Well-posedness and general decay of solution for a transmission problem with viscoelastic term and delay

Danhua Wang, Gang Li*, Biqing Zhu

College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China.

Communicated by M. Jleli

Abstract

In this paper, we consider a transmission problem in a bounded domain with a viscoelastic term and a delay term. Under appropriate hypotheses on the relaxation function and the relationship between the weight of the damping and the weight of the delay, we prove the well-posedness result by using Faedo-Galerkin method. By introducing suitable Lyapunov functionals, we establish a general decay result, from which the exponential and polynomial types of decay are only special cases. ©2016 All rights reserved.

Keywords: Wave equation, transmission problem, general decay, viscoelastic term, delay.
2010 MSC: 35B37, 35L55, 93D15, 93D20.

1. Introduction

In this paper, we study the transmission system with a viscoelastic term and a delay term

\[
\begin{align*}
\left\{
\begin{array}{l}
u_{tt}(x,t) - au_{xx}(x,t) + \int_0^t g(t-s)u_{xx}(x,s)ds \\
+ \mu_1 u_t(x,t) + \mu_2 u_t(x,t - \tau) = 0, & (x,t) \in \Omega \times (0, +\infty), \\
v_{tt}(x,t) - bv_{xx}(x,t) = 0, & (x,t) \in (L_1, L_2) \times (0, +\infty),
\end{array}
\right.
\end{align*}
\]

*Corresponding author

Email addresses: matdhwang@yeah.net (Danhua Wang), ligang@nuist.edu.cn (Gang Li), brucechu@163.com (Biqing Zhu)

Received 2015-07-31
under the boundary and transmission conditions

\[
\begin{cases}
 u(0, t) = u(L_3, t) = 0, \\
 u(L_i, t) = v(L_i, t), \quad i = 1, 2, \\
 \left(a - \int_0^t g(s) \, ds \right) u_x(L_i, t) = bv_x(L_i, t), \quad i = 1, 2,
\end{cases}
\]

and the initial conditions

\[
\begin{cases}
 u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad x \in \Omega, \\
 v(x, 0) = v_0(x), \quad v_t(x, 0) = v_1(x), \quad x \in (L_1, L_2),
\end{cases}
\]

where \(0 < L_1 < L_2 < L_3\), \(\Omega = (0, L_1) \cup (L_2, L_3)\), \(a, b, \mu_1, \mu_2\) are positive constants, and \(\tau > 0\) is the delay.

![Figure 1: The configuration.](image)

The transmission problems like (1.1)-(1.3) related to the wave propagation over a body consists of two different types of materials: the elastic part and the viscoelastic part.

In recent years, many authors have investigated wave equations with viscoelastic damping and showed that the dissipation produced by the viscoelastic part can produce the decay of the solution, see [5, 6, 7, 11, 16, 18, 20, 22, 26, 27, 28] and the references therein. For example, Cavalcanti et al. [8] studied the following equation:

\[
\begin{align*}
 u_{tt} - \Delta u + \int_0^t g(t - \tau) \Delta u(\tau) \, d\tau + a(x) u_t + |u|^\gamma u &= 0, & & \text{in } \Omega \times (0, \infty),
\end{align*}
\]

where \(a : \Omega \to \mathbb{R}_+\). Under the conditions that \(a(x) \geq a_0 > 0\) on \(\omega \subset \Omega\), with \(\omega\) satisfying some geometry restrictions and

\[-\xi_1 g(t) \leq g'(t) \leq -\xi_2 g(t), \quad t \geq 0,
\]

the authors showed the exponential decay. Then Berrimi and Messaoudi [5] proved the same result under weaker conditions on both \(a\) and \(g\). Berrimi and Messaoudi [6] considered the equation

\[
\begin{align*}
 u_{tt} - \Delta u + \int_0^t g(t - \tau) \Delta u(\tau) \, d\tau &= |u|^\gamma u, & & \text{in } \Omega \times (0, \infty),
\end{align*}
\]

with only the viscoelastic dissipation and proved that the solution energy decays exponentially or polynomially depending on the rate of the decay of the relaxation function \(g\). In all previous works, the rates of decay of relaxation functions were either exponential or polynomial type. For a wider class of relaxation functions, Messaoudi [22] investigated the following viscoelastic equation:

\[
\begin{align*}
 u_{tt} - \Delta u + \int_0^t g(t - \tau) \Delta u(\tau) \, d\tau &= 0, & & \text{in } \Omega \times (0, \infty),
\end{align*}
\]

in a bounded domain, and established a more general decay result, from which the usual exponential and polynomial decay rates are only special cases.
It is well known that delay effects, which arise in many practical problems, may be sources of instability. Hence, the control of PDEs with time delay effects has become an active area of research in recent years. For example, it was proved in [10, 15, 17, 19, 24] that an arbitrarily small delay may destabilize a system which is uniformly asymptotically stable in the absence of delay unless additional conditions or control terms were used. A boundary stabilization problem for the wave equation with interior delay was studied in [1]. The authors proved an exponential stability result under some Lions geometric condition. Kirane and Said-Houari [12] considered the viscoelastic wave equation with a delay

\[
\begin{align*}
\ddot{u}(x,t) - \Delta u(x,t) + \int_0^t g(t-s)\Delta u(x,t-s)ds + \mu_1 \dot{u}(x,t) + \mu_2 \dot{u}(x,t-\tau) &= 0, \quad \text{in } \Omega \times (0,\infty),
\end{align*}
\]

where \(\mu_1\) and \(\mu_2\) are positive constants. They established a general energy decay result under the condition that \(0 \leq \mu_2 \leq \mu_1\). Later, Liu [14] improved this result by considering the equation with a time-varying delay term, with not necessarily positive coefficient \(\mu_2\) of the delay term.

Transmission problems related to (1.1)-(1.3) have also been extensively studied. Bastos and Raposo [4] investigated the transmission problem with frictional damping and showed the well-posedness and exponential stability of the total energy. Muñoz Rivera and Portillo Oquendo [23] considered the transmission problem of viscoelastic waves and proved that the dissipation produced by the viscoelastic part can produce exponential decay of the solution, no matter how small its size is. Bae [3] studied the transmission problem, in which one component is clamped and the other is in a viscoelastic fluid producing a dissipative mechanism on the boundary, and established a decay result which depends on the rate of the decay of the relaxation function.

Motivated by the above results, we intend to consider the well-posedness and the general decay result of problem (1.1)-(1.3) under some hypotheses in this paper. The main difficulty we encounter here arises from the simultaneous appearance of the viscoelastic term and the delay term. Our first intention is to study the well-posedness of problem (1.1)-(1.3) by making use of Faedo-Galerkin procedure, that is Faedo-Galerkin approximation together with energy estimates. For asymptotic behavior, we prove a general decay result from which the exponential and polynomial types of decay are only special cases by introducing suitable Lyapunov functionals.

The paper is organized as follows. In Section 2, we give some materials needed for our work and state our main results. In Section 3, we prove the well-posedness of the problem. The general decay result is proved in Section 4.

2. Preliminaries and main results

In this section, we present some materials that shall be used in order to prove our main results. Let us first introduce the following notations:

\[
\begin{align*}
(g * h)(t) := & \int_0^t g(t-s)h(s)ds, \\
(g \circ h)(t) := & \int_0^t g(t-s)(h(t) - h(s))ds, \\
(g \Box h)(t) := & \int_0^t g(t-s)(h(t) - h(s))^2ds.
\end{align*}
\]

We easily see that the above operators satisfy

\[
\begin{align*}
(g * h)(t) &= \left(\int_0^t g(s)ds\right) h(t) - (g \circ h)(t), \\
|(g \circ h)(t)|^2 &\leq \left(\int_0^t |g(s)|ds\right) (|g \Box h)(t)|.
\end{align*}
\]
Lemma 2.1 ([9]). For any $g, h \in C^1(\mathbb{R})$, the following equation holds

$$2[g * h]h' = g' \Box h - g(t)|h|^2 - \frac{d}{dt} \left\{ g \Box h - \left(\int_0^t g(s) \, ds \right) |h|^2 \right\}. $$

Proof. Differentiating the expression

$$g \Box h - \left(\int_0^t g(s) \, ds \right) |h|^2,$$

we get the result.

For the relaxation function g, we assume the conditions

(G1) $g: \mathbb{R}^+ \to \mathbb{R}^+$ is a C^1 function satisfying

$$g \in L^1(0, \infty), \quad g(0) > 0, \quad 0 < \beta(t) := a - \int_0^t g(s) \, ds \quad \text{and} \quad 0 < \beta_0 := a - \int_0^\infty g(s) \, ds.$$

(G2) There exists a nonincreasing differentiable function $\xi(t): \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$g'(t) \leq -\xi(t)g(t), \quad \forall t \geq 0 \quad \text{and} \quad \int_0^\infty \xi(t) \, dt = +\infty.$$

These hypotheses imply that

$$\beta_0 \leq \beta(t) \leq a. \quad (2.1)$$

As in [24], we introduce the following variable:

$$z(x, \rho, t) = u_t(x, t - \tau \rho), \quad (x, \rho, t) \in \Omega \times (0, 1) \times (0, \infty).$$

Then the above variable z satisfies

$$\tau z_t(x, \rho, t) + z_{\rho}(x, \rho, t) = 0, \quad (x, \rho, t) \in \Omega \times (0, 1) \times (0, \infty). \quad (2.2)$$

Thus, system (1.1) becomes

$$\begin{align*}
& \left\{ \begin{array}{l}
 u_{tt}(x, t) - au_{xx}(x, t) + g * u_{xx} \\
 + \mu_1 u_t(x, t) + \mu_2 z(x, 1, t) = 0, \quad (x, t) \in \Omega \times (0, +\infty), \\
 v_{tt}(x, t) - bv_{xx}(x, t) = 0, \quad (x, t) \in (L_1, L_2) \times (0, +\infty), \\
 \tau z_t(x, \rho, t) + z_{\rho}(x, \rho, t) = 0, \quad (x, \rho, t) \in \Omega \times (0, 1) \times (0, +\infty),
\end{array} \right.
\end{align*}\quad (2.3)$$

and the boundary and transmission conditions (1.2) becomes

$$\begin{align*}
& \left\{ \begin{array}{l}
 u(0, t) = u(L_3, t) = 0, \\
 u(L_i, t) = v(L_i, t), \quad i = 1, 2, \quad t \in (0, +\infty), \\
 (a - \int_0^t g(s) \, ds) u_x(L_i, t) = bv_x(L_i, t), \quad i = 1, 2, \quad t \in (0, +\infty), \\
 z(x, 0, t) = u_t(x, t), \quad (x, t) \in \Omega \times (0, +\infty), \\
 z(x, 1, t) = f_0(x, t - \tau), \quad (x, t) \in \Omega \times (0, \tau).
\end{array} \right.
\end{align*}\quad (2.4)$$

Similar to [25], we denote the Hilbert spaces

$$\mathcal{V} = \left\{ (u, v) \in H^1(\Omega) \cap H^1(L_1, L_2) : u(0, t) = u(L_3, 0) = 0, u(L_i, t) = v(L_i, t), \right. \left. (a - \int_0^t g(s) \, ds) u_x(L_i, t) = bv_x(L_i, t), i = 1, 2 \right\}$$

and
Then we may extend Hilbertian basis of the space H^n and the energy estimates. We divide the proof of Theorem 2.1 into two steps: the Faedo-Galerkin approximation

Proof of Theorem 2.1. Let (u, v, z) be the solution of problem $(1.1)-(1.3)$. Assume that $\mu_2 < \mu_1$, $(G1)$, $(G2)$ and

$$b > \frac{8(L_2 - L_1)}{L_1 + L_3 - L_2} \beta_0, \quad a > \frac{8(L_2 - L_1)}{L_1 + L_3 - L_2} \beta_0$$

hold, then there exist constants $K, k > 0$ such that, for all $t \in \mathbb{R}_+$,

$$E(t) \leq Ke^{-k \int_0^t \xi(s) ds}.$$

(2.8)

3. Well-posedness of the problem

In this section, we will prove the existence and uniqueness of problem $(1.1)-(1.3)$ by using Faedo-Galerkin method.

Proof of Theorem 2.1. We divide the proof of Theorem 2.1 into two steps: the Faedo-Galerkin approximation and the energy estimates.

Step 1: Faedo-Galerkin approximation.

We construct approximations of the solution (u, v, z) by the Faedo-Galerkin method as follows. For $n \geq 1$, let $W_n = \text{span}\{w_1, \ldots, w_i\}$ be a Hilbertian basis of the space $H^1(\Omega)$ and $V_n = \text{span}\{\psi_1, \ldots, \psi_i\}$ be a Hilbertian basis of the space $H^1(L_1, L_2)$.

Now, we define for $1 \leq j \leq n$ the sequence $\varphi_j(x, \rho)$ as follows:

$$\varphi_j(x, \rho) = w_j(x).$$

Then we may extend $\varphi_j(x, 0)$ by $\varphi_j(x, \rho)$ over $L^2((0, 1), \Omega)$ and denote $V_n = \text{span}\{\varphi_1, \ldots, \varphi_n\}$.

We choose sequences $(u_0^{(n)}), (u_1^{(n)})$ in W_n, $(v_0^{(n)}), (v_1^{(n)})$ in V_n and a sequence $(\tau_0^{(n)})$ in V_n such that $(u_0^{(n)}, u_1^{(n)}, v_0^{(n)}, v_1^{(n)}) \to (u_0, u_1, v_0, v_1)$ strongly in V and $\tau_0^{(n)} \to \tau_0$ strongly in $L^2((0, 1), \Omega)$.

We define the approximations

$$\left(u^{(n)}(x, t), v^{(n)}(x, t) \right) = \sum_{i=1}^n h_i^{(n)}(t)(w_i(x), \psi_i(x)) \quad \text{and} \quad z^{(n)}(x, \rho, t) = \sum_{i=1}^n f_i^{(n)}(t)\varphi_i(x),$$

where $\varphi_i(x, \rho) = w_i(x)$. Then the existence result reads as follows:

Then the existence result reads as follows:

Theorem 2.1. Assume that $\mu_2 \leq \mu_1$, $(G1)$ and $(G2)$ hold. Then given $(u_0, v_0) \in V$, $(u_1, v_1) \in L^2$, and $f_0 \in L^2((0, 1), \Omega)$, there exists a unique weak solution (u, v, z) of problem $(2.3)-(2.4)$ such that

$$(u, v) \in C(0, \infty; V) \cap C^1(0, \infty; L^2),$$

$$z \in C(0, \infty; L^2((0, 1), \Omega)).$$

For any regular solution of $(1.1)-(1.3)$, we define the energy as

$$E(t) = \frac{1}{2} \int_\Omega u_1^2(x, t)dx + \frac{1}{2} \beta(t) \int_\Omega u_2^2(x, t)dx + \frac{1}{2} \int_\Omega (g \varphi u_x)dx$$

$$+ \frac{1}{2} \int_{L_1} L_2 \left[v_1^2(x, t) + bv_2^2(x, t) \right] dx + \frac{\zeta}{2} \int_\Omega \int_0^1 z^2(x, \rho, t)d\rho dx,$$

(2.5)

where ζ is a positive constant such that

$$\tau \mu_2 < \zeta < \tau (2\mu_1 - \mu_2).$$

(2.6)

Our decay result reads as follows:

Theorem 2.2. Let (u, v, z) be the solution of problem $(1.1)-(1.3)$. Assume that $\mu_2 < \mu_1$, $(G1)$, $(G2)$ and

$$b > \frac{8(L_2 - L_1)}{L_1 + L_3 - L_2} \beta_0, \quad a > \frac{8(L_2 - L_1)}{L_1 + L_3 - L_2} \beta_0$$

(2.7)

hold, then there exist constants $K, k > 0$ such that, for all $t \in \mathbb{R}_+$,

$$E(t) \leq Ke^{-k \int_0^t \xi(s) ds}.$$

(2.8)

We choose sequences $(u_0^{(n)}), (u_1^{(n)})$ in W_n, $(v_0^{(n)}), (v_1^{(n)})$ in V_n and a sequence $(\tau_0^{(n)})$ in V_n such that

$$(u_0^{(n)}, u_1^{(n)}, v_0^{(n)}, v_1^{(n)}) \to (u_0, u_1, v_0, v_1) \text{ strongly in } V \text{ and } \tau_0^{(n)} \to \tau_0 \text{ strongly in } L^2((0, 1), \Omega).$$
where \((u^{(n)}(t), v^{(n)}(t), z^{(n)}(t))\) is a solution to the following Cauchy problem:

\[
\begin{aligned}
&\int_\Omega u_t^{(n)} u_t^{(n)} \, dx - \left[(a u_x^{(n)} - g * u_x^{(n)}) w_i\right]_{\partial \Omega} + \int_\Omega a u_x^{(n)} w_i \, dx - \int_\Omega (g * u_x^{(n)}) w_i \, dx \\
&+ \int_\Omega \mu_1 u_t^{(n)} w_i \, dx + \int_\Omega \mu_2 z^{(n)}(x, 1, t) w_i \, dx = 0, \\
&\int_{L_2} v^{(n)} \psi_t \, dx + \int_{L_1} b v_x^{(n)} \psi_t \, dx - \left[b v_x^{(n)} \psi_t\right]_{L_1}^{L_2} = 0, \\
&z^{(n)}(x, 0, t) = u_i^{(n)}(x, t), \\
&(u^{(n)}(0), u_i^{(n)}(0)) = (u_0^{(n)}, u_i^{(n)}).
\end{aligned}
\] (3.1)

\[
\begin{aligned}
&\int_\Omega (\tau z^{(n)}(x, \rho, t) + z^{(n)}(x, \rho, t)) \varphi_1 \, dx = 0, \\
&z^{(n)}(\rho, 0) = z_0^{(n)}.
\end{aligned}
\] (3.2)

Similar to [21], according to the standard theory of ordinary differential equations, the finite dimensional problem (3.1)–(3.2) have a solution \(\left(h_i^{(n)}(t), f_i^{(n)}(t)\right)\) \(i=1, \ldots, n\) defined on \([0, t_n]\).

Step 2: Energy estimates.

Multiplying the first and the second equation of (3.1) by \(h_i^{(n)}(t)'\), we have

\[
\int_\Omega u_t^{(n)} u_t^{(n)} \, dx - \left[(a u_x^{(n)} - g * u_x^{(n)}) u_i\right] \times \left(h_i^{(n)}(t)\right)' + \int_\Omega a u_x^{(n)} u_i^{(n)} \, dx \\
- \int_\Omega (g * u_x^{(n)}) u_i^{(n)} \, dx + \int_\Omega \mu_1 u_t^{(n)} u_i^{(n)} \, dx + \int_\Omega \mu_2 z^{(n)}(x, 1, t) u_i^{(n)} \, dx = 0
\] (3.3)

and

\[
\int_{L_2} v^{(n)} \psi_t \, dx + \int_{L_1} b v_x^{(n)} \psi_t \, dx - \left[b v_x^{(n)} \psi_t\right]_{L_1}^{L_2} \times \left(h_i^{(n)}(t)\right)'(t) = 0.
\] (3.4)

Multiplying the first equation of (3.2) by \(\frac{\zeta}{r} f_i^{(n)}(t)\) and integrating over \((0, t) \times (0, 1)\), we get

\[
\frac{\zeta}{2} \int_0^t \int_0^1 \left(z^{(n)}(x, \rho, t)\right)^2 \, dx \, d\rho \, dt + \frac{\zeta}{r} \int_0^t \int_0^1 \left(z^{(n)}(x, \rho, t)\right)^2 \, dx \, d\rho \, ds = \frac{\zeta}{2} \int_0^t \int_0^1 \left(z_0^{(n)}\right)^2 \, dx \, d\rho.
\] (3.5)

To handle the last term in the left-hand side of (3.5), we remark that

\[
\int_0^t \int_0^1 \left(z^{(n)}(x, \rho, t)\right)^2 \, dx \, d\rho \, ds = \frac{1}{2} \int_0^t \int_0^1 \left(\frac{\partial}{\partial \rho} \left(z^{(n)}(x, \rho, t)\right)^2 \, dx \, d\rho \, ds
\]

\[
= \frac{1}{2} \int_0^t \int_0^1 \left(\left(z^{(n)}(x, 1, s) - \left(z^{(n)}(x, 0, s)\right)^2\right) dx \, ds.
\] (3.6)

Integrating (3.3) and (3.4) over \((0, t)\), counting them and (3.5) up, taking into account (3.6) and using Lemma 2.1, we obtain

\[
\begin{aligned}
&\varepsilon_n(t) + \left(\mu_1 - \frac{\zeta}{2r}\right) \int_0^t \int_\Omega \left(u_t^{(n)}\right)^2 \, dx \, ds = \frac{\zeta}{2r} \int_0^t \int_\Omega \left(z^{(n)}\right)^2 \, dx \, ds \\
&+ \mu_2 \int_0^t \int_0^1 \left(z^{(n)}(x, 1, s) \right)^2 \, dx \, ds + \frac{1}{2} \int_0^t \int_\Omega \left(g(t) \left|u_x^{(n)}\right|^2 \, dx \, ds - \frac{1}{2} \int_0^t \int_\Omega \left(g^2 u_x^{(n)}\right) \, dx \, ds
\end{aligned}
\] (3.7)
where
\[
\mathcal{E}_n(t) = \frac{1}{2} \int_{\Omega} \left(u^{(n)}_x \right)^2 (x,t) dx + \frac{1}{2} \beta(t) \int_{\Omega} \left(u^{(n)}_x \right)^2 (x,t) dx + \frac{1}{2} \int_{\Omega} \left(g \square u^{(n)}_x \right) dx + \frac{1}{2} \int_{L^1} \left[\left(v^{(n)}_x \right)^2 (x,t) + b \left(u^{(n)}_x \right)^2 (x,t) \right] dx + \frac{1}{2} \int_0^t \int_{\Omega} \left(z^{(n)} \right)^2 (x,\rho,t) d\rho dx.
\] (3.8)

At this point, we have to distinguish the following two cases:

Case 1: We suppose that \(\mu_2 < \mu_1 \) and choose \(\zeta \) satisfying (2.6). Young’s inequality gives us that
\[
\mathcal{E}_n(t) + \left(\frac{1}{2} \int_0^t \int_{\Omega} \left(u^{(n)}_x \right)^2 (x,s) ds \right) + \left(\frac{1}{2} \int_0^t \int_{\Omega} \left(z^{(n)} \right)^2 (x,1,s) ds \right) + \frac{1}{2} \int_0^t \int_{\Omega} g(t) \left| u^{(n)}_x \right|^2 ds \leq \mathcal{E}_n(0).
\] (3.9)

Consequently, using (2.6), we have
\[
\mathcal{E}_n(t) + c_1 \int_0^t \int_{\Omega} \left(u^{(n)}_x \right)^2 (x,s) ds + c_2 \int_0^t \int_{\Omega} \left(z^{(n)} \right)^2 (x,1,s) ds + \frac{1}{2} \int_0^t \int_{\Omega} g(t) \left| u^{(n)}_x \right|^2 ds \leq \mathcal{E}_n(0).
\] (3.10)

Case 2: We suppose that \(\mu_2 = \mu_1 = \mu \) and choose \(\zeta = \tau \mu \). Then (3.9) takes the form
\[
\mathcal{E}_n(t) + \frac{1}{2} \int_0^t \int_{\Omega} g(t) \left| u^{(n)}_x \right|^2 ds \leq \mathcal{E}_n(0).
\] (3.10)

Now, since the sequences \(\left(u^{(n)}_0 \right)_{n \in \mathbb{N}}, \left(u^{(n)}_1 \right)_{n \in \mathbb{N}}, \left(v^{(n)}_0 \right)_{n \in \mathbb{N}}, \left(v^{(n)}_1 \right)_{n \in \mathbb{N}}, \left(z^{(n)}_0 \right)_{n \in \mathbb{N}} \) converge and using (G2), in the both cases we can find a positive constant \(c_3 \) independent of \(n \) such that
\[
\mathcal{E}_n(t) \leq c_3.
\] (3.11)

Therefore, using the fact that \(\beta(t) \geq \beta_0 \), the estimate (3.11) together with (3.8) give us, for all \(n \in \mathbb{N}, t_n = T \), we deduce
\[
\left(u^{(n)} \right)_{n \in \mathbb{N}} \text{ is bounded in } L^\infty(0,T; H^1(\Omega)),
\]
\[
\left(v^{(n)} \right)_{n \in \mathbb{N}} \text{ is bounded in } L^\infty(0,T; H^1(L_1,L_2)),
\]
\[
\left(u^{(n)}_t \right)_{n \in \mathbb{N}} \text{ is bounded in } L^\infty(0,T; L^2(\Omega)),
\]
\[
\left(v^{(n)}_t \right)_{n \in \mathbb{N}} \text{ is bounded in } L^\infty(0,T; L^2(L_1,L_2)),
\]
\[
\left(z^{(n)} \right)_{n \in \mathbb{N}} \text{ is bounded in } L^\infty(0,T; L^2((0,1),\Omega)).
\] (3.12)

Consequently, we conclude that
\[
u^{(n)} \to v \quad \text{weak* in } L^\infty(0,T; H^1(\Omega)),
\]
\[
u^{(n)}_t \to u_t \quad \text{weak* in } L^\infty(0,T; L^2(\Omega)),
\]
Lemma 4.1. We use the following lemmas.

From (3.12), we have \((u^{(n)})_{n \in \mathbb{N}}\) is bounded in \(L^\infty(0,T;H^1(\Omega))\) and \((v^{(n)})_{n \in \mathbb{N}}\) is bounded in \(L^\infty(0,T;H^1(L_1,L_2))\). Then, \((u^{(n)})_{n \in \mathbb{N}}\) is bounded in \(L^2(0,T;H^1(\Omega))\) and \((v^{(n)})_{n \in \mathbb{N}}\) is bounded in \(L^2(0,T;H^1(L_1,L_2))\). Consequently, \((u^{(n)})_{n \in \mathbb{N}}\) is bounded in \(H^1(0,T;H^1(\Omega))\) and \((v^{(n)})_{n \in \mathbb{N}}\) is bounded in \(H^1(0,T;H^1(L_1,L_2))\).

Since the embedding

\[
H^1(0,T;H^1(\Omega)) \hookrightarrow L^2(0,T;L^2(\Omega))
\]

and

\[
H^1(0,T;H^1(L_1,L_2)) \hookrightarrow L^2(0,T;L^2(L_1,L_2))
\]

are compact, using Aubin-Lion’s theorem [13], we can extract subsequences \((u^{(k)})_{k \in \mathbb{N}}\) of \((u^{(n)})_{n \in \mathbb{N}}\) and \((v^{(k)})_{k \in \mathbb{N}}\) of \((v^{(n)})_{n \in \mathbb{N}}\) such that

\[
u^{(k)} \to u \text{ strongly in } L^2(0,T;L^2(\Omega))
\]

and

\[
v^{(k)} \to v \text{ strongly in } L^2(0,T;L^2(L_1,L_2)).
\]

Therefore,

\[
u^{(k)} \to u \text{ strongly and a.e. on } (0,T) \times \Omega
\]

and

\[
v^{(k)} \to v \text{ strongly and a.e. on } (0,T) \times (L_1,L_2).
\]

The proof now can be completed arguing as in Theorem 3.1 of [13].

4. General decay of the solution

In this section, we consider the asymptotic behavior of problem (1.1)-(1.3). For the proof of Theorem 2.2 we use the following lemmas.

Lemma 4.1. Let \((u,v,z)\) be the solution of problem (2.3)-(2.4). Assume that \(\mu_2 < \mu_1\). Then we have the inequality

\[
\frac{d}{dt} E(t) \leq -c_4 \left[\int_{\Omega} u^2_t(x,t)dx + \int_{\Omega} z^2(x,1,t)dx \right] + \frac{1}{2} \int_{\Omega} (g' \Box u_z)(t)dx.
\]

(4.1)

Proof. Multiplying the first equation of (2.3) by \(u_t\), the second equation of (2.3) by \(v_t\), integrating by parts and (2.4), we obtain

\[
\frac{1}{2} \frac{d}{dt} \left\{ \int_{\Omega} [u^2_t(x,t) + au^2_z(x,t)]dx \right\} + \frac{1}{2} \frac{d}{dt} \left\{ \int_{L_1} [u^2_t(x,t) + bv^2_z(x,t)]dx \right\}
\]

\[
= -\mu_1 \int_{\Omega} u^2_t(x,t)dx - \mu_2 \int_{\Omega} u_t(x,t)z(x,1,t)dx + \int_0^t g(t-s) \int_{\Omega} u_x(s)u_xt(t)dsdx
\]

(4.2)

for any regular solution. By using standard arguments of density, we can extend the result to weak solutions. From Lemma 2.1 the last term in the right-hand side of (4.2) can be rewritten as

\[
\int_0^t g(t-s) \int_{\Omega} u_x(s)u_xt(t)dsdx + \frac{1}{2} g(t) \int_{\Omega} u^2_s dx
\]

\[
= \frac{1}{2} \frac{d}{dt} \left\{ \int_0^t g(s) \int_{\Omega} u^2_s dx - \int_{\Omega} (g' \Box u_x)(t)dx \right\} + \frac{1}{2} \int_{\Omega} (g' \Box u_x)(t)dx.
\]
So (4.2) becomes
\[
\frac{1}{2} \frac{d}{dt} \left\{ \int_{\Omega} [u_t^2(x,t) + \beta(t)u_x^2(x,t)] \, dx \right\} + \frac{1}{2} \frac{d}{dt} \left\{ \int_{L_1} [u_t^2(x,t) + bv_x^2(x,t)] \, dx \right\} + \frac{1}{2} \frac{d}{dt} \int_{\Omega} (g\Box u_x)(t) \, dx
= - \mu_1 \int_{\Omega} u_t^2(x,t) \, dx - \mu_2 \int_{\Omega} u_t(x,t)z(x,t) \, dx \leq \frac{1}{2} g(t) \int_{\Omega} u_x^2 \, dx + \frac{1}{2} \int_{\Omega} (g\Box u_x)(t) \, dx. \quad (4.3)
\]

Now, multiplying the third equation of (2.3) by \(\zeta \) and integrating the result over \(\Omega \times (0,1) \) with respect to \(x \) and \(\rho \) respectively, we have
\[
\frac{\zeta \, d}{dt} \int_{\Omega} z^2(x,\rho,t) \, dx = - \frac{\zeta}{2\tau} \int_{\Omega} (z^2(x,1) - z^2(x,0)) \, dx. \quad (4.4)
\]

Using (2.5), (4.3) and (4.4), we obtain
\[
\frac{d}{dt} E(t) = - \left(\mu_1 - \frac{\zeta}{2\tau} \right) \int_{\Omega} u_t^2(x,t) \, dx - \frac{\zeta}{2\tau} \int_{\Omega} z^2(x,1,t) \, dx - \mu_2 \int_{\Omega} u_t(x,t)z(x,1,t) \, dx - \frac{1}{2} g(t) \int_{\Omega} u_x^2 \, dx + \frac{1}{2} \int_{\Omega} (g\Box u_x)(t) \, dx. \quad (4.5)
\]

By Young’s inequality in (4.5), we get
\[
\frac{d}{dt} E(t) \leq - \left(\mu_1 - \frac{\zeta}{2\tau} - \frac{\mu_2}{2} \right) \int_{\Omega} u_t^2(x,t) \, dx - \left(\frac{\zeta}{2\tau} - \frac{\mu_2}{2} \right) \int_{\Omega} z^2(x,1,t) \, dx + \frac{1}{2} \int_{\Omega} (g\Box u_x)(t) \, dx.
\]

Then exploiting (2.6), our conclusion holds. The proof is complete. \(\square \)

Now, we define the functional \(\mathcal{D}(t) \) as follows
\[
\mathcal{D}(t) = \int_{\Omega} u_t \, dx + \frac{\mu_1}{2} \int_{\Omega} u_x^2 \, dx + \int_{L_1} \nu \, dx.
\]

Then we have the following estimate.

Lemma 4.2. The functional \(\mathcal{D}(t) \) satisfies
\[
\frac{d}{dt} \mathcal{D}(t) \leq \int_{\Omega} u_t^2 \, dx + \int_{L_1} \nu_x^2 \, dx + (L^2 \varepsilon + \varepsilon - \beta(t)) \int_{\Omega} u_x^2 \, dx + \frac{1}{4\varepsilon} (a - \beta(t)) \int_{\Omega} (g\Box u_x) \, dx \leq \mu_2 \int_{L_1} \nu_2^2 \, dx. \quad (4.6)
\]

Proof. Taking the derivative of \(\mathcal{D}(t) \) with respect to \(t \) and using (2.3), we have
\[
\frac{d}{dt} \mathcal{D}(t) = \int_{\Omega} u_t^2 \, dx - \int_{\Omega} (au_x - g \ast u_x)u_x \, dx - \mu_2 \int_{\Omega} z(x,1,t) \, dx + \int_{L_1} \nu_x^2 \, dx - \int_{L_1} bv_x^2 \, dx
= \int_{\Omega} u_t^2 \, dx - \beta(t) \int_{\Omega} u_x^2 \, dx - \int_{\Omega} (g \circ u_x)u_x \, dx - \mu_2 \int_{\Omega} z(x,1,t) \, dx + \int_{L_1} \nu_x^2 \, dx - \int_{L_1} bv_x^2 \, dx. \quad (4.7)
\]

By the boundary condition (1.2), we have
\[
u^2(x,t) = \left(\int_0^x u_x(x,t) \, dx \right)^2 \leq L_1 \int_0^{L_1} u_x^2(x,t) \, dx, \quad x \in [0,L_1],
\]
\[
u^2(x,t) \leq (L_3 - L_2) \int_{L_2}^{L_3} u_x^2(x,t) \, dx, \quad x \in [L_2,L_3],
\]
which implies
\[\int_{\Omega} u^2(x, t) \, dx \leq L^2 \int_{\Omega} u_x^2 \, dx, \quad x \in \Omega, \]
where \(L = \max\{L_1, L_3 - L_2\} \). By exploiting Young’s inequality and (4.8), we get for any \(\varepsilon > 0 \)
\[\mu_2 \int_{\Omega} z(x, t) \, dx \leq \frac{\mu_2^2}{4 \varepsilon} \int_{\Omega} z^2(x, t) \, dx + L^2 \varepsilon \int_{\Omega} u_x^2 \, dx. \]

Young’s inequality and (G1) imply that
\[\int_{\Omega} (g \circ u_x) u_x \, dx \leq \varepsilon \int_{\Omega} u_x^2 \, dx + \frac{1}{4 \varepsilon} \int_{\Omega} (g \circ u_x)^2 \, dx \]
\[\leq \varepsilon \int_{\Omega} u_x^2 \, dx + \frac{1}{4 \varepsilon} (a - \beta(t)) \int_{\Omega} (g \square u_x) \, dx. \]

Inserting the estimates (4.9) and (4.10) into (4.7), then (4.6) is fulfilled. The proof is complete. □

Now, as in Lemma 4.5 of [21], we introduce the function
\[
q(x) = \begin{cases}
 x - \frac{L_1}{2}, & x \in [0, L_1), \\
 \frac{L_1}{2} - \frac{L_1 + L_3 - L_2}{2(L_2 - L_1)}(x - L_1), & x \in (L_1, L_2), \\
 x - \frac{L_2 + L_3}{2}, & x \in [L_2, L_3].
\end{cases}
\]

It is easy to see that \(q(x) \) is bounded, that is \(|q(x)| \leq M\), where \(M = \max \left\{ \frac{L_1}{2}, \frac{L_3 - L_2}{2} \right\} \) is a positive constant. And we define the functionals
\[
\mathcal{F}_1(t) = -\int_{\Omega} q(x) u_t (au_x - g * u_x) \, dx, \quad \mathcal{F}_2(t) = -\int_{L_1}^{L_2} q(x) v_x v_t \, dx.
\]

Then we have the following estimates.

Lemma 4.3. The functionals \(\mathcal{F}_1(t) \) and \(\mathcal{F}_2(t) \) satisfy
\[
\frac{d}{dt} \mathcal{F}_1(t) \leq \left[-\frac{q(x)}{2} (au_x - g * u_x)^2 \right]_{\partial \Omega} - \left[\frac{a}{2} q(x) u_t^2 \right]_{\partial \Omega} + \left[\frac{a}{2} + \frac{\mu_2^2}{4 \varepsilon} + \frac{M^2}{4 \varepsilon} \right] \int_{\Omega} u_x^2 \, dx
\]
\[+ \left[\varepsilon_1 M^2 a^2 + \beta^2(t) + 2M^2 \varepsilon_1 (a - \beta(t))^2 + c_2 \varepsilon_1 \right] \int_{\Omega} u_x^2 \, dx + \frac{1}{2 \varepsilon_1} \int_{\Omega} z^2(x, 1, t) \, dx
\]
\[+ (1 + 2M^2 \varepsilon_1) (a - \beta(t)) \int_{\Omega} (g \square u_x) \, dx + (a - \beta(t)) \varepsilon_1 \int_{\Omega} (g \square u_x) \, dx \]
\[= \frac{L_1 + L_3 - L_2}{4(L_2 - L_1)} \left(\int_{L_1}^{L_2} u_x^2 \, dx + \int_{L_1}^{L_2} b v_x^2 \, dx \right) + \frac{L_1}{4} v_x^2(L_1) + \frac{L_3 - L_2}{4} v_x^2(L_2)
\]
\[+ \frac{b}{4} ((L_3 - L_2) v_x^2(L_2, t) + L_1 v_x^2(L_1, t)). \]

Proof. Taking the derivative of \(\mathcal{F}_1(t) \) with respect to \(t \) and using (2.3), we get
\[
\frac{d}{dt} \mathcal{F}_1(t) = -\int_{\Omega} q(x) u_t (au_x - g * u_x) \, dx - \int_{\Omega} q(x) u_t (au_x - g(t) u_x(t) + (g' \circ u_x)(t)) \, dx
\]
We note that then we have the following estimate.

Thus, the proof of Lemma 4.3 is finished.

We note that

We have

Young’s inequality gives us for any $\varepsilon_1 > 0$,

Inserting (4.16)-(4.19) into (4.15), we get (4.13).

By the same method, taking the derivative of $F_3(t)$ with respect to t, we obtain

Thus, the proof of Lemma 4.3 is finished. □

As in [2], we define the functional

then we have the following estimate.
Lemma 4.4 [2]. The functionals $\mathcal{F}_3(t)$ satisfies
\[
\frac{d}{dt} \mathcal{F}_3(t) \leq -c_6 \left(\int \int_{\Omega} z^2(x,1,t)dx + \tau \int \int_{\Omega} z^2(x,\rho,t)d\rho dx \right) + \int u_1^2(x,t)dx.
\]

Now, we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. We define the Lyapunov functional
\[
L(t) = N_1 E(t) + N_2 \mathcal{D}(t) + N_3 \mathcal{F}_1(t) + N_4 \mathcal{F}_2(t) + \mathcal{F}_3(t),
\]
where N_1, N_2, N_3 and N_4 are positive constants that will be fixed later.

Taking the derivative of (4.20) with respect to t and making use of the above lemmas, we have
\[
\frac{d}{dt} L(t) \leq \left\{-N_1 c_4 + 1 + N_2 + N_3 \left(\frac{a}{2} + \frac{\mu_2^2 N_2}{2\varepsilon_1} + \frac{M^2}{4\varepsilon_1} \right) \right\} \int \int_{\Omega} u_1^2 dx
\]
\[
+ \left\{-N_1 c_4 - c_6 + \frac{\mu_2^2 N_2}{2\varepsilon_1} + \frac{\mu_2^2 N_3}{2\varepsilon_1} \right\} \int \int_{\Omega} z^2(x,1,t)dx
\]
\[
+ \left\{-N_2(\beta(t) - L^2 \varepsilon - \varepsilon) + N_3 \left(\varepsilon_1 M^2 a^2 + \beta(t)^2 + 2M^2 \varepsilon_1 (a - \beta(t))^2 + c_3^2 \varepsilon_1 \right) \right\} \int \int_{\Omega} u_1^2 dx
\]
\[
+ \left\{-\frac{b(L_1 + L_3 - L_2)}{4(L_2 - L_1)} N_4 - N_2 b \right\} \int \int_{L_1} v_1^2 dx + \left\{-\frac{L_1 + L_3 - L_2}{4(L_2 - L_1)} N_4 + N_2 \right\} \int \int_{L_1} v_1^2 dx
\]
\[
+ (N_4 - bN_3) \left\{ (L_3 - L_2) v_1^2(L_2,t) + L_1 v_1^2(L_1,t) \right\}
\]
\[
+ (N_4 - aN_3) \left\{ \frac{L_1}{4} v_1^2(L_1,t) + \frac{L_3 - L_2}{4} v_1^2(L_2,t) \right\}
\]
\[
+ c(N_2, N_3) \int \int_{\Omega} (g \square u_x) dx + \left(\frac{N_1}{2} - c(N_3) \right) \int \int_{\Omega} (g \square u_x) dx.
\] (4.21)

At this moment, we wish all coefficients except the last two in (4.21) will be negative. In fact, under assumption (2.7), we can find N_2, N_3 and N_4 such that
\[
N_2 < \frac{L_1 + L_3 - L_2}{4(L_2 - L_1)} N_4, \quad N_4 < bN_3, \quad N_4 < aN_3, \quad N_2 > 2N_3 \beta_0.
\]

Once the above constants are fixed, we may choose ε and ε_1 small enough such that
\[
N_2 (L^2 \varepsilon + \varepsilon) + N_3 (\varepsilon_1 M^2 a^2 + 2M^2 \varepsilon_1 (a - \beta(t))^2 + c_3^2 \varepsilon_1) < N_2 - N_3 \beta(t).
\]

Finally, choosing N_1 large enough such that the first two coefficients in (4.21) are negative and the last coefficient is positive. From the above, we deduce that, there exists two positive constants α_1 and α_2 such that (4.21) becomes
\[
\frac{d}{dt} L(t) \leq -\alpha_1 E(t) + \alpha_2 \int \int_{\Omega} (g \square u_x) dx.
\] (4.22)

On the other hand, by the definition of the functionals $\mathcal{D}(t)$, $\mathcal{F}_1(t)$, $\mathcal{F}_2(t)$, $\mathcal{F}_3(t)$ and $E(t)$, for N_1 large enough, there exists a positive constant α_3 satisfying
\[
|N_2 \mathcal{D}(t) + N_3 \mathcal{F}_1(t) + N_4 \mathcal{F}_2(t) + \mathcal{F}_3(t)| \leq \alpha_3 E(t),
\]
which implies that
\[
(N_1 - \alpha_3) E(t) \leq L(t) \leq (N_1 + \alpha_3) E(t).
\]

In order to finish the proof of the stability estimates, we need to estimate the last term in (4.22). Exploiting (G2) and (4.1), we have
\[\xi(t) \int_{\Omega} (g \Box u_x) dx \leq \int_{\Omega} [(\xi g) \Box u_x] dx \leq -\int_{\Omega} (g' \Box u_x) dx \leq -2 \frac{d}{dt} E(t). \] (4.23)

Now, we define functionals \(\mathcal{L}(t) \) as
\[\mathcal{L}(t) = \xi(t)L(t) + 2\alpha_2 E(t). \]

The fact that \(L(t) \) and \(E(t) \) are equivalent and (G2) imply that, for some positive constants \(\eta_1 \) and \(\eta_2 \),
\[\eta_1 E(t) \leq \mathcal{L}(t) \leq \eta_2 E(t), \]
(4.24)

Using (4.23), (4.24) and (G2), we obtain
\[\frac{d}{dt} \mathcal{L}(t) = \xi'(t) L(t) + \xi(t) \frac{d}{dt} L(t) + 2\alpha_2 \frac{d}{dt} E(t) \]
\[\leq \xi(t) \left(-\alpha_1 E(t) + \alpha_2 \int_{\Omega} (g \Box u_x) dx \right) + 2\alpha_2 \frac{d}{dt} E(t) \]
\[\leq -\alpha_1 \xi(t) E(t) \]
\[\leq -\gamma_0 \xi(t) \mathcal{L}(t), \]
where \(\gamma_0 = \frac{\alpha_1}{\eta_2} \). We conclude that, for any \(\gamma_1 \in (0, \gamma_0) \),
\[\frac{d}{dt} \mathcal{L}(t) \leq -\gamma_1 \xi(t) \mathcal{L}(t). \] (4.25)

A simple integration of (4.25) leads to
\[\mathcal{L}(t) \leq \mathcal{L}(0) e^{-\gamma_1 \int_0^t \xi(s) ds}, \quad \forall t \geq 0. \] (4.26)

Again, use of (4.24) and (4.26) yields the desired result (2.8). This completes the proof of Theorem 2.2. \(\square \)

Remark 4.5. Here we consider some examples to illustrate the energy decay rates obtained by Theorem 2.2.

Example 1. Let \(g(t) = k_1 e^{-k_2 (1 + t)^q}, \quad 0 < q < 1, \quad k_1 > 0, \quad k_2 > 0, \)
then it is clear that (G2) holds for \(\xi(t) = k_2 q (1 + t)^{q-1} \). Consequently, by (2.8), we obtain the decay result
\[E(t) \leq \tilde{c}_5 e^{-\tilde{c}_7 k_2 (1 + t)^q}, \]
where \(\tilde{c}_5 \) and \(\tilde{c}_7 \) are positive constants.

Example 2. If \(g(t) = k_3 e^{-k_4 \ln(1 + t)^p}, \quad k_3 > 0, \quad k_4 > 0, \)
then our assumption (G2) holds with \(\xi(t) = k_4 p \ln(1 + t)^{p-1} \). Eq. (2.8) gives us
\[E(t) \leq \tilde{c}_8 e^{-\tilde{c}_9 k_4 \ln(1 + t)^p}, \]
where \(\tilde{c}_8 \) and \(\tilde{c}_9 \) are positive constants.

Acknowledgments

The authors express sincere thanks to the editors and anonymous reviewers for their constructive comments and suggestions that helped to improve this paper. This work was supported by the project of Chinese Ministry of Finance (Grant No. GYHY200906006), the National Natural Science Foundation of China (Grant No. 11301277), and the Natural Science Foundation of Jiangsu Province (Grant No. BK20151523).
References

