s) \mathrm{d} \rho \mathrm{~d} x \mathrm{~d} s & =\frac{1}{2} \int_{0}^{t} \int_{\Omega} \int_{0}^{1} \frac{\partial}{\partial \rho}\left(z^{(n)}\right)^{2}(x, \rho, s) \mathrm{d} \rho \mathrm{~d} x \mathrm{~d} s \\
& =\frac{1}{2} \int_{0}^{t} \int_{\Omega}\left(\left(z^{(n)}\right)^{2}(x, 1, s)-\left(z^{(n)}\right)^{2}(x, 0, s)\right) \mathrm{d} x \mathrm{~d} s \tag{3.6}
\end{align*}
$$

Integrating (3.3) and (3.4) over ($0, t$), counting them and (3.5 up, taking into account (3.6) and using Lemma 2.1, we obtain

$$
\begin{align*}
& \mathscr{E}_{n}(t)+\left(\mu_{1}-\frac{\zeta}{2 \tau}\right) \int_{0}^{t} \int_{\Omega}\left(u_{t}^{(n)}\right)^{2}(x, s) \mathrm{d} x \mathrm{~d} s+\frac{\zeta}{2 \tau} \int_{0}^{t} \int_{\Omega}\left(z^{(n)}\right)^{2}(x, 1, s) \mathrm{d} x \mathrm{~d} s \\
& +\mu_{2} \int_{0}^{t} \int_{\Omega} z^{(n)}(x, 1, s) u_{t}^{(n)}(x, s) \mathrm{d} x \mathrm{~d} s+\frac{1}{2} \int_{0}^{t} \int_{\Omega} g(t)\left|u_{x}^{(n)}\right|^{2} \mathrm{~d} x \mathrm{~d} s-\frac{1}{2} \int_{0}^{t} \int_{\Omega}\left(g^{\prime} \square u_{x}^{(n)}\right) \mathrm{d} x \mathrm{~d} s \\
= & \mathscr{E}_{n}(0) \tag{3.7}
\end{align*}
$$

where

$$
\begin{align*}
\mathscr{E}_{n}(t)= & \frac{1}{2} \int_{\Omega}\left(u_{t}^{(n)}\right)^{2}(x, t) \mathrm{d} x+\frac{1}{2} \beta(t) \int_{\Omega}\left(u_{x}^{(n)}\right)^{2}(x, t) \mathrm{d} x+\frac{1}{2} \int_{\Omega}\left(g \square u_{x}^{(n)}\right) \mathrm{d} x \\
& +\frac{1}{2} \int_{L_{1}}^{L_{2}}\left[\left(v_{t}^{(n)}\right)^{2}(x, t)+b\left(v_{x}^{(n)}\right)^{2}(x, t)\right] \mathrm{d} x+\frac{\zeta}{2} \int_{\Omega} \int_{0}^{1}\left(z^{(n)}\right)^{2}(x, \rho, t) \mathrm{d} \rho \mathrm{~d} x . \tag{3.8}
\end{align*}
$$

At this point, we have to distinguish the following two cases:
Case 1: We suppose that $\mu_{2}<\mu_{1}$ and choose ζ satisfying 2.6). Young's inequality gives us that

$$
\begin{aligned}
& \mathscr{E}_{n}(t)+\left(\mu_{1}-\frac{\zeta}{2 \tau}-\frac{\mu_{2}}{2}\right) \int_{0}^{t} \int_{\Omega}\left(u_{t}^{(n)}\right)^{2}(x, s) \mathrm{d} x \mathrm{~d} s+\left(\frac{\zeta}{2 \tau}-\frac{\mu_{2}}{2}\right) \int_{0}^{t} \int_{\Omega}\left(z^{(n)}\right)^{2}(x, 1, s) \mathrm{d} x \mathrm{~d} s \\
& +\frac{1}{2} \int_{0}^{t} \int_{\Omega} g(t)\left|u_{x}^{(n)}\right|^{2} \mathrm{~d} x \mathrm{~d} s-\frac{1}{2} \int_{0}^{t} \int_{\Omega}\left(g^{\prime} \square u_{x}^{(n)}\right) \mathrm{d} x \mathrm{~d} s
\end{aligned}
$$

$$
\leq \mathscr{E}_{n}(0)
$$

Consequently, using (2.6), we have

$$
\begin{align*}
& \mathscr{E}_{n}(t)+c_{1} \int_{0}^{t} \int_{\Omega}\left(u_{t}^{(n)}\right)^{2}(x, s) \mathrm{d} x \mathrm{~d} s+c_{2} \int_{0}^{t} \int_{\Omega}\left(z^{(n)}\right)^{2}(x, 1, s) \mathrm{d} x \mathrm{~d} s \\
& \quad+\frac{1}{2} \int_{0}^{t} \int_{\Omega} g(t)\left|u_{x}^{(n)}\right|^{2} \mathrm{~d} x \mathrm{~d} s-\frac{1}{2} \int_{0}^{t} \int_{\Omega}\left(g^{\prime} \square u_{x}^{(n)}\right) \mathrm{d} x \mathrm{~d} s \\
& \leq \mathscr{E}_{n}(0) . \tag{3.9}
\end{align*}
$$

Case 2: We suppose that $\mu_{2}=\mu_{1}=\mu$ and choose $\zeta=\tau \mu$. Then 3.9 takes the form

$$
\begin{equation*}
\mathscr{E}_{n}(t)+\frac{1}{2} \int_{0}^{t} \int_{\Omega} g(t)\left|u_{x}^{(n)}\right|^{2} \mathrm{~d} x \mathrm{~d} s-\frac{1}{2} \int_{0}^{t} \int_{\Omega}\left(g^{\prime} \square u_{x}^{(n)}\right) \mathrm{d} x \mathrm{~d} s \leq \mathscr{E}_{n}(0) \tag{3.10}
\end{equation*}
$$

Now, since the sequences $\left(u_{0}^{(n)}\right)_{n \in \mathbb{N}},\left(u_{1}^{(n)}\right)_{n \in \mathbb{N}},\left(v_{0}^{(n)}\right)_{n \in \mathbb{N}},\left(v_{1}^{(n)}\right)_{n \in \mathbb{N}},\left(z_{0}^{(n)}\right)_{n \in \mathbb{N}}$ converge and using (G2), in the both cases we can find a positive constant c_{3} independent of n such that

$$
\begin{equation*}
\mathscr{E}_{n}(t) \leq c_{3} \tag{3.11}
\end{equation*}
$$

Therefore, using the fact that $\beta(t) \geq \beta_{0}$, the estimate (3.11) together with (3.8) give us, for all $n \in \mathbb{N}$, $t_{n}=T$, we deduce

$$
\begin{array}{ll}
\left(u^{(n)}\right)_{n \in \mathbb{N}} & \text { is bounded } \quad \text { in } \quad L^{\infty}\left(0, T ; H^{1}(\Omega)\right), \\
\left(v^{(n)}\right)_{n \in \mathbb{N}} & \text { is bounded in } \quad L^{\infty}\left(0, T ; H^{1}\left(L_{1}, L_{2}\right)\right), \\
\left(u_{t}^{(n)}\right)_{n \in \mathbb{N}} & \text { is bounded in } \quad L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \\
\left(v_{t}^{(n)}\right)_{n \in \mathbb{N}} & \text { is bounded in } \quad L^{\infty}\left(0, T ; L^{2}\left(L_{1}, L_{2}\right)\right), \\
\left(z^{(n)}\right)_{n \in \mathbb{N}} & \text { is bounded in } \quad L^{\infty}\left(0, T ; L^{2}((0,1), \Omega)\right) . \tag{3.12}
\end{array}
$$

Consequently, we conclude that

$$
\begin{array}{ll}
u^{(n)} \rightharpoonup u & \text { weak }^{*} \quad \text { in } \quad L^{\infty}\left(0, T ; H^{1}(\Omega)\right) \\
v^{(n)} \rightharpoonup v & \text { weak }^{*} \quad \text { in } \quad L^{\infty}\left(0, T ; H^{1}\left(L_{1}, L_{2}\right)\right), \\
u_{t}^{(n)} \rightharpoonup u_{t} & \text { weak }^{*} \quad \text { in } \quad L^{\infty}\left(0, T ; L^{2}(\Omega)\right)
\end{array}
$$

$$
\begin{array}{llll}
v_{t}^{(n)} \rightharpoonup v_{t} & \text { weak }^{*} & \text { in } \quad L^{\infty}\left(0, T ; L^{2}\left(L_{1}, L_{2}\right)\right) \\
z^{(n)} \rightharpoonup z & \text { weak }^{*} & \text { in } \quad L^{\infty}\left(0, T ; L^{2}((0,1), \Omega)\right) .
\end{array}
$$

From 3.12, we have $\left(u^{(n)}\right)_{n \in \mathbb{N}}$ is bounded in $L^{\infty}\left(0, T ; H^{1}(\Omega)\right)$ and $\left(v^{(n)}\right)_{n \in \mathbb{N}}$ is bounded in $L^{\infty}\left(0, T ; H^{1}\left(L_{1}, L_{2}\right)\right)$. Then, $\left(u^{(n)}\right)_{n \in \mathbb{N}}$ is bounded $\operatorname{in} L^{2}\left(0, T ; H^{1}(\Omega)\right)$ and $\left(v^{(n)}\right)_{n \in \mathbb{N}}$ is bounded in $L^{2}\left(0, T ; H^{1}\left(L_{1}, L_{2}\right)\right)$. Consequently, $\left(u^{(n)}\right)_{n \in \mathbb{N}}$ is bounded in $H^{1}\left(0, T ; H^{1}(\Omega)\right)$ and $\left(v^{(n)}\right)_{n \in \mathbb{N}}$ is bounded in $H^{1}\left(0, T ; H^{1}\left(L_{1}, L_{2}\right)\right)$.

Since the embedding

$$
H^{1}\left(0, T ; H^{1}(\Omega)\right) \hookrightarrow L^{2}\left(0, T ; L^{2}(\Omega)\right)
$$

and

$$
H^{1}\left(0, T ; H^{1}\left(L_{1}, L_{2}\right)\right) \hookrightarrow L^{2}\left(0, T ; L^{2}\left(L_{1}, L_{2}\right)\right)
$$

are compact, using Aubin-Lion's theorem [13], we can extract subsequences $\left(u^{(k)}\right)_{k \in \mathbb{N}}$ of $\left(u^{(n)}\right)_{n \in \mathbb{N}}$ and $\left(v^{(k)}\right)_{k \in \mathbb{N}}$ of $\left(v^{(n)}\right)_{n \in \mathbb{N}}$ such that

$$
u^{(k)} \rightarrow u \quad \text { strongly } \quad \text { in } \quad L^{2}\left(0, T ; L^{2}(\Omega)\right)
$$

and

$$
v^{(k)} \rightarrow v \quad \text { strongly } \quad \text { in } \quad L^{2}\left(0, T ; L^{2}\left(L_{1}, L_{2}\right)\right)
$$

Therefore,

$$
u^{(k)} \rightarrow u \quad \text { strongly } \quad \text { and } \quad \text { a.e. on } \quad(0, T) \times \Omega
$$

and

$$
v^{(k)} \rightarrow v \quad \text { strongly } \quad \text { and } \quad \text { a.e. on } \quad(0, T) \times\left(L_{1}, L_{2}\right)
$$

The proof now can be completed arguing as in Theorem 3.1 of [13].

4. General decay of the solution

In this section, we consider the asymptotic behavior of problem 1.1$)-(1.3)$. For the proof of Theorem 2.2, we use the following lemmas.

Lemma 4.1. Let (u, v, z) be the solution of problem (2.3)-(2.4). Assume that $\mu_{2}<\mu_{1}$. Then we have the inequality

$$
\begin{equation*}
\frac{d}{d t} E(t) \leq-c_{4}\left[\int_{\Omega} u_{t}^{2}(x, t) \mathrm{d} x+\int_{\Omega} z^{2}(x, 1, t) \mathrm{d} x\right]+\frac{1}{2} \int_{\Omega}\left(g^{\prime} \square u_{x}\right)(t) \mathrm{d} x \tag{4.1}
\end{equation*}
$$

Proof. Multiplying the first equation of (2.3) by u_{t}, the second equation of (2.3) by v_{t}, integrating by parts and 2.4, we obtain

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left\{\int_{\Omega}\left[u_{t}^{2}(x, t)+a u_{x}^{2}(x, t)\right] \mathrm{d} x\right\}+\frac{1}{2} \frac{d}{d t}\left\{\int_{L_{1}}^{L_{2}}\left[v_{t}^{2}(x, t)+b v_{x}^{2}(x, t)\right] \mathrm{d} x\right\} \\
= & -\mu_{1} \int_{\Omega} u_{t}^{2}(x, t) \mathrm{d} x-\mu_{2} \int_{\Omega} u_{t}(x, t) z(x, 1, t) \mathrm{d} x+\int_{0}^{t} g(t-s) \int_{\Omega} u_{x}(s) u_{x t}(t) \mathrm{d} s \mathrm{~d} x \tag{4.2}
\end{align*}
$$

for any regular solution. By using standard arguments of density, we can extend the result to weak solutions. From Lemma 2.1, the last term in the right-hand side of 4.2 can be rewritten as

$$
\begin{aligned}
& \int_{0}^{t} g(t-s) \int_{\Omega} u_{x}(s) u_{x t}(t) \mathrm{d} s \mathrm{~d} x+\frac{1}{2} g(t) \int_{\Omega} u_{x}^{2} \mathrm{~d} x \\
= & \frac{1}{2} \frac{d}{d t}\left\{\int_{0}^{t} g(s) \int_{\Omega} u_{x}^{2} \mathrm{~d} x \mathrm{~d} s-\int_{\Omega}\left(g \square u_{x}\right)(t) \mathrm{d} x\right\}+\frac{1}{2} \int_{\Omega}\left(g^{\prime} \square u_{x}\right)(t) \mathrm{d} x .
\end{aligned}
$$

So 4.2 becomes

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left\{\int_{\Omega}\left[u_{t}^{2}(x, t)+\beta(t) u_{x}^{2}(x, t)\right] \mathrm{d} x\right\}+\frac{1}{2} \frac{d}{d t}\left\{\int_{L_{1}}^{L_{2}}\left[v_{t}^{2}(x, t)+b v_{x}^{2}(x, t)\right] \mathrm{d} x\right\}+\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(g \square u_{x}\right)(t) \mathrm{d} x \\
= & -\mu_{1} \int_{\Omega} u_{t}^{2}(x, t) \mathrm{d} x-\mu_{2} \int_{\Omega} u_{t}(x, t) z(x, 1, t) \mathrm{d} x-\frac{1}{2} g(t) \int_{\Omega} u_{x}^{2} \mathrm{~d} x+\frac{1}{2} \int_{\Omega}\left(g^{\prime} \square u_{x}\right)(t) \mathrm{d} x \tag{4.3}
\end{align*}
$$

Now, multiplying the third equation of 2.3 by $\frac{\zeta}{\tau} z$ and integrating the result over $\Omega \times(0,1)$ with respect to x and ρ respectively, we have

$$
\begin{equation*}
\frac{\zeta}{2} \frac{d}{d t} \int_{\Omega} \int_{0}^{1} z^{2}(x, \rho, t) \mathrm{d} \rho \mathrm{~d} x=-\frac{\zeta}{2 \tau} \int_{\Omega}\left(z^{2}(x, 1)-z^{2}(x, 0)\right) \mathrm{d} x \tag{4.4}
\end{equation*}
$$

Using (2.5), (4.3) and (4.4), we obtain

$$
\begin{align*}
\frac{d}{d t} E(t)= & -\left(\mu_{1}-\frac{\zeta}{2 \tau}\right) \int_{\Omega} u_{t}^{2}(x, t) \mathrm{d} x-\frac{\zeta}{2 \tau} \int_{\Omega} z^{2}(x, 1, t) \mathrm{d} x-\mu_{2} \int_{\Omega} u_{t}(x, t) z(x, 1, t) \mathrm{d} x \\
& -\frac{1}{2} g(t) \int_{\Omega} u_{x}^{2} \mathrm{~d} x+\frac{1}{2} \int_{\Omega}\left(g^{\prime} \square u_{x}\right)(t) \mathrm{d} x \tag{4.5}
\end{align*}
$$

By Young's inequality in 4.5, we get

$$
\frac{d}{d t} E(t) \leq-\left(\mu_{1}-\frac{\zeta}{2 \tau}-\frac{\mu_{2}}{2}\right) \int_{\Omega} u_{t}^{2}(x, t) \mathrm{d} x-\left(\frac{\zeta}{2 \tau}-\frac{\mu_{2}}{2}\right) \int_{\Omega} z^{2}(x, 1, t) \mathrm{d} x+\frac{1}{2} \int_{\Omega}\left(g^{\prime} \square u_{x}\right)(t) \mathrm{d} x
$$

Then exploiting 2.6 our conclusion holds. The proof is complete.
Now, we define the functional $\mathscr{D}(t)$ as follows

$$
\mathscr{D}(t)=\int_{\Omega} u u_{t} \mathrm{~d} x+\frac{\mu_{1}}{2} \int_{\Omega} u^{2} \mathrm{~d} x+\int_{L_{1}}^{L_{2}} v v_{t} \mathrm{~d} x
$$

Then we have the following estimate.
Lemma 4.2. The functional $\mathscr{D}(t)$ satisfies

$$
\begin{align*}
\frac{d}{d t} \mathscr{D}(t) \leq & \int_{\Omega} u_{t}^{2} \mathrm{~d} x+\int_{L_{1}}^{L_{2}} v_{t}^{2} \mathrm{~d} x+\left(L^{2} \varepsilon+\varepsilon-\beta(t)\right) \int_{\Omega} u_{x}^{2} \mathrm{~d} x+\frac{1}{4 \varepsilon}(a-\beta(t)) \int_{\Omega}\left(g \square u_{x}\right) \mathrm{d} x \\
& +\frac{\mu_{2}^{2}}{4 \varepsilon} \int_{\Omega} z^{2}(x, 1, t) \mathrm{d} x-\int_{L_{1}}^{L_{2}} b v_{x}^{2} \mathrm{~d} x . \tag{4.6}
\end{align*}
$$

Proof. Taking the derivative of $\mathscr{D}(t)$ with respect to t and using 2.3), we have

$$
\begin{align*}
\frac{d}{d t} \mathscr{D}(t) & =\int_{\Omega} u_{t}^{2} \mathrm{~d} x-\int_{\Omega}\left(a u_{x}-g * u_{x}\right) u_{x} \mathrm{~d} x-\mu_{2} \int_{\Omega} z(x, 1, t) u \mathrm{~d} x+\int_{L_{1}}^{L_{2}} v_{t}^{2} \mathrm{~d} x-\int_{L_{1}}^{L_{2}} b v_{x}^{2} \mathrm{~d} x \\
& =\int_{\Omega} u_{t}^{2} \mathrm{~d} x-\beta(t) \int_{\Omega} u_{x}^{2} \mathrm{~d} x-\int_{\Omega}\left(g \diamond u_{x}\right) u_{x} \mathrm{~d} x-\mu_{2} \int_{\Omega} z(x, 1, t) u \mathrm{~d} x+\int_{L_{1}}^{L_{2}} v_{t}^{2} \mathrm{~d} x-\int_{L_{1}}^{L_{2}} b v_{x}^{2} \mathrm{~d} x \tag{4.7}
\end{align*}
$$

By the boundary condition (1.2), we have

$$
\begin{gathered}
u^{2}(x, t)=\left(\int_{0}^{x} u_{x}(x, t) \mathrm{d} x\right)^{2} \leq L_{1} \int_{0}^{L_{1}} u_{x}^{2}(x, t) \mathrm{d} x, \quad x \in\left[0, L_{1}\right] \\
u^{2}(x, t) \leq\left(L_{3}-L_{2}\right) \int_{L_{2}}^{L_{3}} u_{x}^{2}(x, t) \mathrm{d} x, \quad x \in\left[L_{2}, L_{3}\right]
\end{gathered}
$$

which implies

$$
\begin{equation*}
\int_{\Omega} u^{2}(x, t) \mathrm{d} x \leq L^{2} \int_{\Omega} u_{x}^{2} \mathrm{~d} x, \quad x \in \Omega \tag{4.8}
\end{equation*}
$$

where $L=\max \left\{L_{1}, L_{3}-L_{2}\right\}$. By exploiting Young's inequality and 4.8), we get for any $\varepsilon>0$

$$
\begin{equation*}
\mu_{2} \int_{\Omega} z(x, 1, t) u \mathrm{~d} x \leq \frac{\mu_{2}^{2}}{4 \varepsilon} \int_{\Omega} z^{2}(x, 1, t) \mathrm{d} x+L^{2} \varepsilon \int_{\Omega} u_{x}^{2} \mathrm{~d} x \tag{4.9}
\end{equation*}
$$

Young's inequality and (G1) imply that

$$
\begin{align*}
\int_{\Omega}\left(g \diamond u_{x}\right) u_{x} \mathrm{~d} x & \leq \varepsilon \int_{\Omega} u_{x}^{2} \mathrm{~d} x+\frac{1}{4 \varepsilon} \int_{\Omega}\left(g \diamond u_{x}\right)^{2} \mathrm{~d} x \\
& \leq \varepsilon \int_{\Omega} u_{x}^{2} \mathrm{~d} x+\frac{1}{4 \varepsilon}(a-\beta(t)) \int_{\Omega}\left(g \square u_{x}\right) \mathrm{d} x . \tag{4.10}
\end{align*}
$$

Inserting the estimates (4.9) and (4.10) into (4.7), then 4.6) is fulfilled. The proof is complete.
Now, as in Lemma 4.5 of [21], we introduce the function

$$
q(x)= \begin{cases}x-\frac{L_{1}}{2}, & x \in\left[0, L_{1}\right] \tag{4.11}\\ \frac{L_{1}}{2}-\frac{L_{1}+L_{3}-L_{2}}{2\left(L_{2}-L_{1}\right)}\left(x-L_{1}\right), & x \in\left(L_{1}, L_{2}\right) \\ x-\frac{L_{2}+L_{3}}{2}, & x \in\left[L_{2}, L_{3}\right]\end{cases}
$$

It is easy to see that $q(x)$ is bounded, that is $|q(x)| \leq M$, where $M=\max \left\{\frac{L_{1}}{2}, \frac{L_{3}-L_{2}}{2}\right\}$ is a positive constant. And we define the functionals

$$
\begin{equation*}
\mathscr{F}_{1}(t)=-\int_{\Omega} q(x) u_{t}\left(a u_{x}-g * u_{x}\right) \mathrm{d} x, \quad \mathscr{F}_{2}(t)=-\int_{L_{1}}^{L_{2}} q(x) v_{x} v_{t} \mathrm{~d} x \tag{4.12}
\end{equation*}
$$

Then we have the following estimates.
Lemma 4.3. The functionals $\mathscr{F}_{1}(t)$ and $\mathscr{F}_{2}(t)$ satisfy

$$
\begin{align*}
\frac{d}{d t} \mathscr{F}_{1}(t) \leq & {\left[-\frac{q(x)}{2}\left(a u_{x}-g * u_{x}\right)^{2}\right]_{\partial \Omega}-\left[\frac{a}{2} q(x) u_{t}^{2}\right]_{\partial \Omega}+\left[\frac{a}{2}+\frac{\mu_{1}^{2}}{2 \varepsilon_{1}}+\frac{M^{2}}{4 \varepsilon_{1}}\right]_{\Omega} u_{t}^{2} \mathrm{~d} x } \\
& +\left[\varepsilon_{1} M^{2} a^{2}+\beta^{2}(t)+2 M^{2} \varepsilon_{1}(a-\beta(t))^{2}+c_{5}^{2} \varepsilon_{1}\right] \int_{\Omega} u_{x}^{2} \mathrm{~d} x+\frac{\mu_{2}^{2}}{2 \varepsilon_{1}} \int_{\Omega} z^{2}(x, 1, t) \mathrm{d} x \\
& +\left(1+2 M^{2} \varepsilon_{1}\right)(a-\beta(t)) \int_{\Omega}\left(g \square u_{x}\right) \mathrm{d} x+(a-\beta(t)) \varepsilon_{1} \int_{\Omega}\left(g^{\prime} \square u_{x}\right) \mathrm{d} x \tag{4.13}
\end{align*}
$$

and

$$
\begin{align*}
\frac{d}{d t} \mathscr{F}_{2}(t) \leq & -\frac{L_{1}+L_{3}-L_{2}}{4\left(L_{2}-L_{1}\right)}\left(\int_{L_{1}}^{L_{2}} v_{t}^{2} \mathrm{~d} x+\int_{L_{1}}^{L_{2}} b v_{x}^{2} \mathrm{~d} x\right)+\frac{L_{1}}{4} v_{t}^{2}\left(L_{1}\right)+\frac{L_{3}-L_{2}}{4} v_{t}^{2}\left(L_{2}\right) \\
& +\frac{b}{4}\left(\left(L_{3}-L_{2}\right) v_{x}^{2}\left(L_{2}, t\right)+L_{1} v_{x}^{2}\left(L_{1}, t\right)\right) \tag{4.14}
\end{align*}
$$

Proof. Taking the derivative of $\mathscr{F}_{1}(t)$ with respect to t and using (2.3), we get

$$
\frac{d}{d t} \mathscr{F}_{1}(t)=-\int_{\Omega} q(x) u_{t t}\left(a u_{x}-g * u_{x}\right) \mathrm{d} x-\int_{\Omega} q(x) u_{t}\left(a u_{x t}-g(t) u_{x}(t)+\left(g^{\prime} \diamond u_{x}\right)(t)\right) \mathrm{d} x
$$

$$
\begin{align*}
= & {\left[-\frac{q(x)}{2}\left(a u_{x}-g * u_{x}\right)^{2}\right]_{\partial \Omega}+\frac{1}{2} \int_{\Omega} q^{\prime}(x)\left(a u_{x}-g * u_{x}\right)^{2} \mathrm{~d} x-\left[\frac{a}{2} q(x) u_{t}^{2}\right]_{\partial \Omega} } \\
& +\frac{a}{2} \int_{\Omega} q^{\prime}(x) u_{t}^{2} \mathrm{~d} x-\int_{\Omega} q(x)\left(\mu_{1} u_{t}(x, t)+\mu_{2} z(x, 1, t)\right)\left(g * u_{x}\right) \mathrm{d} x \\
& +\int_{\Omega} q(x) a u_{x}\left(\mu_{1} u_{t}(x, t)+\mu_{2} z(x, 1, t)\right) \mathrm{d} x-\int_{\Omega} q(x) u_{t}\left[\left(g^{\prime} \diamond u_{x}\right)(t)-g(t) u_{x}\right] \mathrm{d} x . \tag{4.15}
\end{align*}
$$

We note that

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega} q^{\prime}(x)\left(a u_{x}-g * u_{x}\right)^{2} \mathrm{~d} x=\frac{1}{2} \int_{\Omega}\left[\left(a-\int_{0}^{t} g(s) \mathrm{d} s\right) u_{x}+g \diamond u_{x}\right]^{2} \mathrm{~d} x \\
\leq & \int_{\Omega}|\beta(t)|^{2} u_{x}^{2} \mathrm{~d} x+\int_{\Omega}\left|g \diamond u_{x}\right|^{2} \mathrm{~d} x \leq \int_{\Omega}|\beta(t)|^{2} u_{x}^{2} \mathrm{~d} x+(a-\beta(t)) \int_{\Omega}\left(g \square u_{x}\right) \mathrm{d} x . \tag{4.16}
\end{align*}
$$

Young's inequality gives us for any $\varepsilon_{1}>0$,

$$
\begin{align*}
& \int_{\Omega} q(x) a u_{x}\left(\mu_{1} u_{t}(x, t)+\mu_{2} z(x, 1, t)\right) \mathrm{d} x \leq \varepsilon_{1} M^{2} a^{2} \int_{\Omega} u_{x}^{2} \mathrm{~d} x+\frac{\mu_{1}^{2}}{4 \varepsilon_{1}} \int_{\Omega} u_{t}^{2} \mathrm{~d} x+\frac{\mu_{2}^{2}}{4 \varepsilon_{1}} \int_{\Omega} z^{2}(x, 1, t) \mathrm{d} x, \tag{4.17}\\
& \int_{\Omega} q(x)\left(\mu_{1} u_{t}(x, t)+\mu_{2} z(x, 1, t)\right)\left(g * u_{x}\right) \mathrm{d} x \\
& \leq \varepsilon_{1} M^{2} \int_{\Omega}\left(g * u_{x}\right)^{2} \mathrm{~d} x+\frac{\mu_{1}^{2}}{4 \varepsilon_{1}} \int_{\Omega} u_{t}^{2} \mathrm{~d} x+\frac{\mu_{2}^{2}}{4 \varepsilon_{1}} \int_{\Omega} z^{2}(x, 1, t) \mathrm{d} x \\
& \leq 2 \varepsilon_{1} M^{2}(a-\beta(t))^{2} \int_{\Omega} u_{x}^{2} \mathrm{~d} x+2 M^{2} \varepsilon_{1}(a-\beta(t)) \int_{\Omega}\left(g \square u_{x}\right) \mathrm{d} x+\frac{\mu_{1}^{2}}{4 \varepsilon_{1}} \int_{\Omega} u_{t}^{2} \mathrm{~d} x+\frac{\mu_{2}^{2}}{4 \varepsilon_{1}} \int_{\Omega} z^{2}(x, 1, t) \mathrm{d} x \tag{4.18}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\Omega} q(x) u_{t}\left[\left(g^{\prime} \diamond u_{x}\right)(t)-g(t) u_{x}\right] \mathrm{d} x \leq \frac{M^{2}}{4 \varepsilon_{1}} \int_{\Omega} u_{t}^{2} \mathrm{~d} x+c_{5}^{2} \varepsilon_{1} \int_{\Omega} u_{x}^{2} \mathrm{~d} x+(a-\beta(t)) \varepsilon_{1} \int_{\Omega}\left(g^{\prime} \square u_{x}\right) \mathrm{d} x . \tag{4.19}
\end{equation*}
$$

Inserting (4.16)-(4.19) into (4.15), we get 4.13).
By the same method, taking the derivative of $\mathscr{F}_{1}(t)$ with respect to t, we obtain

$$
\begin{aligned}
\frac{d}{d t} \mathscr{F}_{2}(t)= & -\int_{L_{1}}^{L_{2}} q(x) v_{x t} v_{t} \mathrm{~d} x-\int_{L_{1}}^{L_{2}} q(x) v_{x} v_{t t} \mathrm{~d} x \\
= & {\left[-\frac{1}{2} q(x) v_{t}^{2}\right]_{L_{1}}^{L_{2}}+\frac{1}{2} \int_{L_{1}}^{L_{2}} q^{\prime}(x) v_{t}^{2} \mathrm{~d} x+\frac{1}{2} \int_{L_{1}}^{L_{2}} b q^{\prime}(x) v_{x}^{2} \mathrm{~d} x+\left[-\frac{b}{2} q(x) v_{x}^{2}\right]_{L_{1}}^{L_{2}} } \\
\leq & -\frac{L_{1}+L_{3}-L_{2}}{4\left(L_{2}-L_{1}\right)}\left(\int_{L_{1}}^{L_{2}} v_{t}^{2} \mathrm{~d} x+\int_{L_{1}}^{L_{2}} b v_{x}^{2} \mathrm{~d} x\right)+\frac{L_{1}}{4} v_{t}^{2}\left(L_{1}\right)+\frac{L_{3}-L_{2}}{4} v_{t}^{2}\left(L_{2}\right) \\
& +\frac{b}{4}\left(\left(L_{3}-L_{2}\right) v_{x}^{2}\left(L_{2}, t\right)+L_{1} v_{x}^{2}\left(L_{1}, t\right)\right)
\end{aligned}
$$

Thus, the proof of Lemma 4.3 is finished.
As in [2], we define the functional

$$
\mathscr{F}_{3}(t)=\tau \int_{\Omega} \int_{0}^{1} e^{-\tau \rho} z^{2}(x, \rho, t) \mathrm{d} \rho \mathrm{~d} x
$$

then we have the following estimate.

Lemma $4.4([2])$. The functionals $\mathscr{F}_{3}(t)$ satisfies

$$
\frac{d}{d t} \mathscr{F}_{3}(t) \leq-c_{6}\left(\int_{\Omega} z^{2}(x, 1, t) \mathrm{d} x+\tau \int_{\Omega} \int_{0}^{1} z^{2}(x, \rho, t) \mathrm{d} \rho \mathrm{~d} x\right)+\int_{\Omega} u_{t}^{2}(x, t) \mathrm{d} x
$$

Now, we are ready to prove Theorem 2.2 ,
Proof of Theorem 2.2. We define the Lyapunov functional

$$
\begin{equation*}
L(t)=N_{1} E(t)+N_{2} \mathscr{D}(t)+N_{3} \mathscr{F}_{1}(t)+N_{4} \mathscr{F}_{2}(t)+\mathscr{F}_{3}(t) \tag{4.20}
\end{equation*}
$$

where N_{1}, N_{2}, N_{3} and N_{4} are positive constants that will be fixed later.
Taking the derivative of 4.20 with respect to t and making use of the above lemmas, we have

$$
\begin{align*}
\frac{d}{d t} L(t) \leq & \left\{-N_{1} c_{4}+1+N_{2}+N_{3}\left(\frac{a}{2}+\frac{\mu_{1}^{2}}{2 \varepsilon_{1}}+\frac{M^{2}}{4 \varepsilon_{1}}\right)\right\} \int_{\Omega} u_{t}^{2} \mathrm{~d} x \\
& +\left\{-N_{1} c_{4}-c_{6}+\frac{\mu_{2}^{2} N_{2}}{4 \varepsilon}+\frac{\mu_{2}^{2} N_{3}}{2 \varepsilon_{1}}\right\} \int_{\Omega} z^{2}(x, 1, t) \mathrm{d} x \\
& +\left\{-N_{2}\left(\beta(t)-L^{2} \varepsilon-\varepsilon\right)+N_{3}\left(\varepsilon_{1} M^{2} a^{2}+\beta(t)^{2}+2 M^{2} \varepsilon_{1}(a-\beta(t))^{2}+c_{5}^{2} \varepsilon_{1}\right)\right\} \int_{\Omega} u_{x}^{2} \mathrm{~d} x \\
& +\left\{-\frac{b\left(L_{1}+L_{3}-L_{2}\right)}{4\left(L_{2}-L_{1}\right)} N_{4}-N_{2} b\right\} \int_{L_{1}}^{L_{2}} v_{x}^{2} \mathrm{~d} x+\left\{-\frac{L_{1}+L_{3}-L_{2}}{4\left(L_{2}-L_{1}\right)} N_{4}+N_{2}\right\} \int_{L_{1}}^{L_{2}} v_{t}^{2} \mathrm{~d} x \\
& +\left(N_{4}-b N_{3}\right) \frac{b}{4}\left(\left(L_{3}-L_{2}\right) v_{x}^{2}\left(L_{2}, t\right)+L_{1} v_{x}^{2}\left(L_{1}, t\right)\right) \\
& +\left(N_{4}-a N_{3}\right)\left[\frac{L_{1}}{4} v_{t}^{2}\left(L_{1}, t\right)+\frac{L_{3}-L_{2}}{4} v_{t}^{2}\left(L_{2}, t\right)\right] \\
& +c\left(N_{2}, N_{3}\right) \int_{\Omega}\left(g \square u_{x}\right) \mathrm{d} x+\left(\frac{N_{1}}{2}-c\left(N_{3}\right)\right) \int_{\Omega}\left(g^{\prime} \square u_{x}\right) \mathrm{d} x . \tag{4.21}
\end{align*}
$$

At this moment, we wish all coefficients except the last two in 4.21 will be negative. In fact, under assumption (2.7), we can find N_{2}, N_{3} and N_{4} such that

$$
N_{2}<\frac{L_{1}+L_{3}-L_{2}}{4\left(L_{2}-L_{1}\right)} N_{4}, \quad N_{4}<b N_{3}, \quad N_{4}<a N_{3}, \quad N_{2}>2 N_{3} \beta_{0}
$$

Once the above constants are fixed, we may choose ε and ε_{1} small enough such that

$$
N_{2}\left(L^{2} \varepsilon+\varepsilon\right)+N_{3}\left(\varepsilon_{1} M^{2} a^{2}+2 M^{2} \varepsilon_{1}(a-\beta(t))^{2}+c_{5}^{2} \varepsilon_{1}\right)<N_{2}-N_{3} \beta(t)
$$

Finally, choosing N_{1} large enough such that the first two coefficients in 4.21) are negative and the last coefficient is positive. From the above, we deduce that, there exists two positive constants α_{1} and α_{2} such that 4.21 becomes

$$
\begin{equation*}
\frac{d}{d t} L(t) \leq-\alpha_{1} E(t)+\alpha_{2} \int_{\Omega}\left(g \square u_{x}\right) \mathrm{d} x \tag{4.22}
\end{equation*}
$$

On the other hand, by the definition of the functionals $\mathscr{D}(t), \mathscr{F}_{1}(t), \mathscr{F}_{2}(t), \mathscr{F}_{3}(t)$ and $E(t)$, for N_{1} large enough, there exists a positive constant α_{3} satisfying

$$
\left|N_{2} \mathscr{D}(t)+N_{3} \mathscr{F}_{1}(t)+N_{4} \mathscr{F}_{2}(t)+\mathscr{F}_{3}(t)\right| \leq \alpha_{3} E(t)
$$

which implies that

$$
\left(N_{1}-\alpha_{3}\right) E(t) \leq L(t) \leq\left(N_{1}+\alpha_{3}\right) E(t)
$$

In order to finish the proof of the stability estimates, we need to estimate the last term in (4.22). Exploiting (G2) and 4.1), we have

$$
\begin{equation*}
\xi(t) \int_{\Omega}\left(g \square u_{x}\right) \mathrm{d} x \leq \int_{\Omega}\left[(\xi g) \square u_{x}\right] \mathrm{d} x \leq-\int_{\Omega}\left(g^{\prime} \square u_{x}\right) \mathrm{d} x \leq-2 \frac{d}{d t} E(t) \tag{4.23}
\end{equation*}
$$

Now, we define functionals $\mathscr{L}(t)$ as

$$
\mathscr{L}(t)=\xi(t) L(t)+2 \alpha_{2} E(t)
$$

The fact that $L(t)$ and $E(t)$ are equivalent and (G2) imply that, for some positive constants η_{1} and η_{2},

$$
\begin{equation*}
\eta_{1} E(t) \leq \mathscr{L}(t) \leq \eta_{2} E(t) \tag{4.24}
\end{equation*}
$$

Using (4.23), 4.24) and (G2), we obtain

$$
\begin{aligned}
\frac{d}{d t} \mathscr{L}(t) & =\xi^{\prime}(t) L(t)+\xi(t) \frac{d}{d t} L(t)+2 \alpha_{2} \frac{d}{d t} E(t) \\
& \leq \xi(t)\left(-\alpha_{1} E(t)+\alpha_{2} \int_{\Omega}\left(g \square u_{x}\right) \mathrm{d} x\right)+2 \alpha_{2} \frac{d}{d t} E(t) \\
& \leq-\alpha_{1} \xi(t) E(t) \\
& \leq-\gamma_{0} \xi(t) \mathscr{L}(t)
\end{aligned}
$$

where $\gamma_{0}=\frac{\alpha_{1}}{\eta_{2}}$. We conclude that, for any $\gamma_{1} \in\left(0, \gamma_{0}\right)$,

$$
\begin{equation*}
\frac{d}{d t} \mathscr{L}(t) \leq-\gamma_{1} \xi(t) \mathscr{L}(t) \tag{4.25}
\end{equation*}
$$

A simple integration of 4.25 leads to

$$
\begin{equation*}
\mathscr{L}(t) \leq \mathscr{L}(0) e^{-\gamma_{1} \int_{0}^{t} \xi(s) \mathrm{d} s}, \quad \forall t \geq 0 \tag{4.26}
\end{equation*}
$$

Again, use of (4.24) and 4.26) yields the desired result (2.8). This completes the proof of Theorem 2.2 ,
Remark 4.5. Here we consider some examples to illustrate the energy decay rates obtained by Theorem 2.2 .
Example 1. Let

$$
g(t)=k_{1} e^{-k_{2}(1+t)^{q}}, \quad 0<q<1, \quad k_{1}>0, \quad k_{2}>0
$$

then it is clear that (G2) holds for $\xi(t)=k_{2} q(1+t)^{q-1}$. Consequently, by 2.8 , we obtain the decay result

$$
E(t) \leq \tilde{c_{6}} e^{-\tilde{c_{7}} k_{2}(1+t)^{q}},
$$

where $\tilde{c_{6}}$ and $\tilde{c_{7}}$ are positive constants.
Example 2. If

$$
g(t)=k_{3} e^{-k_{4}[\ln (1+t)]^{p}}, \quad k_{3}>0, \quad k_{4}>0
$$

then our assumption (G2) holds with $\xi(t)=\frac{k_{4} p[\ln (1+t)]^{p-1}}{1+t}$. Eq. (2.8) gives us

$$
E(t) \leq \tilde{c_{8}} e^{-\tilde{c_{9}} k_{4}[\ln (1+t)]^{p}},
$$

where $\tilde{c_{8}}$ and $\tilde{c_{9}}$ are positive constants.

Acknowledgments

The authors express sincere thanks to the editors and anonymous reviewers for their constructive comments and suggestions that helped to improve this paper. This work was supported by the project of Chinese Ministry of Finance (Grant No. GYHY200906006), the National Natural Science Foundation of China (Grant No. 11301277), and the Natural Science Foundation of Jiangsu Province (Grant No. BK20151523).

References

[1] K. Ammari, S. Nicaise, C. Pignotti, Feedback boundary stabilization of wave equations with interior delay, Systems Control Lett., 59 (2010), 623-628. 1
[2] T. A. Apalara, S. A. Messaoudi, M. I. Mustafa, Energy decay in thermoelasticity type III with viscoelastic damping and delay term, Electron. J. Differential Equations, 2012 (2012), 15 pages. 4.4 .4
[3] J. J. Bae, Nonlinear transmission problem for wave equation with boundary condition of memory type, Acta Appl. Math., 110 (2010), 907-919. 1
[4] W. D. Bastos, C. A. Raposo, Transmission problem for waves with frictional damping, Electron. J. Differential Equations, 2007 (2007), 10 pages. 1
[5] S. Berrimi, S. A. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electron. J. Differential Equations, 2004 (2004), 10 pages. 1
[6] S. Berrimi, S. A. Messaoudi, Existence and decay of solutions of a viscoelastic equation with a nonlinear source, Nonlinear Anal., 64 (2006), 2314-2331. 1
[7] M. M. Cavalcanti, V. N. Domingos Cavalcanti, Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping, Differential Integral Equations, 14 (2001), 85-116. 1
[8] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron. J. Differential Equations, 2002 (2002), 14 pages. 1
[9] M. M. Cavalcanti, H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., 42 (2003), 1310-1324.2.1
[10] R. Datko, J. Lagnese, M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156. 1
[11] X. Han, M. Wang, Global existence and blow-up of solutions for nonlinear viscoelastic wave equation with degenerate damping and source, Math. Nachr., 284 (2011), 703-716. 1
[12] M. Kirane, B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62 (2011), 1065-1082. 1
[13] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, (1969).3
[14] W. J. Liu, General decay of the solution for a viscoelastic wave equation with a time-varying delay term in the internal feedback, J. Math. Phys., 54 (2013), 9 pages. 1
[15] W. J. Liu, General decay rate estimate for the energy of a weak viscoelastic equation with an internal time-varying delay term, Taiwanese J. Math., 17 (2013), 2101-2115. 1
[16] W. J. Liu, Arbitrary rate of decay for a viscoelastic equation with acoustic boundary conditions, Appl. Math. Lett., 38 (2014), 155-161.1
[17] W. J. Liu, Stabilization of the wave equation with variable coefficients and a boundary distributed delay, Z. Naturforsch. A, 69 (2014), 547-552. 1
[18] W. J. Liu, K. W. Chen, Existence and general decay for nondissipative distributed systems with boundary frictional and memory dampings and acoustic boundary conditions, Z. Angew. Math. Phys., 66 (2015), 1595-1614. 1
[19] W. J. Liu, K. W. Chen, J. Yu, Existence and general decay for the full von Kármán beam with a thermo-viscoelastic damping, frictional dampings and a delay term, IMA J. Math. Control Inform., (in press). 1
[20] W. J. Liu, Y. Sun, General decay of solutions for a weak viscoelastic equation with acoustic boundary conditions, Z. Angew. Math. Phys., 65 (2014), 125-134. 1
[21] A. Marzocchi, J. E. Muñoz Rivera, M. G. Naso, Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity, Math. Methods Appl. Sci., 25 (2002), 955-980.3. 4
[22] S. A. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl., 341 (2008), 14571467.7
[23] J. E. Muñoz Rivera, H. Portillo Oquendo, The transmission problem of viscoelastic waves, Acta Appl. Math., 62 (2000), 1-21.1
[24] S. Nicaise, C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585 12
[25] C. A. Raposo, The transmission problem for Timoshenko's system of memory type, Int. J. Mod. Math., 3 (2008), 271-293.2
[26] F. Tahamtani, A. Peyravi, Asymptotic behavior and blow-up of solutions for a nonlinear viscoelastic wave equation with boundary dissipation, Taiwanese J. Math., 17 (2013), 1921-1943. 1
[27] S. T. Wu, Asymptotic behavior for a viscoelastic wave equation with a delay term, Taiwanese J. Math., 17 (2013), 765-784.1
[28] S. T. Wu, General decay of solutions for a nonlinear system of viscoelastic wave equations with degenerate damping and source terms, J. Math. Anal. Appl., 406 (2013), 34-48. 1

[^0]: *Corresponding author
 Email addresses: matdhwang@yeah.net (Danhua Wang), ligang@nuist.edu.cn (Gang Li), brucechu@163.com (Biqing Zhu)

