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Abstract

In this paper, we consider a transmission problem in a bounded domain with a viscoelastic term and
a delay term. Under appropriate hypotheses on the relaxation function and the relationship between the
weight of the damping and the weight of the delay, we prove the well-posedness result by using Faedo-
Galerkin method. By introducing suitable Lyapunov functionals, we establish a general decay result, from
which the exponential and polynomial types of decay are only special cases. c©2016 All rights reserved.
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1. Introduction

In this paper, we study the transmission system with a viscoelastic term and a delay term
utt(x, t)− auxx(x, t) +

∫ t

0
g(t− s)uxx(x, s)ds

+µ1ut(x, t) + µ2ut(x, t− τ) = 0, (x, t) ∈ Ω× (0,+∞),

vtt(x, t)− bvxx(x, t) = 0, (x, t) ∈ (L1, L2)× (0,+∞),

(1.1)
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under the boundary and transmission conditions

u(0, t) = u(L3, t) = 0,

u(Li, t) = v(Li, t), i = 1, 2,(
a−

∫ t

0
g(s)ds

)
ux(Li, t) = bvx(Li, t), i = 1, 2,

(1.2)

and the initial conditions
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

ut(x, t− τ) = f0(x, t− τ), x ∈ Ω, t ∈ [0, τ ],

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (L1, L2),

(1.3)

where 0 < L1 < L2 < L3, Ω = (0, L1) ∪ (L2, L3), a, b, µ1, µ2 are positive constants, and τ > 0 is the delay.

Figure 1: The configuration.

The transmission problems like (1.1)-(1.3) related to the wave propagation over a body consists of two
different types of materials: the elastic part and the viscoelastic part.

In recent years, many authors have investigated wave equations with viscoelastic damping and showed
that the dissipation produced by the viscoelastic part can produce the decay of the solution, see [5, 6, 7,
8, 11, 16, 18, 20, 22, 26, 27, 28] and the references therein. For example, Cavalcanti et al. [8] studied the
following equation:

utt −∆u+

∫ t

0
g(t− τ)∆u(τ)dτ + a(x)ut + |u|γu = 0, in Ω× (0,∞),

where a : Ω → R+. Under the conditions that a(x) ≥ a0 > 0 on ω ⊂ Ω, with ω satisfying some geometry
restrictions and

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t), t ≥ 0,

the authors showed the exponential decay. Then Berrimi and Messaoudi [5] proved the same result under
weaker conditions on both a and g. Berrimi and Messaoudi [6] considered the equation

utt −∆u+

∫ t

0
g(t− τ)∆u(τ)dτ = |u|γu, in Ω× (0,∞),

with only the viscoelastic dissipation and proved that the solution energy decays exponentially or polyno-
mially depending on the rate of the decay of the relaxation function g. In all previous works, the rates of
decay of relaxation functions were either exponential or polynomial type. For a wider class of relaxation
functions, Messaoudi [22] investigated the following viscoelastic equation:

utt −∆u+

∫ t

0
g(t− τ)∆u(τ)dτ = 0, in Ω× (0,∞),

in a bounded domain, and established a more general decay result, from which the usual exponential and
polynomial decay rates are only special cases.
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It is well known that delay effects, which arise in many practical problems, may be sources of instability.
Hence, the control of PDEs with time delay effects has become an active area of research in recent years.
For example, it was proved in [10, 15, 17, 19, 24] that an arbitrarily small delay may destabilize a system
which is uniformly asymptotically stable in the absence of delay unless additional conditions or control
terms were used. A boundary stabilization problem for the wave equation with interior delay was studied in
[1]. The authors proved an exponential stability result under some Lions geometric condition. Kirane and
Said-Houari [12] considered the viscoelastic wave equation with a delay

utt(x, t)−∆u(x, t) +

∫ t

0
g(t− s)∆u(x, t− s)ds+ µ1ut(x, t) + µ2ut(x, t− τ) = 0, in Ω× (0,∞),

where µ1 and µ2 are positive constants. They established a general energy decay result under the condition
that 0 ≤ µ2 ≤ µ1. Later, Liu [14] improved this result by considering the equation with a time-varying delay
term, with not necessarily positive coefficient µ2 of the delay term.

Transmission problems related to (1.1)-(1.3) have also been extensively studied. Bastos and Raposo [4]
investigated the transmission problem with frictional damping and showed the well-posedness and expo-
nential stability of the total energy. Muñoz Rivera and Portillo Oquendo [23] considered the transmission
problem of viscoelastic waves and proved that the dissipation produced by the viscoelastic part can produce
exponential decay of the solution, no matter how small its size is. Bae [3] studied the transmission problem,
in which one component is clamped and the other is in a viscoelastic fluid producing a dissipative mechanism
on the boundary, and established a decay result which depends on the rate of the decay of the relaxation
function.

Motivated by the above results, we intend to consider the well-posedness and the general decay result of
problem (1.1)-(1.3) under some hypotheses in this paper. The main difficulty we encounter here arises from
the simultaneous appearance of the viscoelastic term and the delay term. Our first intention is to study the
well-posedness of problem (1.1)-(1.3) by making use of Faedo-Galerkin procedure, that is Faedo-Galerkin
approximation together with energy estimates. For asymptotic behavior, we prove a general decay result
from which the exponential and polynomial types of decay are only special cases by introducing suitable
Lyapunov functionals.

The paper is organized as follows. In Section 2, we give some materials needed for our work and state
our main results. In Section 3, we prove the well-posedness of the problem. The general decay result is
proved in Section 4.

2. Preliminaries and main results

In this section, we present some materials that shall be used in order to prove our main results. Let us
first introduce the following notations:

(g ∗ h)(t) :=

∫ t

0
g(t− s)h(s)ds,

(g � h)(t) :=

∫ t

0
g(t− s)|h(t)− h(s)|ds,

(g�h)(t) :=

∫ t

0
g(t− s)|h(t)− h(s)|2ds.

We easily see that the above operators satisfy

(g ∗ h)(t) =

(∫ t

0
g(s)ds

)
h(t)− (g � h)(t),

|(g � h)(t)|2 ≤
(∫ t

0
|g(s)|ds

)
(|g|�h)(t).
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Lemma 2.1 ([9]). For any g, h ∈ C1(R), the following equation holds

2[g ∗ h]h′ = g′�h− g(t)|h|2 − d

dt

{
g�h−

(∫ t

0
g(s)ds

)
|h|2
}
.

Proof. Differentiating the expression

g�h−
(∫ t

0
g(s)ds

)
|h|2,

we get the result.

For the relaxation function g, we assume the conditions
(G1) g: R+ → R+ is a C1 function satisfying

g ∈ L1(0,∞), g(0) > 0, 0 < β(t) := a−
∫ t

0
g(s)ds and 0 < β0 := a−

∫ ∞
0

g(s)ds.

(G2) There exists a nonincreasing differentiable function ξ(t): R+ → R+ such that

g′(t) ≤ −ξ(t)g(t), ∀t ≥ 0 and

∫ ∞
0

ξ(t)dt = +∞.

These hypotheses imply that
β0 ≤ β(t) ≤ a. (2.1)

As in [24], we introduce the following variable:

z(x, ρ, t) = ut(x, t− τρ), (x, ρ, t) ∈ Ω× (0, 1)× (0,∞).

Then the above variable z satisfies

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, (x, ρ, t) ∈ Ω× (0, 1)× (0,∞). (2.2)

Thus, system (1.1) becomes
utt(x, t)− auxx(x, t) + g ∗ uxx

+µ1ut(x, t) + µ2z(x, 1, t) = 0, (x, t) ∈ Ω× (0,+∞),

vtt(x, t)− bvxx(x, t) = 0, (x, t) ∈ (L1, L2)× (0,+∞),

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, (x, ρ, t) ∈ Ω× (0, 1)× (0,+∞),

(2.3)

and the boundary and transmission conditions (1.2) becomes

u(0, t) = u(L3, t) = 0,

u(Li, t) = v(Li, t), i = 1, 2, t ∈ (0,+∞),(
a−

∫ t

0
g(s)ds

)
ux(Li, t) = bvx(Li, t), i = 1, 2, t ∈ (0,+∞),

z(x, 0, t) = ut(x, t), (x, t) ∈ Ω× (0,+∞),

z(x, 1, t) = f0(x, t− τ), (x, t) ∈ Ω× (0, τ).

(2.4)

Similar to [25], we denote the Hilbert spaces

V =

{
(u, v) ∈ H1(Ω) ∩H1(L1, L2) : u(0, t) = u(L3, 0) = 0, u(Li, t) = v(Li, t),(
a−

∫ t

0
g(s)ds

)
ux(Li, t) = bvx(Li, t), i = 1, 2

}
and
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L2 = L2(Ω)× L2(L1, L2).

Then the existence result reads as follows:

Theorem 2.1. Assume that µ2 ≤ µ1, (G1) and (G2) hold. Then given (u0, v0) ∈ V, (u1, v1) ∈ L2, and
f0 ∈ L2((0, 1),Ω), there exists a unique weak solution (u, v, z) of problem (2.3)-(2.4) such that

(u, v) ∈ C(0,∞;V) ∩ C1(0,∞;L2),

z ∈ C(0,∞;L2((0, 1),Ω)).

For any regular solution of (1.1)-(1.3), we define the energy as

E(t) =
1

2

∫
Ω
u2
t (x, t)dx+

1

2
β(t)

∫
Ω
u2
x(x, t)dx+

1

2

∫
Ω

(g�ux)dx

+
1

2

∫ L2

L1

[
v2
t (x, t) + bv2

x(x, t)
]

dx+
ζ

2

∫
Ω

∫ 1

0
z2(x, ρ, t)dρdx, (2.5)

where ζ is a positive constant such that

τµ2 < ζ < τ(2µ1 − µ2). (2.6)

Our decay result reads as follows:

Theorem 2.2. Let (u, v, z) be the solution of problem (1.1)-(1.3). Assume that µ2 < µ1, (G1), (G2) and

b >
8(L2 − L1)

L1 + L3 − L2
β0, a >

8(L2 − L1)

L1 + L3 − L2
β0 (2.7)

hold, then there exist constants K, k > 0 such that, for all t ∈ R+,

E(t) ≤ Ke−k
∫ t
0 ξ(s)ds. (2.8)

3. Well-posedness of the problem

In this section, we will prove the existence and uniqueness of problem (1.1)-(1.3) by using Faedo-Galerkin
method.

Proof of Theorem 2.1. We divide the proof of Theorem 2.1 into two steps: the Faedo-Galerkin approximation
and the energy estimates.

Step 1: Faedo-Galerkin approximation.
We construct approximations of the solution (u, v, z) by the Faedo-Galerkin method as follows. For

n ≥ 1, let Wn = span{w1, . . . , wi} be a Hilbertian basis of the space H1(Ω) and Yn = span{ψ1, . . . , ψi} be a
Hilbertian basis of the space H1(L1, L2).

Now, we define for 1 ≤ j ≤ n the sequence ϕj(x, ρ) as follows:

ϕj(x, 0) = wj(x).

Then we may extend ϕj(x, 0) by ϕj(x, ρ) over L2((0, 1),Ω) and denote Vn = span{ϕ1, . . . , ϕn}.
We choose sequences

(
u

(n)
0

)
,
(
u

(n)
1

)
in Wn,

(
v

(n)
0

)
,
(
v

(n)
1

)
in Yn and a sequence

(
z

(n)
0

)
in Vn such that

(u
(n)
0 , u

(n)
1 , v

(n)
0 , v

(n)
1 )→ (u0, u1, v0, v1) strongly in V and z

(n)
0 → f0 strongly in L2((0, 1),Ω).

We define the approximations(
u(n)(x, t), v(n)(x, t)

)
=

n∑
i=1

h
(n)
i (t)(wi(x), ψi(x)) and z(n)(x, ρ, t) =

n∑
i=1

f
(n)
i (t)ϕi(x),
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where
(
u(n)(t), v(n)(t), z(n)(t)

)
is a solution to the following Cauchy problem:

∫
Ω
u

(n)
tt widx−

[(
au(n)

x − g ∗ u(n)
x

)
wi

]
∂Ω

+

∫
Ω
au(n)

x wixdx−
∫

Ω

(
g ∗ u(n)

x

)
wixdx

+

∫
Ω
µ1u

(n)
t widx+

∫
Ω
µ2z

(n)(x, 1, t)widx = 0,∫ L2

L1

v
(n)
tt ψidx+

∫ L2

L1

bv(n)
x ψixdx−

[
bv(n)
x ψi

]L2

L1

= 0,

z(n)(x, 0, t) = u
(n)
t (x, t),(

u(n)(0), u
(n)
t (0)

)
=
(
u

(n)
0 , u

(n)
1

)
(3.1)

and 
∫

Ω

(
τz

(n)
t (x, ρ, t) + z(n)

ρ (x, ρ, t)
)
ϕidx = 0,

z(n)(ρ, 0) = z
(n)
0 .

(3.2)

Similar to [21], according to the standard theory of ordinary differential equations, the finite dimensional

problem (3.1)-(3.2) have a solution
(
h

(n)
i (t), f

(n)
i (t)

)
i=1,...,n

defined on [0, tn).

Step 2: Energy estimates.

Multiplying the first and the second equation of (3.1) by
(
h

(n)
i

)′
(t), we have∫

Ω
u

(n)
tt u

(n)
t dx−

[(
au(n)

x − g ∗ u(n)
x

)
wi

]
∂Ω
×
(
h

(n)
i

)′
(t) +

∫
Ω
au(n)

x u
(n)
xt dx

−
∫

Ω

(
g ∗ u(n)

x

)
u

(n)
xt dx+

∫
Ω
µ1u

(n)
t u

(n)
t dx+

∫
Ω
µ2z

(n)(x, 1, t)u
(n)
t dx = 0 (3.3)

and ∫ L2

L1

v
(n)
tt v

(n)
t dx+

∫ L2

L1

bv(n)
x v

(n)
xt dx−

[
bv(n)
x ψi

]L2

L1

×
(
h

(n)
i

)′
(t) = 0. (3.4)

Multiplying the first equation of (3.2) by
ζ

τ
f

(n)
i (t) and integrating over (0, t)× (0, 1), we get

ζ

2

∫
Ω

∫ 1

0

(
z(n)

)2
(x, ρ, t)dρdx+

ζ

τ

∫ t

0

∫
Ω

∫ 1

0
z(n)
ρ z(n)(x, ρ, s)dρdxds =

ζ

2

∫
Ω

∫ 1

0

(
z

(n)
0

)2
dρdx. (3.5)

To handle the last term in the left-hand side of (3.5), we remark that∫ t

0

∫
Ω

∫ 1

0
z(n)
ρ z(n)(x, ρ, s)dρdxds =

1

2

∫ t

0

∫
Ω

∫ 1

0

∂

∂ρ

(
z(n)

)2
(x, ρ, s)dρdxds

=
1

2

∫ t

0

∫
Ω

((
z(n)

)2
(x, 1, s)−

(
z(n)

)2
(x, 0, s)

)
dxds. (3.6)

Integrating (3.3) and (3.4) over (0, t), counting them and (3.5) up, taking into account (3.6) and using
Lemma 2.1, we obtain

En(t) +

(
µ1 −

ζ

2τ

)∫ t

0

∫
Ω

(
u

(n)
t

)2
(x, s)dxds+

ζ

2τ

∫ t

0

∫
Ω

(
z(n)

)2
(x, 1, s)dxds

+ µ2

∫ t

0

∫
Ω
z(n)(x, 1, s)u

(n)
t (x, s)dxds+

1

2

∫ t

0

∫
Ω
g(t)

∣∣∣u(n)
x

∣∣∣2 dxds− 1

2

∫ t

0

∫
Ω

(
g′�u(n)

x

)
dxds

=En(0), (3.7)
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where

En(t) =
1

2

∫
Ω

(
u

(n)
t

)2
(x, t)dx+

1

2
β(t)

∫
Ω

(
u(n)
x

)2
(x, t)dx+

1

2

∫
Ω

(
g�u(n)

x

)
dx

+
1

2

∫ L2

L1

[(
v

(n)
t

)2
(x, t) + b

(
v(n)
x

)2
(x, t)

]
dx+

ζ

2

∫
Ω

∫ 1

0

(
z(n)

)2
(x, ρ, t)dρdx. (3.8)

At this point, we have to distinguish the following two cases:
Case 1: We suppose that µ2 < µ1 and choose ζ satisfying (2.6). Young’s inequality gives us that

En(t) +

(
µ1 −

ζ

2τ
− µ2

2

)∫ t

0

∫
Ω

(
u

(n)
t

)2
(x, s)dxds+

(
ζ

2τ
− µ2

2

)∫ t

0

∫
Ω

(
z(n)

)2
(x, 1, s)dxds

+
1

2

∫ t

0

∫
Ω
g(t)

∣∣∣u(n)
x

∣∣∣2 dxds− 1

2

∫ t

0

∫
Ω

(
g′�u(n)

x

)
dxds

≤En(0).

Consequently, using (2.6), we have

En(t) + c1

∫ t

0

∫
Ω

(
u

(n)
t

)2
(x, s)dxds+ c2

∫ t

0

∫
Ω

(
z(n)

)2
(x, 1, s)dxds

+
1

2

∫ t

0

∫
Ω
g(t)

∣∣∣u(n)
x

∣∣∣2 dxds− 1

2

∫ t

0

∫
Ω

(
g′�u(n)

x

)
dxds

≤En(0). (3.9)

Case 2: We suppose that µ2 = µ1 = µ and choose ζ = τµ. Then (3.9) takes the form

En(t) +
1

2

∫ t

0

∫
Ω
g(t)

∣∣∣u(n)
x

∣∣∣2 dxds− 1

2

∫ t

0

∫
Ω

(
g′�u(n)

x

)
dxds ≤ En(0). (3.10)

Now, since the sequences
(
u

(n)
0

)
n∈N

,
(
u

(n)
1

)
n∈N

,
(
v

(n)
0

)
n∈N

,
(
v

(n)
1

)
n∈N

,
(
z

(n)
0

)
n∈N

converge and using

(G2), in the both cases we can find a positive constant c3 independent of n such that

En(t) ≤ c3. (3.11)

Therefore, using the fact that β(t) ≥ β0, the estimate (3.11) together with (3.8) give us, for all n ∈ N,
tn = T , we deduce (

u(n)
)
n∈N

is bounded in L∞(0, T ;H1(Ω)),(
v(n)

)
n∈N

is bounded in L∞(0, T ;H1(L1, L2)),(
u

(n)
t

)
n∈N

is bounded in L∞(0, T ;L2(Ω)),(
v

(n)
t

)
n∈N

is bounded in L∞(0, T ;L2(L1, L2)),(
z(n)

)
n∈N

is bounded in L∞(0, T ;L2((0, 1),Ω)). (3.12)

Consequently, we conclude that

u(n) ⇀ u weak∗ in L∞(0, T ;H1(Ω)),

v(n) ⇀ v weak∗ in L∞(0, T ;H1(L1, L2)),

u
(n)
t ⇀ ut weak∗ in L∞(0, T ;L2(Ω)),
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v
(n)
t ⇀ vt weak∗ in L∞(0, T ;L2(L1, L2)),

z(n) ⇀ z weak∗ in L∞(0, T ;L2((0, 1),Ω)).

From (3.12), we have
(
u(n)

)
n∈N is bounded in L∞(0, T ;H1(Ω)) and

(
v(n)

)
n∈N is bounded in

L∞(0, T ;H1(L1, L2)). Then,
(
u(n)

)
n∈N is bounded inL2(0, T ;H1(Ω)) and

(
v(n)

)
n∈N is bounded in

L2(0, T ;H1(L1, L2)). Consequently,
(
u(n)

)
n∈N is bounded in H1(0, T ;H1(Ω)) and

(
v(n)

)
n∈N is bounded

in H1(0, T ;H1(L1, L2)).
Since the embedding

H1(0, T ;H1(Ω)) ↪→ L2(0, T ;L2(Ω))

and
H1(0, T ;H1(L1, L2)) ↪→ L2(0, T ;L2(L1, L2))

are compact, using Aubin-Lion’s theorem [13], we can extract subsequences
(
u(k)

)
k∈N of

(
u(n)

)
n∈N and(

v(k)
)
k∈N of

(
v(n)

)
n∈N such that

u(k) → u strongly in L2(0, T ;L2(Ω))

and
v(k) → v strongly in L2(0, T ;L2(L1, L2)).

Therefore,
u(k) → u strongly and a.e. on (0, T )× Ω

and
v(k) → v strongly and a.e. on (0, T )× (L1, L2).

The proof now can be completed arguing as in Theorem 3.1 of [13].

4. General decay of the solution

In this section, we consider the asymptotic behavior of problem (1.1)-(1.3). For the proof of Theorem
2.2, we use the following lemmas.

Lemma 4.1. Let (u, v, z) be the solution of problem (2.3)-(2.4). Assume that µ2 < µ1. Then we have the
inequality

d

dt
E(t) ≤ −c4

[∫
Ω
u2
t (x, t)dx+

∫
Ω
z2(x, 1, t)dx

]
+

1

2

∫
Ω

(g′�ux)(t)dx. (4.1)

Proof. Multiplying the first equation of (2.3) by ut, the second equation of (2.3) by vt, integrating by parts
and (2.4), we obtain

1

2

d

dt

{∫
Ω

[u2
t (x, t) + au2

x(x, t)]dx

}
+

1

2

d

dt

{∫ L2

L1

[v2
t (x, t) + bv2

x(x, t)]dx

}
=− µ1

∫
Ω
u2
t (x, t)dx− µ2

∫
Ω
ut(x, t)z(x, 1, t)dx+

∫ t

0
g(t− s)

∫
Ω
ux(s)uxt(t)dsdx (4.2)

for any regular solution. By using standard arguments of density, we can extend the result to weak solutions.
From Lemma 2.1, the last term in the right-hand side of (4.2) can be rewritten as∫ t

0
g(t− s)

∫
Ω
ux(s)uxt(t)dsdx+

1

2
g(t)

∫
Ω
u2
xdx

=
1

2

d

dt

{∫ t

0
g(s)

∫
Ω
u2
xdxds−

∫
Ω

(g�ux)(t)dx

}
+

1

2

∫
Ω

(g′�ux)(t)dx.
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So (4.2) becomes

1

2

d

dt

{∫
Ω

[
u2
t (x, t) + β(t)u2

x(x, t)
]

dx

}
+

1

2

d

dt

{∫ L2

L1

[v2
t (x, t) + bv2

x(x, t)]dx

}
+

1

2

d

dt

∫
Ω

(g�ux)(t)dx

=− µ1

∫
Ω
u2
t (x, t)dx− µ2

∫
Ω
ut(x, t)z(x, 1, t)dx−

1

2
g(t)

∫
Ω
u2
xdx+

1

2

∫
Ω

(g′�ux)(t)dx. (4.3)

Now, multiplying the third equation of (2.3) by ζ
τ z and integrating the result over Ω× (0, 1) with respect

to x and ρ respectively, we have

ζ

2

d

dt

∫
Ω

∫ 1

0
z2(x, ρ, t)dρdx = − ζ

2τ

∫
Ω

(z2(x, 1)− z2(x, 0))dx. (4.4)

Using (2.5), (4.3) and (4.4), we obtain

d

dt
E(t) =−

(
µ1 −

ζ

2τ

)∫
Ω
u2
t (x, t)dx−

ζ

2τ

∫
Ω
z2(x, 1, t)dx− µ2

∫
Ω
ut(x, t)z(x, 1, t)dx

− 1

2
g(t)

∫
Ω
u2
xdx+

1

2

∫
Ω

(g′�ux)(t)dx. (4.5)

By Young’s inequality in (4.5), we get

d

dt
E(t) ≤−

(
µ1 −

ζ

2τ
− µ2

2

)∫
Ω
u2
t (x, t)dx−

(
ζ

2τ
− µ2

2

)∫
Ω
z2(x, 1, t)dx+

1

2

∫
Ω

(g′�ux)(t)dx.

Then exploiting (2.6) our conclusion holds. The proof is complete.

Now, we define the functional D(t) as follows

D(t) =

∫
Ω
uutdx+

µ1

2

∫
Ω
u2dx+

∫ L2

L1

vvtdx.

Then we have the following estimate.

Lemma 4.2. The functional D(t) satisfies

d

dt
D(t) ≤

∫
Ω
u2
tdx+

∫ L2

L1

v2
t dx+ (L2ε+ ε− β(t))

∫
Ω
u2
xdx+

1

4ε
(a− β(t))

∫
Ω

(g�ux)dx

+
µ2

2

4ε

∫
Ω
z2(x, 1, t)dx−

∫ L2

L1

bv2
xdx. (4.6)

Proof. Taking the derivative of D(t) with respect to t and using (2.3), we have

d

dt
D(t) =

∫
Ω
u2
tdx−

∫
Ω

(aux − g ∗ ux)uxdx− µ2

∫
Ω
z(x, 1, t)udx+

∫ L2

L1

v2
t dx−

∫ L2

L1

bv2
xdx

=

∫
Ω
u2
tdx− β(t)

∫
Ω
u2
xdx−

∫
Ω

(g � ux)uxdx− µ2

∫
Ω
z(x, 1, t)udx+

∫ L2

L1

v2
t dx−

∫ L2

L1

bv2
xdx. (4.7)

By the boundary condition (1.2), we have

u2(x, t) =

(∫ x

0
ux(x, t)dx

)2

≤ L1

∫ L1

0
u2
x(x, t)dx, x ∈ [0, L1],

u2(x, t) ≤ (L3 − L2)

∫ L3

L2

u2
x(x, t)dx, x ∈ [L2, L3],
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which implies ∫
Ω
u2(x, t)dx ≤ L2

∫
Ω
u2
xdx, x ∈ Ω, (4.8)

where L = max{L1, L3 − L2}. By exploiting Young’s inequality and (4.8), we get for any ε > 0

µ2

∫
Ω
z(x, 1, t)udx ≤ µ2

2

4ε

∫
Ω
z2(x, 1, t)dx+ L2ε

∫
Ω
u2
xdx. (4.9)

Young’s inequality and (G1) imply that∫
Ω

(g � ux)uxdx ≤ ε
∫

Ω
u2
xdx+

1

4ε

∫
Ω

(g � ux)2dx

≤ ε
∫

Ω
u2
xdx+

1

4ε
(a− β(t))

∫
Ω

(g�ux)dx. (4.10)

Inserting the estimates (4.9) and (4.10) into (4.7), then (4.6) is fulfilled. The proof is complete.

Now, as in Lemma 4.5 of [21], we introduce the function

q(x) =



x− L1

2
, x ∈ [0, L1],

L1

2
− L1 + L3 − L2

2(L2 − L1)
(x− L1), x ∈ (L1, L2),

x− L2 + L3

2
, x ∈ [L2, L3].

(4.11)

It is easy to see that q(x) is bounded, that is |q(x)| ≤ M , where M = max

{
L1

2
,
L3 − L2

2

}
is a positive

constant. And we define the functionals

F1(t) = −
∫

Ω
q(x)ut(aux − g ∗ ux)dx, F2(t) = −

∫ L2

L1

q(x)vxvtdx. (4.12)

Then we have the following estimates.

Lemma 4.3. The functionals F1(t) and F2(t) satisfy

d

dt
F1(t) ≤

[
−q(x)

2
(aux − g ∗ ux)2

]
∂Ω

−
[a

2
q(x)u2

t

]
∂Ω

+

[
a

2
+
µ2

1

2ε1
+
M2

4ε1

] ∫
Ω
u2
tdx

+
[
ε1M

2a2 + β2(t) + 2M2ε1(a− β(t))2 + c2
5ε1

] ∫
Ω
u2
xdx+

µ2
2

2ε1

∫
Ω
z2(x, 1, t)dx

+ (1 + 2M2ε1)(a− β(t))

∫
Ω

(g�ux)dx+ (a− β(t))ε1

∫
Ω

(g′�ux)dx (4.13)

and

d

dt
F2(t) ≤− L1 + L3 − L2

4(L2 − L1)

(∫ L2

L1

v2
t dx+

∫ L2

L1

bv2
xdx

)
+
L1

4
v2
t (L1) +

L3 − L2

4
v2
t (L2)

+
b

4

(
(L3 − L2)v2

x(L2, t) + L1v
2
x(L1, t)

)
. (4.14)

Proof. Taking the derivative of F1(t) with respect to t and using (2.3), we get

d

dt
F1(t) =−

∫
Ω
q(x)utt(aux − g ∗ ux)dx−

∫
Ω
q(x)ut

(
auxt − g(t)ux(t) + (g′ � ux)(t)

)
dx
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=

[
−q(x)

2
(aux − g ∗ ux)2

]
∂Ω

+
1

2

∫
Ω
q′(x)(aux − g ∗ ux)2dx−

[a
2
q(x)u2

t

]
∂Ω

+
a

2

∫
Ω
q′(x)u2

tdx−
∫

Ω
q(x)(µ1ut(x, t) + µ2z(x, 1, t))(g ∗ ux)dx

+

∫
Ω
q(x)aux(µ1ut(x, t) + µ2z(x, 1, t))dx−

∫
Ω
q(x)ut[(g

′ � ux)(t)− g(t)ux]dx. (4.15)

We note that

1

2

∫
Ω
q′(x)(aux − g ∗ ux)2dx =

1

2

∫
Ω

[(
a−

∫ t

0
g(s)ds

)
ux + g � ux

]2

dx

≤
∫

Ω
|β(t)|2u2

xdx+

∫
Ω
|g � ux|2dx ≤

∫
Ω
|β(t)|2u2

xdx+ (a− β(t))

∫
Ω

(g�ux)dx. (4.16)

Young’s inequality gives us for any ε1 > 0,∫
Ω
q(x)aux(µ1ut(x, t) + µ2z(x, 1, t))dx ≤ ε1M

2a2

∫
Ω
u2
xdx+

µ2
1

4ε1

∫
Ω
u2
tdx+

µ2
2

4ε1

∫
Ω
z2(x, 1, t)dx, (4.17)

∫
Ω
q(x)(µ1ut(x, t) + µ2z(x, 1, t))(g ∗ ux)dx

≤ε1M
2

∫
Ω

(g ∗ ux)2dx+
µ2

1

4ε1

∫
Ω
u2
tdx+

µ2
2

4ε1

∫
Ω
z2(x, 1, t)dx

≤2ε1M
2(a− β(t))2

∫
Ω
u2
xdx+ 2M2ε1(a− β(t))

∫
Ω

(g�ux)dx+
µ2

1

4ε1

∫
Ω
u2
tdx+

µ2
2

4ε1

∫
Ω
z2(x, 1, t)dx (4.18)

and ∫
Ω
q(x)ut[(g

′ � ux)(t)− g(t)ux]dx ≤ M2

4ε1

∫
Ω
u2
tdx+ c2

5ε1

∫
Ω
u2
xdx+ (a− β(t))ε1

∫
Ω

(g′�ux)dx. (4.19)

Inserting (4.16)-(4.19) into (4.15), we get (4.13).
By the same method, taking the derivative of F1(t) with respect to t, we obtain

d

dt
F2(t) =−

∫ L2

L1

q(x)vxtvtdx−
∫ L2

L1

q(x)vxvttdx

=

[
−1

2
q(x)v2

t

]L2

L1

+
1

2

∫ L2

L1

q′(x)v2
t dx+

1

2

∫ L2

L1

bq′(x)v2
xdx+

[
− b

2
q(x)v2

x

]L2

L1

≤− L1 + L3 − L2

4(L2 − L1)

(∫ L2

L1

v2
t dx+

∫ L2

L1

bv2
xdx

)
+
L1

4
v2
t (L1) +

L3 − L2

4
v2
t (L2)

+
b

4

(
(L3 − L2)v2

x(L2, t) + L1v
2
x(L1, t)

)
.

Thus, the proof of Lemma 4.3 is finished.

As in [2], we define the functional

F3(t) = τ

∫
Ω

∫ 1

0
e−τρz2(x, ρ, t)dρdx,

then we have the following estimate.
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Lemma 4.4 ([2]). The functionals F3(t) satisfies

d

dt
F3(t) ≤ −c6

(∫
Ω
z2(x, 1, t)dx+ τ

∫
Ω

∫ 1

0
z2(x, ρ, t)dρdx

)
+

∫
Ω
u2
t (x, t)dx.

Now, we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. We define the Lyapunov functional

L(t) = N1E(t) +N2D(t) +N3F1(t) +N4F2(t) + F3(t), (4.20)

where N1, N2, N3 and N4 are positive constants that will be fixed later.
Taking the derivative of (4.20) with respect to t and making use of the above lemmas, we have

d

dt
L(t) ≤

{
−N1c4 + 1 +N2 +N3

(
a

2
+
µ2

1

2ε1
+
M2

4ε1

)}∫
Ω
u2
tdx

+

{
−N1c4 − c6 +

µ2
2N2

4ε
+
µ2

2N3

2ε1

}∫
Ω
z2(x, 1, t)dx

+
{
−N2(β(t)− L2ε− ε) +N3

(
ε1M

2a2 + β(t)2 + 2M2ε1(a− β(t))2 + c2
5ε1

)} ∫
Ω
u2
xdx

+

{
−b(L1 + L3 − L2)

4(L2 − L1)
N4 −N2b

}∫ L2

L1

v2
xdx+

{
−L1 + L3 − L2

4(L2 − L1)
N4 +N2

}∫ L2

L1

v2
t dx

+ (N4 − bN3)
b

4

(
(L3 − L2)v2

x(L2, t) + L1v
2
x(L1, t)

)
+ (N4 − aN3)

[
L1

4
v2
t (L1, t) +

L3 − L2

4
v2
t (L2, t)

]
+ c(N2, N3)

∫
Ω

(g�ux)dx+

(
N1

2
− c(N3)

)∫
Ω

(g′�ux)dx. (4.21)

At this moment, we wish all coefficients except the last two in (4.21) will be negative. In fact, under
assumption (2.7), we can find N2, N3 and N4 such that

N2 <
L1 + L3 − L2

4(L2 − L1)
N4, N4 < bN3, N4 < aN3, N2 > 2N3β0.

Once the above constants are fixed, we may choose ε and ε1 small enough such that

N2(L2ε+ ε) +N3

(
ε1M

2a2 + 2M2ε1(a− β(t))2 + c2
5ε1

)
< N2 −N3β(t).

Finally, choosing N1 large enough such that the first two coefficients in (4.21) are negative and the last
coefficient is positive. From the above, we deduce that, there exists two positive constants α1 and α2 such
that (4.21) becomes

d

dt
L(t) ≤ −α1E(t) + α2

∫
Ω

(g�ux)dx. (4.22)

On the other hand, by the definition of the functionals D(t), F1(t), F2(t), F3(t) and E(t), for N1 large
enough, there exists a positive constant α3 satisfying

|N2D(t) +N3F1(t) +N4F2(t) + F3(t)| ≤ α3E(t),

which implies that
(N1 − α3)E(t) ≤ L(t) ≤ (N1 + α3)E(t).

In order to finish the proof of the stability estimates, we need to estimate the last term in (4.22).
Exploiting (G2) and (4.1), we have
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ξ(t)

∫
Ω

(g�ux)dx ≤
∫

Ω
[(ξg)�ux]dx ≤ −

∫
Ω

(g′�ux)dx ≤ −2
d

dt
E(t). (4.23)

Now, we define functionals L (t) as

L (t) = ξ(t)L(t) + 2α2E(t).

The fact that L(t) and E(t) are equivalent and (G2) imply that, for some positive constants η1 and η2,

η1E(t) ≤ L (t) ≤ η2E(t), (4.24)

Using (4.23), (4.24) and (G2), we obtain

d

dt
L (t) = ξ′(t)L(t) + ξ(t)

d

dt
L(t) + 2α2

d

dt
E(t)

≤ ξ(t)
(
−α1E(t) + α2

∫
Ω

(g�ux)dx

)
+ 2α2

d

dt
E(t)

≤ −α1ξ(t)E(t)

≤ −γ0ξ(t)L (t),

where γ0 =
α1

η2
. We conclude that, for any γ1 ∈ (0, γ0),

d

dt
L (t) ≤ −γ1ξ(t)L (t). (4.25)

A simple integration of (4.25) leads to

L (t) ≤ L (0)e−γ1
∫ t
0 ξ(s)ds, ∀t ≥ 0. (4.26)

Again, use of (4.24) and (4.26) yields the desired result (2.8). This completes the proof of Theorem 2.2.

Remark 4.5. Here we consider some examples to illustrate the energy decay rates obtained by Theorem 2.2.
Example 1. Let

g(t) = k1e
−k2(1+t)q , 0 < q < 1, k1 > 0, k2 > 0,

then it is clear that (G2) holds for ξ(t) = k2q(1 + t)q−1. Consequently, by (2.8), we obtain the decay result

E(t) ≤ c̃6e
−c̃7k2(1+t)q ,

where c̃6 and c̃7 are positive constants.
Example 2. If

g(t) = k3e
−k4[ln(1+t)]p , k3 > 0, k4 > 0,

then our assumption (G2) holds with ξ(t) =
k4p[ln(1 + t)]p−1

1 + t
. Eq. (2.8) gives us

E(t) ≤ c̃8e
−c̃9k4[ln(1+t)]p ,

where c̃8 and c̃9 are positive constants.
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