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Abstract

In this paper, we generalize the concept of well-posedness to a system of hemivariational inequalities in
Banach space. By introducing several concepts of well-posedness for systems of hemivariational inequalities
considered, we establish some metric characterizations of well-posedness and prove some equivalence results
of strong (generalized) well-posedness between a system of hemivariational inequalities and its derived system
of inclusion problems. c©2016 All rights reserved.
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1. Introduction

Let V1 and V2 be two Banach spaces with the dual spaces V ∗1 and V ∗2 , respectively. For a Banach space
Vi, i = 1, 2, we denote 〈·, ·〉V ∗

i ×Vi the duality pairing between a Banach space Vi and its dual space V ∗i space
and by ‖ · ‖Vi , ‖ · ‖V ∗

i
the norms on the space Vi and its dual space V ∗i , respectively. It is well-known that

the product space V1 × V2 is also a Banach space with the following norm

‖u‖V1×V2 = ‖u1‖V1 + ‖u2‖V2 , ∀u = (u1, u2) ∈ V1 × V2.
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Suppose that, for i = 1, 2, Ai : V1 × V2 → V ∗i is a mapping from V1 × V2 to V ∗i , J : V1 × V2 → R is a
locally Lipschitz functional on V1 × V2 and fi is a given point in V ∗i .

In this paper, we consider a system of hemivariational inequalities which is specified as follows: Find
(u1, u2) ∈ V1 × V2 such that

(SHVI)

{
〈A1(u1, u2)− f1, v1 − u1〉V ∗

1 ×V1 + J◦1 (u1, u2; v1 − u1) ≥ 0, ∀v1 ∈ V1
〈A2(u1, u2)− f2, v2 − u2〉V ∗

2 ×V2 + J◦2 (u1, u2; v2 − u2) ≥ 0, ∀v2 ∈ V2,

where, for i 6= j = 1, 2, J◦i (ui, uj ; vi − ui) denotes the generalized directional derivative of the functional
J(·, uj) at ui in the direction vi − ui, where J(·, uj) is a functional on Vi for any given uj ∈ Vj , that is,

J◦i (ui, uj ; vi − ui) = lim sup
w→ui,λ→0

J(w + λ(vi − ui), uj)− J(w, uj)

λ
.

As a classical concept in optimization theory, the well-posedness has a profound impact on the develop-
ment of optimization problems and their relate problems such as variational inequalities, inclusion problems,
Nash equilibrium problems and others. In 1966, Tykhonov [21] firstly defined well-posedness for a uncon-
strained global optimization problem, which is called Tykhonov well-posedness and requires the existence
and uniqueness of minimizer and the convergence of every minimizing sequence toward the unique minimizer.
For constrained optimization problems, another kind of well-posedness, which is called LP well-posedness,
was given by Levitin and Polyak in [12]. After that, many kinds of results concerned with well-posedness for
various optimization problems were introduced and the well-posedness of optimization problems was studied
widely in recent years by a large number of researchers in many fields. For more concept of well-posedness
for optimization problems and their detailed studies, refer to [3, 9, 14, 27] and references therein.

It is well known that a minimization problem with differentiability property has a close relationship with
a differentiable variational inequality. Therefore, it is a natural idea to study well-posedness for variational
inequalities and their related problems. In 1981, Lucchetti and Patrone[15] extended the concept of well-
posedness for optimization problems to a variational inequality for the first time. By using Ekeland’s
theorem, they gave a characterization of Tykhonov’s well-posedness for a minimizing problem with a convex
lower semi-continuous function on a closed convex set. Since then, many kinds of well-posedness for the
optimization problems, such as LP well-posedness and extended well-posedness etc., are introduced to
the study of variational inequalities and their related problems, such as equilibrium problems, fixed point
problems, and inclusion problems and others. In 2008 and 2010, Fang, Hu and Huang generalized the well-
posedness to equilibrium problems and systems of equilibrium problems in [5, 8]. Refer to [2, 11, 13] for
more details.

Hemivariational inequality, a class of generalization of variational inequalities, is more recent (hemivari-
ational inequalities are introduced firstly by Panagiotopoulos[19] in 1980s) and concerned with nonsmooth
and nonconvex energy functionals. As demonstrated by many researchers in the field of variational inequali-
ties and hemivariational inequalities, hemivariational inequalities and systems of hemivariational inequalities
are powerful tools to study many problems in mechanics and engineering such as nonconvex semiperme-
ability problems, unilateral contact problems, masonry structures delamination problems. Therefore, in
recent years, many researchers devoted themselves to studying many kinds of hemivariational inequalities
arising in mechanical and engineering problems. In terms of literature on hemivariational inequalities and
systems of hemivariational inequalities, the studies on solvability (the existence and uniqueness of a solu-
tion) and well-posedness for various kinds of hemivariational inequalities are mature. Many famous results
have been obtained by many distinguished researchers (refer to [17, 18, 20, 22] for details). The concept of
well-posedness for hemivariational inequalities was firstly introduced by Goeleven and Mentagui [7] in 1995
and, further, studied by Xiao, Yang and Huang in [23, 24, 25]. Also, there are a few papers studying the
solvability of systems of hemivariational inequalities since, due to the complex structure of systems of hemi-
variational inequalities, it is much more difficult than the study of hemivariational inequalities. However, as
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far as the authors knowledge, there is no researcher studying well-posedness for systems of hemivariational
inequalities.

Inspired by the research on well-posedness for hemivariational inequalities, in this paper, we generalize
the concepts of well-posedness to a system of hemivariational inequalities, establish some metric character-
izations of well-posedness and prove the equivalence between well-posedness of a system of hemivariational
inequalities and its derived system of inclusion problems. The paper is structured as follows. In Section
2, we briefly recall some preliminaries. In Section 3, we define several concepts of well-posedness for the
system of hemivariational inequalities and, with two assumptions on the operators involved, establish some
metric characterizations for the system of hemivariational inequalities. In Section 4, we prove two equiva-
lence results of well-posedness between the system of hemivariational inequalities and its derived system of
inclusion problems. Finally, in Section 5, we give some concluding remarks on our main results.

2. Preliminaries

In this section, we recall some important notions and useful results on nonlinear analysis, optimization
theory and nonsmooth analysis, which can be found in [1, 4, 10, 16, 26].

Definition 2.1. Let V be a Banach space. A sequence {un} ⊂ V is said to be convergent if there exists
u ∈ V such that

lim
n→∞

‖un − u‖V = 0.

Definition 2.2. Let V be a Banach space and V ∗ be its dual space. A sequence {un} ⊂ V is said to be
weakly convergent if there exists u ∈ V such that

〈u∗, un〉V ∗×V → 〈u∗, u〉V ∗×V , ∀u∗ ∈ V ∗.

Definition 2.3. Let V be a Banach space with its dual space V ∗. A sequence of functional {u∗n} ⊂ V ∗ is
said to be weakly∗ convergent to a point u∗ ⊂ V ∗ if

〈u∗n, u〉V ∗×V → 〈u∗, u〉V ∗×V , ∀u ∈ V.

Remark 2.4. If V is not reflexive space, then the weak∗ topologies of V ∗ is weaker than its weak topologies.
If V is a reflexive space, then the weak and weak∗ topologies on V ∗ are the same.

Proposition 2.5. Let V be a Banach space. Then the following statement holds: If {un} ⊂ V , {u∗n} ⊂ V ∗,
un → u in V and u∗n → u∗ weakly∗ in V ∗, then

〈u∗n, un〉V ∗×V → 〈u∗, u〉V ∗×V .

Definition 2.6. Let V be a Banach space with its dual space V ∗ and T : V → V ∗ be an single-valued
operator on V . The operator T is said to be:

(1) demicontinuous if, for any sequence {un} ⊂ V converging to u ∈ V , T (un) ⇀ T (u) in V ∗;

(2) hemicontinuous if, for all u, v ∈ V , the functional t→ 〈T (u+ t(v − u)), v − u〉V ∗×V from [0, 1] into R
is continuous at 0+;

(3) continuous if, for any sequence {un} ⊂ V converging to u ∈ V , T (un)→ T (u) in V ∗.

Remark 2.7. It is easy to see that, if T : V → V ∗ is continuous, then it is demicontinuous which, in turn,
implies that T is hemicontinuous. If T : V → V ∗ is linear and demicontinuous, then it is continuous. It
can be shown that for monotone operators T : V → V ∗ with D(T ) = V , the notions of demicontinuity and
hemicontinuity coincide.
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Definition 2.8. Let V1 and V2 be two Banach spaces with their dual spaces V ∗1 , V ∗2 , respectively. Assume
that T : V1 × V2 → V ∗1 is a single-valued operator on V1 × V2. The operator T is said to be hemicontinuous
with respect to first variable if the operator T (·, u2) : V1 → V ∗1 is hemicontinuous on V1 for any given u2 ∈ V2.

Remark 2.9. By similar way, we can define the hemicontinuity of an operator T : V1×V2 → V ∗2 with respect
to second variable.

Definition 2.10. Let V be a real Banach space with its dual space V ∗ and T : V → V ∗ be a single-valued
operator on V . The operator T is said to be monotone if

〈Tu− Tv, u− v〉V ∗×V ≥ 0, ∀u, v ∈ V.

Definition 2.11. Let V1, V2 be two Banach spaces and V ∗1 , V ∗2 be their dual spaces, respectively. Assume
that T : V1 × V2 → V ∗1 is a single-valued operator on V1 × V2. The operator T is said to be monotone with
respect to first variable if the operator T (·, u2) : V1 → V ∗1 is monotone on V1 for any given u2 ∈ V2.

Remark 2.12. By similar way, we can define the monotonicity of an operator T : V1×V2 → V ∗2 with respect
to second variable.

Definition 2.13. Let V be a Banach space and h : V → R be a functional on V . h is said to be:

(1) Lipschitz continuous on V if there exists a constant L > 0 such that

|h(u1)− h(u2)| ≤ L‖u1 − u2‖V , ∀u1, u2 ∈ V ;

(2) locally Lipschitz continuous on V if, for all u ∈ V , there exists a neighborhood N(u) and a constant
Lu > 0 such that

|h(u1)− h(u2)| ≤ Lu‖u1 − u2‖V ∀u1, u2 ∈ N(u).

Definition 2.14. Let V1, V2 be two Banach spaces and h : V1 × V2 → R be a functional on V1 × V2. The
functional h is said to be

(1) Lipschitz continuous with respect to first variable if the operator h(·, u2) : V1 → V ∗1 is Lipschitz
continuous on V1 for any given u2 ∈ V2;

(2) locally Lipschitz continuous with respect to first variable, if the operator h(·, u2) : V1 → V ∗1 is locally
Lipschitz continuous on V1 for any given u2 ∈ V2.

Remark 2.15. By similar way, we can define Lipschitz continuity and locally Lipschitz continuity of the
operator h : V1 × V2 → R with respect to the second variable.

Definition 2.16. Let V be a Banach space, h : V → R be a locally Lipschitz functional on V and let
u, v ∈ V be given elements. Clarke’s generalized directional derivative of h at the point u in the direction
v, denoted by h◦(u; v), is defined by

h◦(u; v) = lim
w→u,λ↓0

h(w + λv)− h(w)

λ
.

Clarke’s generalized gradient of h at u, denoted by ∂h(u), is subset of the dual space V ∗, which is defined
by

∂h(u) = {ρ ∈ V ∗ : h◦(u, v) ≥ 〈ρ, v〉V ∗×V , ∀v ∈ V }.

Proposition 2.17. Let V be a Banach space and V ∗ be its dual space, h : V → R be a locally Lipschitz
functional on V and let u, v ∈ V be given elements. Then

(1) the function v → h◦(u, v) is finite, positively homogenous and subadditive on V;
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(2) h◦(u, v) is upper semicontinuous on V × V as a function of (u, v), i.e., for all u, v ∈ V , un ⊂ V ,
vn ⊂ V such that un → u, vn → v in V, we have

lim suph◦(un, vn) ≤ h◦(u, v);

(3) h◦(u,−v) = (−h)◦(u, v);

(4) for all v ∈ V , ∂h(u) is a nonempty convex bounded and weak-compact subset of V ∗;

(5) for all v ∈ V , one has
h◦(u, v) = max{〈ξ, v〉 ξ ∈ ∂h(u)};

(6) The graph of Clarke’s gradient ∂h(u) is closed in V × (w∗ − V ∗) topology, where (w∗ − V ∗) denotes
the space V ∗ equipped with weak∗ topology, i.e., if {un} ⊂ V and {u∗n} ⊂ V ∗ are sequences such that
u∗n ∈ ∂h(un), un → u in V and u∗n → u∗ weakly∗ in V ∗, then u∗ ∈ ∂h(u).

Definition 2.18. Let A ⊂ V be a nonempty subset of Banach space V . The measure of noncompactness
µ of the set A is defined by:

µ(A) = inf{ε > 0 : A ⊂ ∪ni=1Ai, diam|Ai| < ε, i = 1, 2, 3, · · · , n},

where diam |Ai| denotes the diameter of the set Ai.

Definition 2.19. Let A, B be two nonempty subsets of Banach space V . The Hausdorff metric H(·, ·)
between A and B is defined by:

H(A,B) = max{e(A,B), e(B,A)},

where e(A,B) = supa∈A d(a,B) with d(a,B) = infb∈B ‖a− b‖V .

Note that, in [10], we can find some more properties of the Hausdorff metric between two sets. At the
end of this section, we give a lemma from [6], which is important to our main results.

Lemma 2.20. Let C ⊂ V be nonempty closed and convex, C∗ ⊂ V ∗ be nonempty convex and bounded,
φ : V → R be proper, convex and lower semi-continuous and y ∈ C be arbitrary. Assume that, for any
x ∈ C, there exist x∗(x) ∈ C∗ such that

〈x∗(x), x− y〉V ∗×V ≥ φ(y)− φ(x).

Then there exists y∗ ∈ C∗ such that

〈y∗, x− y〉V ∗×V ≥ φ(y)− φ(x), ∀x ∈ C.

3. Well-Posedness of SHVI with Metric Characterizations

In this section, we introduce the concept of well-posedness for a system of hemivariational inequalities
SHVI and establish some metric characterization of well-posedness for SHVI under some conditions.

Definition 3.1. A sequence {un} ⊂ V1 × V2 with un = (un1 , u
n
2 ) is said to be an approximating sequence

for SHVI if there exists εn > 0 with εn → 0 when n→ +∞ such that{
〈A1(u

n
1 , u

n
2 )− f1, v1 − un1 〉V ∗

1 ×V1 + J◦1 (un1 , u
n
2 ; v1 − un1 ) ≥ −εn‖v1 − un1‖V1 , ∀v1 ∈ V1

〈A2(u
n
1 , u

n
2 )− f2, v2 − un2 〉V ∗

2 ×V2 + J◦2 (un1 , u
n
2 ; v2 − un2 ) ≥ −εn‖v2 − un2‖V2 , ∀v2 ∈ V2.

Definition 3.2. The system SHVI of hemivariational inequalities is said to be strongly (resp., weakly)
well-posed if SHVI has a unique solution and every approximating sequence for SHVI converges strongly
(resp., weakly) to the unique solution.
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Remark 3.3. It is easy to see that the strong well-posedness of SHVI implies the weak well-posedness of
SHVI. On the contrary, the conclusion is not true in general.

Definition 3.4. The system SHVI of hemivariational inequalities is said to be well-posed in generalized
sense (or generalized well-posed) if the solution set of SHVI is nonempty and, for every approximating
sequence, there always exists a subsequence converging to some point of the solution set.

Remark 3.5. Similarly, the strong well-posedness in generalized sense implies the weak well-posedness in
generalized sense for SHVI while the converse dose not hold in general.

In order to establish the metric characterizations for the well-posedness of SHVI, we first define two
sets in V1 × V2 for any ε > 0 as follows:

Ω(ε) =

{
(u1, u2) ∈ V1 × V2 : 〈A1(u1, u2)− f1, v1 − u1〉V ∗

1 ×V1 + J◦1 (u1, u2; v1 − u1) > −ε‖v1 − u1‖V1 ,

〈A2(u1, u2)− f2, v2 − u2〉V ∗
2 ×V2 + J◦2 (u1, u2; v2 − u2) > −ε‖v2 − u2‖V2 ,∀v1 ∈ V1, v2 ∈ V2

}
and

Ψ(ε) =

{
(u1, u2) ∈ V1 × V2 : 〈A1(v1, u2)− f1, v1 − u1〉V ∗

1 ×V1 + J◦1 (u1, u2; v1 − u1) > −ε‖v1 − u1‖V1 ,

〈A2(u1, v2)− f2, v2 − u2〉V ∗
2 ×V2 + J◦2 (u1, u2; v2 − u2) > −ε‖v2 − u2‖V2 ,∀v1 ∈ V1, v2 ∈ V2

}
.

In order to prove some properties of the sets Ω(ε) and Ψ(ε), we first give some hypotheses on the operators
A1, A2 and J in the SHVI.

(HA) (1) A1 : V1 × V2 → V ∗1 is monotone with respect to the first variable.

(2) A2 : V1 × V2 → V ∗2 is monotone with respect to the second variable.

(3) A1 : V1 × V2 → V ∗1 is demicontinuous on V1 × V2.

(4) A2 : V1 × V2 → V ∗2 is demicontinuous on V1 × V2.

(HJ) (1) J is locally Lipschitz with respective to first variable and second variable on V1 × V2.

(2) For any u1, v1 ∈ V1 and u2, v2 ∈ V2, J(u1, u2) + J(v1, v2) = J(u1, v2) + J(v1, u2).

Lemma 3.6. Let V1, V2 be two Banach spaces and V ∗1 , V ∗2 be their dual spaces, respectively. Suppose that
the functional J : V1×V2 → R satisfies the hypothesis (HJ). Then, for any sequence un = (un1 , u

n
2 ) ∈ V1×V2

converging to u = (u1, u2) ∈ V1 × V2 and vni ∈ Vi converging to vi ∈ Vi,

lim sup
n→∞

J◦i (un1 , u
n
2 ; vni ) ≤ J◦i (u1, u2; vi), (3.1)

where i = 1, 2.

Proof. Let un = (un1 , u
n
2 ) ∈ V1 × V2 converge to u = (u1, u2) ∈ V1 × V2 and, for i = 1, 2, vni ∈ Vi converges

to vi ∈ Vi. By Definition 2.16, Clarke’s generalized directional derivative of J(·, un2 ) at un1 in the direction
vn1 is formulated as

J◦1 (un1 , u
n
2 ; vn1 ) = lim sup

w1→un1 ,t↓0

J(w1 + tvn1 , u
n
2 )− J(w1, u

n
2 )

t
.
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For all n ∈ N, by the definition of upper limit, there exist wn1 ∈ V1 and tn > 0 such that

‖wn1 − un1‖V1 + tn <
1

n

and

J(wn1 + tnvn1 , u
n
2 )− J(wn1 , u

n
2 )

tn
> J◦1 (un1 , u

n
2 ; vn1 )− 1

n
. (3.2)

In terms of hypothesis (HJ), we have

J(wn1 + tnvn1 , u
n
2 )− J(wn1 , u

n
2 )

tn

=
J(wn1 + tnv1, u2)− J(wn1 , u2)

tn
+
J(wn1 + tnvn1 , u

n
2 )− J(wn1 + tnv1, u2) + J(wn1 , u2)− J(wn1 , u

n
2 )

tn

=
J(wn1 + tnv1, u2)− J(wn1 , u2)

tn
+
J(wn1 + tnvn1 , u2)− J(wn1 + tnv1, u2)

tn

+
J(wn1 + tnvn1 , u

n
2 )− J(wn1 + tnvn1 , u2) + J(wn1 , u2)− J(wn1 , u

n
2 )

tn

≤ J(wn1 + tnv1, u2)− J(wn1 , u2)

tn
+ Lu1‖vn1 − v1‖V1 , (3.3)

where Lu1 is the locally Lipschitz constant of functional J(·, u2) at u1. It follows from (3.2) and (3.3) that

J◦1 (un1 , u
n
2 ; vn1 )− 1

n
<
J(wn1 + tnv1, u2)− J(wn1 , u2)

tn
+ Lu1‖vn1 − v1‖V1 . (3.4)

Taking upper limit n→∞ at both sides of above inequality (3.4) yields

lim sup
n→∞

J◦1 (un1 , u
n
2 ; vn1 ) ≤ J◦1 (u1, u2; v1).

Similarly, we can prove that
lim sup
n→∞

J◦2 (un1 , u
n
2 ; vn2 ) ≤ J◦2 (u1, u2; v2).

This completes the proof.

Lemma 3.7. Let V1, V2 be two Banach spaces and V ∗1 , V ∗2 be their dual spaces, respectively. Suppose that
A1 : V1 × V2 → V ∗1 and A2 : V1 × V2 → V ∗2 satisfy the hypothesis (HA) and J : V1 × V2 → R is a locally
Lipschitz functional satisfying (HJ). Then Ω(ε) = Ψ(ε) for any ε > 0.

Proof. It is obvious that, with the monotonicity of the operator A1 with respective to first variable and the
operator A2 with second variable, we can easily prove that Ω(ε) ⊂ Ψ(ε) for any ε > 0. Thus we only need
to prove Ψ(ε) ⊂ Ω(ε). To this end, for any u = (u1, u2) ∈ Ψ(ε), we have{

〈A1(v1, u2)− f1, v1 − u1〉V ∗
1 ×V1 + J◦1 (u1, u2; v1 − u1) > −ε‖v1 − u1‖V1 , ∀v1 ∈ V1,

〈A2(u1, v2)− f2, v2 − u2〉V ∗
2 ×V2 + J◦2 (u1, u2; v2 − u2) > −ε‖v2 − u2‖V2 , ∀v2 ∈ V2.

(3.5)

For any w = (w1, w2) ∈ V1 × V2 and t ∈ [0, 1], by letting v1 = u1 + t(w1 − u1) and v2 = u2 + t(w2 − u2) in
(3.5), we get from (3.5) that{

〈A1(u1 + t(w1 − u1), u2)− f1, t(w1 − u1)〉V ∗
1 ×V1 + J◦1 (u1, u2; t(w1 − u1)) ≥ −εt‖w1 − u1‖V1 ,

〈A2(u1, u2 + t(w2 − u2))− f2, t(w2 − u2)〉V ∗
2 ×V2 + J◦2 (u1, u2; t(w2 − u2)) ≥ −εt‖w2 − u2‖V2 .

From the property (1) of Proposition 2.17, Clarke’s generalized directional derivative is positively homoge-
neous with respect to its direction. Thus it follows that{

〈A1(u1 + t(w1 − u1), u2)− f1, w1 − u1)〉V ∗
1 ×V1 + J◦1 (u1, u2;w1 − u1) ≥ −ε‖w1 − u1‖V1 ,

〈A2(u1, u2 + t(w2 − u2))− f2, w2 − u2)〉V ∗
2 ×V2 + J◦2 (u1, u2;w2 − u2) ≥ −ε‖w2 − u2‖V2 .

(3.6)
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From Remark 2.7, the hypothesis (HA) implies that operator A1 and A2 are hemicontinuous with respective
to first variable and second variable respectively. Thus taking limit t→ 0+ at both sides of two inequalities
in (3.6) yields {

〈A1(u1, u2)− f1, w1 − u1〉V ∗
1 ×V1 + J◦1 (u1, u2;w1 − u1) ≥ −ε‖w1 − u1‖V1 ,

〈A2(u1, u2)− f2, w2 − u2〉V ∗
2 ×V2 + J◦2 (u1, u2;w2 − u2) ≥ −ε‖w2 − u2‖V2 ,

which together with the arbitrary of w = (w1, w2) ∈ V1 × V2 implies that Ψ(ε) ⊂ Ω(ε). This completes the
proof.

Lemma 3.8. Let V1 and V2 be two reflexive Banach spaces and V ∗1 , V
∗
2 be their dual spaces, respectively.

Suppose that A1 : V1 × V2 → V ∗1 satisfies the hypothesis (3) in (HA), A2 : V1 × V2 → V ∗2 satisfies the
hypothesis (4) in (HA), and J : V1 × V2 → R is a locally Lipschitz functional satisfying (HJ). Then, for
any ε > 0, Ψ(ε) is closed in V1 × V2.

Proof. Let un = (un1 , u
n
2 ) ∈ Ψ(ε) be a sequence converging to u = (u1, u2) in V1 × V2. Then{

〈A1(v1, u
n
2 )− f1, v1 − un1 〉V ∗

1 ×V1 + J◦1 (un1 , u
n
2 ; v1 − un1 ) ≥ −ε‖v1 − un1‖V1 , ∀v1 ∈ V1,

〈A2(u
n
1 , v2)− f2, v2 − un2 〉V ∗

2 ×V2 + J◦2 (un1 , u
n
2 ; v2 − un2 ) ≥ −ε‖v2 − un2‖V2 , ∀v2 ∈ V2.

(3.7)

By the hypotheses, A1 and A2 are demicontinuous on V1 × V2. It follows from Proposition 2.5 that

lim
n→∞

〈A1(v1, u
n
2 )− f1, v1 − un1 〉V ∗

1 ×V1 = 〈A1(v1, u2)− f1, v1 − u1〉V ∗
1 ×V1 ,

lim
n→∞

〈A2(u
n
1 , v2)− f2, v2 − un2 〉V ∗

2 ×V2 = 〈A2(u1, v2)− f2, v2 − u2〉V ∗
2 ×V2 . (3.8)

Moreover, by the hypothesis (HJ) on the functional J , Lemma 3.6 implies that

lim sup
n→∞

J◦1 (un1 , u
n
2 ; v1 − un1 ) ≤ J◦1 (u1, u2; v1 − u1),

lim sup
n→∞

J◦2 (un1 , u
n
2 ; v2 − un2 ) ≤ J◦2 (u1, u2; v2 − u2). (3.9)

Therefore, taking upper limit n → ∞ at both sides of the inequality (3.7), it follows from (3.8) and (3.9)
that {

〈A1(v1, u2)− f1, v1 − u1〉V ∗
1 ×V1 + J◦1 (u1, u2; v1 − u1) ≥ −ε‖v1 − u1‖V1 , ∀v1 ∈ V1,

〈A2(u1, v2)− f2, v2 − u2〉V ∗
2 ×V2 + J◦2 (u1, u2; v2 − u2) ≥ −ε‖v2 − u2‖V2 , ∀v2 ∈ V2,

which implies that u = (un1 , u
n
2 ) ∈ Ψ(ε). Thus Ψ(ε) is closed in V1 × V2. This completes the proof.

Remark 3.9. Let V1 and V2 be two reflexive Banach spaces with V ∗1 and V ∗2 being their dual spaces. Suppose
that operators A1 : V1 × V2 → V ∗1 , A2 : V1 × V2 → V ∗2 satisfy the hypothesis (HA) and the functional
J : V1 × V2 → R satisfies the hypothesis (HJ), we can easily get from Lemma 3.7 and Lemma 3.8 that
Ω(ε) = Ψ(ε) is closed in V1 × V2.

Theorem 3.10. Let V1 and V2 be two reflexive Banach spaces and V ∗1 and V ∗2 be their dual spaces, respec-
tively. Suppose that A1 : V1× V2 → V ∗1 satisfies the hypothesis (3) in (HA), A2 : V1× V2 → V ∗2 satisfies the
hypothesis (4) in (HA) and the functional J : V1 × V2 → R satisfies the hypothesis (HJ). Then the system
SHVI is strongly well-posed if and only if

Ω(ε) 6= ∅ ∀ε > 0 and diam(Ω(ε))→ 0 as ε→ 0.

Proof. Necessity: Let SHVI be strongly well-posed. Then SHVI admits a unique solution u = (u1, u2) ∈
V1 × V2, i.e., {

〈A1(u1, u2)− f1, v1 − u1〉V ∗
1 ×V1 + J◦1 (u1, u2; v1 − u1) ≥ 0, ∀v1 ∈ V1,

〈A2(u1, u2)− f2, v2 − u2〉V ∗
2 ×V2 + J◦2 (u1, u2; v2 − u2) ≥ 0, ∀v2 ∈ V2.
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This implies that u ∈ Ω(ε) for any ε > 0, i.e., Ω(ε) 6= ∅ for all ε > 0. If diam(Ω(ε)) 9 0 as ε→ 0, then there
exist un = (un1 , u

n
2 ),pn = (pn1 , p

n
2 ) ∈ Ω(εn), d > 0 and 0 < εn → 0 such that

‖un − pn‖V1×V2 = ‖un1 − pn1‖V1 + ‖un2 − pn2‖V2 > d. (3.10)

By the definition of the approximating sequence for SHVI, un and pn are two approximating sequences.
Thus it follows from the strong well-posedness of SHVI that both un and pn converge to the unique solution
u, which contradicts (3.10).

Sufficiency: Let Ω(ε) 6= ∅ and diam(Ω(ε))→ 0 as ε→ 0. Then we prove that the system of hemivaria-
tional inequalities SHVI is strongly well-posed. To this end, suppose that {un} with un = (un1 , u

n
2 ) is an

approximating sequence for SHVI. Then there exists 0 < εn → 0 as n→∞, such that{
〈A1(u

n
1 , u

n
2 )− f1, v1 − un1 〉V ∗

1 ×V1 + J◦1 (un1 , u
n
2 ; v1 − un1 ) ≥ −εn‖v1 − un1‖V1 , ∀v1 ∈ V1,

〈A2(u
n
1 , u

n
2 )− f2, v2 − un2 〉V ∗

2 ×V2 + J◦2 (un1 , u
n
2 ; v2 − un2 ) ≥ −εn‖v2 − un2‖V2 , ∀v2 ∈ V2,

which implies un ∈ Ω(εn) for all n ≥ 1. Since diam(Ω(εn))→ 0 as n→ +∞, {un} is a Cauchy sequence in
V1 × v2. Without loss of generality, we suppose that {un} converges strongly to u = (u1, u2) in V1 × V2.

Now, we prove that u is a unique solution to the system SHVI of hemivariational inequalities. First,
since the operators A1 and A2 are demicontinuous on V1 × V2 and the functional J satisfies the hypothesis
(HJ), we can get by similar arguments as (3.8) and (3.9) that

〈A1(u1, u2)− f1, v1 − u1〉V ∗
1 ×V1 + J◦1 (u1, u2; v1 − u1)

≥ lim
n→∞

〈
A1(u

n
1 , u

n
2 )− f1, v1 − un1

〉
V ∗
1 ×V1

+ lim sup
n→∞

J◦1 (un1 , u
n
2 ; v1 − un1 )

= lim sup
n→∞

(〈A1(u
n
1 , u

n
2 )− f1, v1 − un1 〉V ∗

1 ×V1 + J◦1 (un1 , u
n
2 ; v1 − un1 ))

≥ lim
n→∞

−εn‖v1 − un1‖V1
= 0.

By the similar arguments, one has

〈A2(u1, u2)− f2, v2 − u2〉V ∗
2 ×V2 + J◦2 (u1, u2; v2 − u2) ≥ 0.

Therefore, u is a solution to the system SHVI.
Second, we prove that u is the unique solution to the system SHVI. Suppose that u′ is another solution

to the system SHVI of hemivariational inequalities. Since, for any ε > 0, u,u′ ∈ Ω(ε), ‖u − u′‖V1×V2 ≤
diam(Ω(ε)), which together with the condition diam(Ω(ε)) → 0 as ε → 0 implies that u = u′. This
completes the proof.

Theorem 3.11. Let V1, V2 be two Banach spaces and V ∗1 , V ∗2 be their dual spaces, respectively. Suppose
that A1 : V1 × V2 → V ∗1 and A2 : V1 × V2 → V ∗2 are two operators on V1 × V2 satisfying (HA) and the
functional J : V1 × V2 → R satisfies the hypothesis (HJ). Then the system SHVI is generalized well-posed
if and only if

Ω(ε) 6= ∅ for any ε > 0 and µ(Ω(ε))→ 0 as ε→ 0.

Proof. Necessity: Suppose that the system SHVI of hemivariational inequalities is generalized well-posed.
Then the solution set of the system SHVI, S 6= ∅. This indicates that, for any ε > 0, Ω(ε) 6= ∅ since
S ⊂ Ω(ε). Moreover, we claim here that the solution set S of the system SHVI is compact. In fact, for any
sequence {un} ⊂ S with un = (un1 , u

n
2 ), un is an approximating sequence for SHVI and thus there exists

a subsequence of {un} converging to some point of S, which implies that S is compact. To complete the
proof of Necessity, we show that µ(Ω(ε))→ 0 as ε→ 0. It follows from S ⊂ Ω(ε) that

H(Ω(ε), S) = max{e(Ω(ε), S), e(S,Ω(ε))} = e(Ω(ε), S).
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Since the solution set S is compact, one has

µ(Ω(ε)) ≤ 2H(Ω(ε), S) = 2e(Ω(ε), S).

Now, we prove e(Ω(ε), S) → 0 as ε → 0 to obtian µ(Ω(ε)) → 0 as ε → 0. If not, there exists a constant
l > 0, a sequence {εn} ⊂ R+ with εn → 0 and un ∈ Ω(εn) such that

un * S +B(0, l), (3.11)

where B(0, l) is an open ball with center 0 and radius l. However, un ∈ Ω(εn) and εn → 0 imply that {un}
is an approximating sequence for SHVI. It follows the generalized well-posedness of SHVI that {un} has
a subsequence converges to some point of u ∈ S, which contradicts (3.11).

Sufficiency: Assume that Ω(ε) 6= ∅ for all ε > 0 and µ(Ω(ε))→ 0 as ε→ 0. We prove the system SHVI
of hemivariational inequalities is generalized well-posed. First of all, we observe that

S = ∩ε>0Ω(ε).

Furthermore, since µ(Ω(ε)) → 0 as ε → 0 and, by Remark 3.9, Ω(ε) is closed for any ε > 0, it follows from
Theorem on page 412 of [10] that S is nonempty compact and

e(Ω(ε), S) = H(Ω(ε), S)→ 0 as ε→ 0. (3.12)

Now, to prove the generalized well-posedness of SHVI, let un ∈ V1 × V2 with un = (un1 , u
n
2 ) be an

approximating sequence for SHVI. It follows that there exists a nonnegative sequence {εn} with εn → 0
such that{

〈A1(u
n
1 , u

n
2 )− f1, v1 − un1 〉V ∗

1 ×V1 + J◦1 (un1 , u
n
2 ; v1 − un1 ) ≥ −εn‖v1 − un1‖V1 , ∀v1 ∈ V1,

〈A2(u
n
1 , u

n
2 )− f2, v2 − un2 〉V ∗

2 ×V2 + J◦2 (un1 , u
n
2 ; v2 − un2 ) ≥ −εn‖v2 − un2‖V2 , ∀v2 ∈ V2,

which implies un ∈ Ω(εn). This together with (3.12) indicates that

d(un, S) ≤ e(Ω(εn), S)→ 0.

Since S is compact, it follows that there exists wn ∈ S with wn = (wn1 , w
n
2 ) such that

‖un −wn‖V1×V2 = d(un, S)→ 0.

Again, by the compactness of the solution set S, the sequence {wn} ⊂ S has a subsequence {wnk} converging
to some point w′ ∈ S. Thus it follows from

‖unk −w′‖V1×V2 ≤ ‖unk −wnk‖V1×V2 + ‖wnk −w′‖V1×V2

that the subsequence {unk} of {un} converges to w′. Therefore, the system SHVI is well-posedness in
generalized sense. This completes the proof.

4. Relations with Well-Posedness of SIP

In this section, we firstly introduce systems of inclusion problems on the product space V1 × V2 and
define the concept of well-posedness for the system of inclusion problems. Then, we prove the equivalence
results between the well-posedness of the system of hemivariational inequalities and the well-posedness of
the corresponding system of inclusion problems.

Let V1 and V2 be two Banach spaces with V ∗1 and V ∗2 being their dual spaces, respectively. Suppose
that, for i = 1, 2, Ti is a set-value mapping from V1 × V2 to V ∗i . A system of inclusion problems related to
the mappings T1 and T2 is defined as follows:
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Find u1 ∈ V1 and u2 ∈ V2 such that

(SIP)

{
01 ∈ T1(u1, u2),
02 ∈ T2(u1, u2),

(4.1)

where, for i = 1, 2, 0i ∈ V ∗i represents the zero element in V ∗i . For simplicity, we use the symbols as follows:

u = (u1, u2) ∈ V1 × V2, 0 = (01, 02) ∈ V ∗1 × V ∗2 , T (u) = (T1(u), T2(u)) ∈ V ∗1 × V ∗2 .

This allows us to simplify the system of inclusion problems as follows:

Find u ∈ V1 × V2 such that
0 ∈ T (u).

Definition 4.1. A sequence {un} ⊂ V1 × V2 with un = (un1 , u
n
2 ) is called an approximating sequence for

the system SIP of inclusion problems if d(0,T (un)) → 0 or there exists a sequence pn = (pn1 , p
n
2 ) ∈ T (un)

such that ‖pn‖V ∗
1 ×V ∗

2
→ 0 as n→∞.

Definition 4.2. The system SIP is said to be strongly (resp., weakly) well-posed if it has a unique solution
and each approximating sequence converges strongly (resp., weakly) to the unique solution of SIP(T ).

Definition 4.3. The system SIP is said to be strongly (resp., weakly) well-posed in generalized sense (or
generalized well-posed) if the solution set S of SIP is nonempty and each approximating sequence has a
subsequence converging strongly (resp., weakly) to some point of solution set S.

In order to show that the well-posedness of the system of hemivariational inequalities is equivalent to the
well-posedness of its corresponding system of inclusion problems, we first give a lemma which establishes
the equivalence between the system SHVI and its derived system inclusion problems.

Lemma 4.4. Let V1, V2 be two Banach spaces and V ∗1 and V ∗2 be their dual spaces, respectively. u =
(u1, u2) ∈ V1 × V2 is a solution to the system SHVI of hemivariational inequalities if and only if it solves
the following derived system of inclusion problems:

Find u = (u1, u2) ∈ V1 × V2 such that

(DSIP)

{
f1 ∈ A1(u1, u2) + ∂1J(u1, u2)
f2 ∈ A2(u1, u2) + ∂2J(u1, u2),

where, for i 6= j = 1, 2, ∂iJ(u1, u2) denotes Clarke’s generalized gradient of the functional J(·, uj) at ui.

Proof. First of all, we prove the necessity. To this end, assume that u = (u1, u2) ∈ V1 × V2 is the solution
to the system SHVI of hemivariational inequalities, i.e.,{

〈A1(u1, u2)− f1, v1 − u1〉V ∗
1 ×V1 + J◦1 (u1, u2; v1 − u1) ≥ 0, ∀v1 ∈ V1,

〈A2(u1, u2)− f2, v2 − u2〉V ∗
2 ×V2 + J◦2 (u1, u2; v2 − u2) ≥ 0, ∀v2 ∈ V2.

(4.2)

For any w1 ∈ V1, w2 ∈ V2, letting v1 = u1 + w1 ∈ V1, v2 = u2 + w2 ∈ V2 in (4.2) yields{
J◦1 (u1, u2;w1) ≥ 〈f1 −A1(u1, u2), w1〉V ∗

1 ×V1 ,

J◦2 (u1, u2;w2) ≥ 〈f2 −A2(u1, u2), w2〉V ∗
2 ×V2 .

It follows from the arbitrary of w1 ∈ V1 and w2 ∈ V2 that{
f1 ∈ A1(u1, u2) + ∂1J(u1, u2),
f2 ∈ A2(u1, u2) + ∂2J(u1, u2),

which implies that u = (u1, u2) ∈ V1 × V2 is the solution to the system DSIP.
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Sufficiency. Suppose that u = (u1, u2) ∈ V1×V2 is the solution to the derived system DSIP of inclusion
problems, i.e., {

f1 ∈ A1(u1, u2) + ∂1J(u1, u2),
f2 ∈ A2(u1, u2) + ∂2J(u1, u2).

Then there exist ξ1 ∈ ∂1J(u1, u2) and ξ2 ∈ ∂2J(u1, u2) such that

f1 = A1(u1, u2) + ξ1, f2 = A2(u1, u2) + ξ2. (4.3)

By multiplying the above two equality (4.3) with v1−u1 ∈ V1 and v2−u2 ∈ V2, respectively, we can obtain,
by the definition of Clarke’s generalized gradient, that

〈f1, v1 − u1〉V ∗
1 ×V1 = 〈A1(u1, u2) + ξ1, v1 − u1〉V ∗

1 ×V1

= 〈A1(u1, u2), v1 − u1〉V ∗
1 ×V1 + 〈ξ1, v1 − u1〉V ∗

1 ×V1

≤ 〈A1(u1, u2), v1 − u1〉V ∗
1 ×V1 + J◦1 (u1, u2; v1 − u1)

and

〈f2, v2 − u2〉V ∗
2 ×V2 = 〈A2(u1, u2) + ξ2, v2 − u2〉V ∗

2 ×V2

= 〈A2(u1, u2), v2 − u2〉V ∗
2 ×V2 + 〈ξ2, v2 − u2〉V ∗

2 ×V2

≤ 〈A2(u1, u2), v2 − u2〉V ∗
2 ×V2 + J◦2 (u1, u2; v2 − u2).

Therefore, u is the solution of the system SHVI. This completes the proof.

Theorem 4.5. Let V1, V2 be two Banach spaces with V ∗1 and V ∗2 being their dual spaces, respectively. The
system SHVI of hemivariational inequalities is strongly well-posed if and only if the derived system DSIP
of inclusion problems is strongly well-posed.

Proof. Necessity: Suppose that the system SHVI of hemivariational inequalities is strongly well-posed and
thus there exists a unique u = (u1, u2) ∈ V1 × V2 solving SHVI. It follows from Lemma 4.4 that u is the
unique solution to DSIP. To prove the well-posedness of DSIP, we let un = (un1 , u

n
2 ) be an approximating

sequence for DSIP and prove that un → u as n → ∞. Then there exists a sequence pn = (pn1 , p
n
2 ) such

that, for i = 1, 2, pni ∈ Ai(un1 , un2 )− fi + ∂iJ(un1 , u
n
2 ) and ‖pni ‖V ∗

i
→ 0 as n→∞. It follows that{

pn1 −A1(u
n
1 , u

n
2 ) + f1 ∈ ∂1J(un1 , u

n
2 ),

pn2 −A2(u
n
1 , u

n
2 ) + f2 ∈ ∂2J(un1 , u

n
2 ).

In terms of the definition of Clarke’s generalized gradient, one easily obtains{
J◦1 (un1 , u

n
2 ; v1 − un1 ) ≥ 〈−A1(u

n
1 , u

n
2 ) + f1 + pn1 , v1 − un1 〉V ∗

1 ×V1 , ∀v1 ∈ V1,
J◦2 (un1 , u

n
2 ; v2 − un2 ) ≥ 〈−A2(u

n
1 , u

n
2 ) + f2 + pn2 , v2 − un2 〉V ∗

2 ×V2 , ∀v2 ∈ V2,

which implies that
J◦1 (un1 , u

n
2 ; v1 − un1 ) + 〈A1(u

n
1 , u

n
2 )− f1, v1 − un1 〉V ∗

1 ×V1 ≥ 〈p
n
1 , v1 − un1 〉V ∗

1 ×V1
≥ −‖pn1‖V ∗

1
‖v1 − un1‖V1 , ∀v1 ∈ V1,

J◦2 (un1 , u
n
2 ; v2 − un2 ) + 〈A2(u

n
1 , u

n
2 )− f2, v2 − un2 〉V ∗

2 ×V2 ≥ 〈p
n
2 , v2 − un2 〉V ∗

2 ×V2
≥ −‖pn2‖V ∗

2
‖v2 − un2‖V2 , ∀v2 ∈ V2.

(4.4)

Letting εn = max(‖pn1‖V ∗
1
, ‖pn2‖V ∗

2
), it follows from (4.4) that un is an approximating sequence for SHVI

since εn → 0 as n→∞. By the well-posedness of SHVI, un strongly converges to the unique solution u.
Sufficiency: Let the system DSIP of inclusion problems be strongly well-posed. Thus there exists a

unique solution u to DSIP. In terms of Lemma 4.4, u is the solution to the system SHVI of hemivariational
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inequalities as well. We now suppose that un is an approximating sequence for SHVI, which implies that
there exits εn > 0 satisfying εn → 0 as n→∞ such that{

〈A1(u
n
1 , u

n
2 )− f1, v1 − un1 〉V ∗

1 ×V1 + J◦1 (un1 , u
n
2 ; v1 − un1 ) ≥ −εn‖v1 − un1‖V1 , ∀v1 ∈ V1,

〈A2(u
n
1 , u

n
2 )− f2, v2 − un2 〉V ∗

2 ×V2 + J◦2 (un1 , u
n
2 ; v2 − un2 ) ≥ −εn‖v2 − un2‖V2 , ∀v2 ∈ V2.

(4.5)

By virtue of Proposition 2.17, one observes that{
J◦1 (un1 , u

n
2 ; v1 − un1 ) = max{〈p1, v1 − un1 〉V ∗

1 ×V1 : p1 ∈ ∂1J(un1 , u
n
2 )},

J◦2 (un1 , u
n
2 ; v2 − un2 ) = max{〈p2, v2 − un2 〉V ∗

2 ×V2 : p2 ∈ ∂2J(un1 , u
n
2 )}.

Thus there exist p1(u
n
1 , u

n
2 , v1) ∈ ∂1J(un1 , u

n
2 ) and p2(u

n
1 , u

n
2 , v2) ∈ ∂2J(un1 , u

n
2 ) such that{

〈A1(u
n
1 , u

n
2 )− f1, v1 − un1 〉V ∗

1 ×V1 + 〈p1(un1 , un2 , v1), v1 − un1 〉V ∗
1 ×V1 ≥ −εn‖v1 − u

n
1‖V1 , ∀v1 ∈ V1,

〈A2(u
n
1 , u

n
2 )− f2, v2 − un2 〉V ∗

2 ×V2 + 〈p2(un1 , un2 , v2), v2 − un2 〉V ∗
2 ×V2 ≥ −εn‖v2 − u

n
2‖V2 , ∀v2 ∈ V2.

According to (4) of Proposition (2.17), both ∂1J(un1 , u
n
2 ) and ∂2J(un1 , u

n
2 ) are nonempty convex and bounded

in V ∗1 , V ∗2 respectively, which indicates that, for i = 1, 2, the set {Ai(un1 , un2 ) + pi − fi : pi ∈ ∂iJ(un1 , u
n
2 )}

is also nonempty, convex and bounded in V ∗i . Therefore, for i = 1, 2, it follows from Lemma (2.20) with
φi(x) = εn‖x− uni ‖Vi that there exists pni ∈ ∂iJ(un1 , u

n
2 ), which is independent on vi, such that{

〈A1(u
n
1 , u

n
2 )− f1, v1 − un1 〉V ∗

1 ×V1 + 〈pn1 , v1 − un1 〉V ∗
1 ×V1 ≥ −εn‖v1 − u

n
1‖V1 , ∀v1 ∈ V1,

〈A2(u
n
1 , u

n
2 )− f2, v2 − un2 〉V ∗

2 ×V2 + 〈pn2 , v2 − un2 〉V ∗
2 ×V2 ≥ −εn‖v2 − u

n
2‖V2 , ∀v2 ∈ V2.

(4.6)

In particular, for any w1 ∈ V1 and w2 ∈ V2, letting v1 = un1 −w1, v2 = un2 −w2 in the above inequality (4.6),
one obtains that {

〈A1(u
n
1 , u

n
2 )− f1 + pn1 ,−w1〉V ∗

1 ×V1 ≥ −εn‖w1‖V1 ,
〈A2(u

n
1 , u

n
2 )− f2 + pn2 ,−w2〉V ∗

2 ×V2 ≥ −εn‖w2‖V2 ,
which together with the arbitrary of w1 ∈ V1 and w2 ∈ V2 implies that{

〈A1(u
n
1 , u

n
2 )− f1 + pn1 , w1〉V ∗

1 ×V1 ≤ εn‖w1‖V1 , ∀w1 ∈ V1,
〈A2(u

n
1 , u

n
2 )− f2 + pn2 , w2〉V ∗

2 ×V2 ≤ εn‖w2‖V2 , ∀w2 ∈ V2.

Thus we have {
‖A1(u

n
1 , u

n
2 )− f1 + pn1‖V ∗

1
≤ εn → 0,

‖A2(u
n
1 , u

n
2 )− f2 + pn2‖V ∗

2
≤ εn → 0.

Moreover, since
A1(u

n
1 , u

n
2 )− f1 + pn1 ∈ A1(u

n
1 , u

n
2 )− f1 + ∂1J(un1 , u

n
2 )

and
A2(u

n
1 , u

n
2 )− f2 + pn2 ∈ A2(u

n
1 , u

n
2 )− f2 + ∂2J(un1 , u

n
2 ),

the sequence {un} with un = (un1 , u
n
2 ) is an approximating sequence for DSIP. Now, it follows from the

well-posedness of DSIP that {un} converges to the unique solution u in V1 × V2. Therefore, the system of
hemivariational inequalities SHVI is strongly well-posed. This completes the proof.

With the similar arguments in the proof of Theorem 4.5, one can easily prove the following equivalence
between the generalized well-posedness of SHVI and the generalized well-posedness of the system DSIP.

Theorem 4.6. Let V1, V2 be two Banach spaces and V ∗1 , V ∗2 being their dual spaces, respectively. The
system SHVI of hemivariational inequalities is strongly well-posed in generalized sense if and only if the
derived system DSIP of inclusion problems is strongly well-posed in generalized sense.

5. Concluding Remarks

The present paper generalizes the concept of well-posedness to a system SHVI of hemivariational in-
equalities in Banach space. Firstly, we give several definitions of well-posedness and, with two assumptions
on the operators involved in SHVI, establish some metric characterizations of well-posedness for SHVI
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considered. Then, by introducing an equivalence result between the system SHVI and a derived system
DSIP of inclusion problems, we prove that the strong (generalized) well-posedness for SHVI is equivalent
to the strong (generalized) well-posedness for its DSIP.

Several problems related to the well-posedness of systems of hemivariational inequalities remain to be
considered in the future study. The first one is to exploit some conditions under which the strong (weak)
well-posedness of systems of hemivariational inequalities is equivalent to the existence and uniqueness of
their solution. The second one is to generalize the study of well-posedness to systems of hemivariational
inequalities involving both nonsmooth functionals and proper, convex and lower semi-continuous functionals,
which are referred to as systems of variational-hemivariational inequalities. Finally, there are many other
concepts of well-posedness in the literature on optimization problems and variational inequalities, such as α-
well-posedness and Levitin-Polyak well-posedness. Extending these concepts of well-posedness to the study
of systems of hemivariational inequalities would be interesting in the future.
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