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Abstract

The aim of this paper is to study the solvability of a class of generalized mixed nonlinear variational-
like inequalities in Hilbert spaces. Using the auxiliary principle technique, the Banach fixed-point theorem
and an inequality due to Chang and Xiang, we construct two iterative algorithms for finding approximate
solutions of the generalized mixed nonlinear variational-like inequality. Under some conditions we prove
the existence and uniqueness of solution for the generalized mixed nonlinear variational-like inequality and
establish the strong convergence of approximate solutions to the exact solution of the generalized mixed
nonlinear variational-like inequality. Our results extend, improve and unify some known results in the
literature. c©2016 All rights reserved.
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1. Introduction

It is well known that the development of an efficient and implementable iterative algorithm to compute
approximate solutions of a variational inequality has been one of the most difficult, interesting and important
problems in the variational inequality theory.
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It is worth mentioning that the auxiliary principle technique suggested by Glowinski, Lions and
Tremolieres in [7] has become a useful, important and powerful tool for solving various variational-like
inequalities. Ansari and Yao [1], Chang and Xiang [3], Ding and Luo [4], Huang and Deng [8], Huang and
Fang [9], Liu, Chen, Kang and Ume [11], Zeng [19], Zeng, Lin and Yao [20] and others used the auxiliary
principle technique to construct some iterative methods for finding the exact solutions of the variational and
variational-like inequalities in [1, 3, 4, 8, 9, 11, 12, 19, 20], and discussed the existence and uniqueness of so-
lutions for the variational and variational-like inequalities in [1, 3, 4, 8, 9, 11, 12, 19, 20] and the convergence
of iterative sequences generated by the iterative methods.

Motivated and inspired by the results in [1]–[9], [11]–[20], we introduce and study a new class of gen-
eralized mixed nonlinear variational-like inequalities in Hilbert spaces. By applying the auxiliary principle
technique, the Banach contraction principle and an inequality due to [3], we show the existence and unique-
ness theorems of solution for auxiliary problem relative to the generalized mixed nonlinear variational-like
inequality. For finding the approximate solutions of the generalized mixed nonlinear variational-like inequal-
ity, we suggest two iterative algorithms with errors by the auxiliary problem. Under certain conditions, we
get the existence and uniqueness results of solution for the generalized mixed nonlinear variational-like in-
equality and prove the convergence of iterative sequences generated by the iterative algorithms with errors.
Our results improve and generalize many known results.

2. Preliminaries

Throughout this paper, let R = (−∞,+∞), H be a real Hilbert space endowed with an inner product
〈·, ·〉 and a norm ‖ · ‖, respectively. Let K be a nonempty closed convex subset of H. Let a : K ×K → R
be a coercive continuous bilinear form, that is, there exist positive constants c, d > 0 such that

(a1) a(v, v) ≥ c‖v‖2, ∀v ∈ K;

(a2) |a(u, v)| ≤ d‖u‖‖v‖, ∀u, v ∈ K.

Let b : K ×K → R satisfy the following conditions:

(b1) b is linear in the first argument;

(b2) b is convex in the second argument;

(b3) b is bounded, that is, there exists a constant l > 0 satisfying

|b(u, v)| ≤ l‖u‖‖v‖, ∀u, v ∈ K;

(b4) b(u, v)− b(u,w) ≤ b(u, v − w), ∀u, v, w ∈ K.

Remark 2.1. It follows from (a1) and (a2) that c ≤ d.
Remark 2.2. It follows (b1) and (b2) that

|b(u, v)− b(u,w)| ≤ l‖u‖‖v − w‖, ∀u, v, w ∈ K,

which implies that b is continuous in the second argument.

Let f ∈ H and A,B,C,D : K → H, N,M : H×H → H, η : K×K → H be mappings. Now we consider
the following problem:

Find u ∈ K such that

〈N(Au,Bu)−M(Cu,Du)− f, η(v, u)〉+ a(u, v − u) ≥ b(u, u)− b(u, v), ∀v ∈ K, (2.1)

which is called a generalized mixed nonlinear variational-like inequality.
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Special cases

Case 1. If f = Bx = Dx = a(x, y) = 0, b(x, y) = ϕ(y), N(x, y) = M(x, y) = x for all x, y ∈ H, then
problem (2.1) reduces to the mixed variational-like inequality studied by Ansari and Yao [1] and Zeng
[19]: find u ∈ K such that

〈Au− Cu, η(v, u)〉+ ϕ(v)− ϕ(u) ≥ 0, ∀v ∈ K. (2.2)

Case 2. If f = Bx = Cx = Dx = a(x, y) = b(x, y) = M(x, y) = 0, N(x, y) = x for all x, y ∈ H, then
problem (2.1) reduces to the variational-like inequality studied by Yang and Chen [16]: find u ∈ K
such that

〈Au, η(v, u)〉 ≥ 0, ∀v ∈ K. (2.3)

Case 3. If f = M(x, y) = Cx = Dx = 0, N(x, y) = −x − y and η(x, y) = y − x for all x, y ∈ H, then
problem (2.1) is equivalent to seeking u ∈ K such that

a(u, v − u) + b(u, v)− b(u, u) ≥ 〈Au+Bu, v − u〉, ∀v ∈ K, (2.4)

which was introduced and studied by Chang and Xiang [3].

Case 4. If f = N(x, y) = Ax = Bx = Dx = 0,M(x, y) = x and η(x, y) = y − x for all x, y ∈ H, then
problem (2.1) is equivalent to finding u ∈ K such that

a(u, v − u) + b(u, v)− b(u, u) ≥ 〈Cu, v − u〉, ∀v ∈ K, (2.5)

which was introduced and studied by Bose [2].

Case 5. If f = M(x, y) = Bx = Cx = Dx = 0,M(x, y) = x and η(x, y) = y − x for all x, y ∈ H, then
problem (2.1) is equivalent to finding u ∈ K such that

〈Au, v − u〉 ≥ 0, ∀v ∈ K, (2.6)

which was introduced and studied by Yao [17] and others.

For appropriate and suitable choices of the mappings N,M,A,B,C,D, η, a and b, one can obtain a lot
of variational and variational-like inequalities in [1]–[9], [11]–[20] as special cases of the generalized mixed
nonlinear variational-like inequality (2.1).

Recall the below concepts and lemmas.

Definition 2.3. Let A,B, g : K → H, N : H ×H → H and η : K ×K → H be mappings.

(1) A is said to be Lipschitz continuous if there exists a constant t > 0 such that

‖Ax−Ay‖ ≤ t‖x− y‖, ∀x, y ∈ K;

(2) A is said to be η-strongly monotone if there exists a constant τ > 0 such that

〈Ax−Ay, η(x, y)〉 ≥ τ‖x− y‖2, ∀x, y ∈ K;

(3) N is said to be η-strongly monotone with respect to A in the first argument if there exists a constant
β > 0 such that

〈N(Au, y)−N(Av, y), η(u, v)〉 ≥ β‖u− v‖2, ∀u, v ∈ K, ∀y ∈ H;
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(4) N is said to be η-monotone with respect to A and B in the first and second arguments if

〈N(Au,Bu)−N(Av,Bv), η(u, v)〉 ≥ 0, ∀u, v ∈ K;

(5) N is said to be η-relaxed Lipschitz with respect to B in the second argument if there exists a constant
λ > 0 such that

〈N(y,Bu)−N(y,Bv), η(u, v)〉 ≤ −λ‖u− v‖2, ∀u, v ∈ K, y ∈ H;

(6) N is said to be η-generalized pseudocontrative with respect to A in the first argument if there exists a
constant ξ > 0 such that

〈N(Au, y)−N(Av, y), η(u, v)〉 ≤ ξ‖u− v‖2, ∀u, v ∈ K, y ∈ H;

(7) N is said to be g-relaxed Lipschitz with respect to B in the second argument if there exists a constant
µ > 0 such that

〈N(y,Bu)−N(y,Bv), gu− gv)〉 ≤ −µ‖u− v‖2, ∀u, v ∈ K, y ∈ H;

(8) N is said to be Lipschitz continuous in the second argument if there exists a constant γ > 0 such that

‖N(y, u)−N(y, v)‖ ≤ γ‖u− v‖, ∀u, v, y ∈ H;

(9) η is said to be Lipschitz continuous if there exists a constant δ > 0 such that

‖η(u, v)‖ ≤ δ‖u− v‖, ∀u, v ∈ K. (2.7)

Similarly we can define that N is η-relaxed Lipschitz with respect to B in the first argument.

Lemma 2.4 ([3]). Let X be a nonempty closed convex subset of a Hausdorff linear topological space E, and
φ, ψ : X ×X → R be mappings satisfying the following conditions:

(a) ψ(x, y) ≤ φ(x, y), ∀x, y ∈ X, and ψ(x, x) ≥ 0, ∀x ∈ X;

(b) for each x ∈ X, φ(x, ·) is upper semicontinuous on X;

(c) for each y ∈ X, the set {x ∈ X : ψ(x, y) < 0} is a convex set;

(d) there exists a nonempty compact set Y ⊂ X and x0 ∈ Y such that ψ(x0, y) < 0, ∀y ∈ X \ Y.

Then there exists ŷ ∈ Y such that φ(x, ŷ) ≥ 0, ∀x ∈ X.

Lemma 2.5 ([10]). Let {an}n≥0, {bn}n≥0 and {cn}n≥0 be nonnegative sequences satisfying

an+1 ≤ (1− λn)an + λnbn + cn, ∀n ≥ 0,

where

{λn}n≥0 ⊂ [0, 1],
∞∑
n=0

λn = +∞,
∞∑
n=0

cn < +∞, lim
n→∞

bn = 0.

Then limn→∞ an = 0.

Assumption 2.6. Let f ∈ H and A,B,C,D, g : K → H, N,M : H × H → H and η : K × K → H be
mappings such that

(i) η(x, y) = −η(y, x), ∀x, y ∈ K;

(ii) for each u,w ∈ K, the mappings v 7→ 〈gw−gu, η(v, w)〉 and v 7→ 〈N(Aw,Bv)−M(Cw,Du)−f, η(v, w)〉
are convex;

(iii) for each u, v ∈ K, the mappings w 7→ 〈gw − gu, η(v, w)〉 and w 7→ 〈N(Aw,Bw) − M(Cw,Du) −
f, η(v, w)〉 are upper semicontinuous.
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3. Auxiliary Problem and Iterative Algorithms

In this section, we give two existence and uniqueness theorems of solution for the auxiliary problem with
respect to the generalized mixed nonlinear variational-like inequality (2.1). Based on these existence and
uniqueness theorems, we construct two iterative algorithms with errors for the generalized mixed nonlinear
variational-like inequality (2.1).

Let g : K → H be a mapping. Now we consider the following auxiliary problem with respect to the
generalized mixed nonlinear variational-like inequality (2.1): for each u ∈ K, find ŵ ∈ K such that

〈gŵ, η(v, ŵ)〉 ≥ 〈gu, η(v, ŵ)〉 − ρ〈N(Aŵ,Bŵ)−M(Cŵ,Du)− f, η(v, ŵ)〉
− ρa(ŵ, v − ŵ)− ρb(u, v) + ρb(u, ŵ), ∀v ∈ K,

(3.1)

where ρ > 0 is a constant.

Theorem 3.1. Let K be a nonempty closed convex subset of a real Hilbert space H, f ∈ H and η : K×K →
H be Lipschitz continuous with constant δ. Assume that a : K×K → R is a coercive continuous bilinear form
satisfying (a1) and (a2) and b : K ×K → R satisfies (b1)-(b4). Let g : K → H be Lipschitz continuous and
η-strongly monotone with constants ξ and τ , respectively. Let A,B,C,D : K → H and N,M : H ×H → H
be mappings such that N is η-strongly monotone with respect to A in the first argument with constant α,
η-relaxed Lipschitz with respect to B in the second argument with constant β, η-monotone with respect to A
and B in the first and second arguments and M is η-relaxed Lipschitz with respect to C in the first argument
with constant λ. Assume that Assumption 2.6 holds. Then for each u ∈ K, the auxiliary problem (3.1) has
a unique solution in K.

Proof. Let u be in K. Define two functionals φ and ψ : K ×K → R by

φ(v, w) = 〈gw − gu, η(v, w)〉+ ρ〈N(Aw,Bw)−M(Cw,Du)− f, η(v, w)〉
+ ρa(w, v − w)− ρb(u,w) + ρb(u, v),

and
ψ(v, w) = 〈gw − gu, η(v, w)〉+ ρ〈N(Aw,Bv)−M(Cw,Du)− f, η(v, w)〉

+ ρa(w, v − w)− ρb(u,w) + ρb(u, v)

for all v, w ∈ K.
We now prove that the functionals φ and ψ satisfy the conditions of Lemma 2.4 in the weak topology.

Indeed, it is easy to see for all v, w ∈ K,

φ(v, w)− ψ(v, w) = −ρ〈N(Aw,Bv)−N(Aw,Bw), η(v, w)〉
≥ ρβ‖v − w‖2

≥ 0

and
ψ(v, v) = 0,

which imply that φ and ψ satisfy the condition (a) of Lemma 2.4. Since a is a coercive continuous bilinear
form, b is convex and continuous in the second argument, and for each u,w ∈ K, the mappings v 7→
〈gw − gu, η(v, w)〉 and v 7→ 〈N(Aw,Bv) − M(Cw,Du) − f, η(v, w)〉 are convex, for each u, v ∈ K, the
mappings w 7→ 〈gw−gu, η(v, w)〉 and w 7→ 〈N(Aw,Bw)−M(Cw,Du)−f, η(v, w)〉 are upper semicontinuous,
it follows that for each v ∈ K,φ(v, ·) is weakly upper semicontinuous in the second argument and the set
{v ∈ K : ψ(v, w) < 0} is convex for each w ∈ K. That is, the conditions (b) and (c) of Lemma 2.4 hold.
Finally we prove that condition (d) of Lemma 2.4 holds. Let v̄ ∈ K and

Y = {w ∈ K : ‖w − v̄‖ ≤ E},
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where
E =

[
τ + ρ(α+ c+ λ)

]−1[
ξδ‖u− v̄‖+ ρδ‖M(Cv̄,Du)−N(Av̄,Bv̄) + f‖

+ ρd‖v̄‖+ ρl‖u‖+ 1
]
.

Clearly, Y is a weakly compact subset of K. For each w ∈ K \ Y, we infer that

ψ(v̄, w) = 〈gw − gu, η(v̄, w)〉+ ρ〈N(Aw,Bv̄)−M(Cw,Du)− f, η(v̄, w)〉
+ ρa(w, v̄ − w)− ρb(u,w) + ρb(u, v̄)

= −〈gw − gv̄, η(w, v̄)〉+ 〈gu− gv̄, η(w, v̄)〉
− ρ〈N(Aw,Bv̄)−N(Av̄,Bv̄), η(w, v̄)〉
+ ρ〈M(Cw,Du)−M(Cv̄,Du), η(w, v̄)〉
+ ρ〈M(Cv̄,Du)−N(Av̄,Bv̄) + f, η(w, v̄)〉
− ρa(w − v̄, w − v̄)− ρa(v̄, w − v̄) + ρb(u, v̄ − w)

≤ −τ‖w − v̄‖2 + ξδ‖u− v̄‖‖w − v̄‖ − ρα‖w − v̄‖2 − ρλ‖w − v̄‖2

+ ρδ‖M(Cv̄,Du)−N(Av̄,Bv̄) + f‖‖w − v̄‖ − ρc‖w − v̄‖2

+ ρd‖v̄‖‖w − v̄‖+ ρl‖u‖‖w − v̄‖
= −‖w − v̄‖{[τ + ρ(α+ c+ λ)]‖w − v̄‖ − ξδ‖u− v̄‖
− ρδ‖M(Cv̄,Du)−N(Av̄,Bv̄) + f‖ − ρd‖v̄‖ − ρl‖u‖}

< 0,

which means that the condition (d) of Lemma 2.4 holds. Thus Lemma 2.4 ensures that there exists ŵ ∈
Y ⊆ K such that φ(v, ŵ) ≥ 0 for all v ∈ K, that is,

〈gŵ, η(v, ŵ)〉 ≥ 〈gu, η(v, ŵ)〉 − ρ〈N(Aŵ,Bŵ)−M(Cŵ,Du)− f, η(v, ŵ)〉
− ρa(ŵ, v − ŵ)− ρb(u, v) + ρb(u, ŵ), ∀v ∈ K.

That is, ŵ ∈ K is a solution of the auxiliary problem (3.1). Now we prove the uniqueness of solution for
the auxiliary problem (3.1). Suppose that w1, w2 ∈ K are two solutions of the auxiliary problem (3.1) with
respect to u. It follows that

〈gw1, η(v, w1)〉 ≥ 〈gu, η(v, w1)〉 − ρ〈N(Aw1, Bw1)−M(Cw1, Du)− f, η(v, w1)〉
− ρa(w1, v − w1)− ρb(u, v) + ρb(u,w1), ∀v ∈ K

(3.2)

and
〈gw2, η(v, w2)〉 ≥ 〈gu, η(v, w2)〉 − ρ〈N(Aw2, Bw2)−M(Cw2, Du)− f, η(v, w2)〉

− ρa(w2, v − w2)− ρb(u, v) + ρb(u,w2), ∀v ∈ K.
(3.3)

Taking v = w2 in (3.2) and v = w1 in (3.3), we get that

〈gw1, η(w2, w1)〉 ≥ 〈gu, η(w2, w1)〉 − ρ〈N(Aw1, Bw1)−M(Cw1, Du)− f, η(w2, w1)〉
− ρa(w1, w2 − w1)− ρb(u,w2) + ρb(u,w1)

(3.4)

and
〈gw2, η(w1, w2)〉 ≥ 〈gu, η(w1, w2)〉 − ρ〈N(Aw2, Bw2)−M(Cw2, Du)− f, η(w1, w2)〉

− ρa(w2, w1 − w2)− ρb(u,w1) + ρb(u,w2).
(3.5)

Adding (3.4) and (3.5), we deduce that

τ‖w1 − w2‖2 ≤ −ρ〈N(Aw1, Bw1)−N(Aw2, Bw2), η(w1, w2)〉
+ ρ〈M(Cw1, Du)−M(Cw2, Du), η(w1, w2)〉 − ρa(w1 − w2, w1 − w2)

≤ −ρ(c+ λ)‖w1 − w2‖2,

which yields that w1 = w2. That is, ŵ is the unique solution of the auxiliary problem (3.1). This completes
the proof.
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The proof of the below result is similar to that of Theorem 3.1 and is omitted.

Theorem 3.2. Let K,H, f, η, a, b, g, A,B,C,D and N be as in Theorem 3.1 and Assumption 2.6 hold. Let
M : H ×H → H be η-generalized pseudocontrative with respect to C in the first argument with constant λ.
If there exists a positive constant ρ satisfying

ρ(λ− c) < τ, (3.6)

then for each u ∈ K, the auxiliary problem (3.1) has a unique solution in K.

Based on Theorems 3.1 and 3.2, we suggest the following iterative algorithms with errors for solving the
generalized mixed nonlinear variational-like inequality (2.1).

Algorithm 3.3. For given u0 ∈ K, compute sequence {un}n≥0 ⊂ K by the following iterative scheme:

〈gun+1, η(v, un+1)〉 ≥ 〈gun, η(v, un+1)〉
− ρ〈N(Aun+1, Bun+1)−M(Cun+1, Dun)− f, η(v, un+1)〉
− ρa(un+1, v − un+1)− ρb(un, v) + ρb(un, un+1)

+ 〈en, η(v, un+1)〉, ∀v ∈ K,n ≥ 0,

(3.7)

where ρ > 0 is a constant and {en}n≥0 is an arbitrary sequence in K introduced to take into account possible
inexact computation and satisfies that

lim
n→∞

‖en‖ = 0. (3.8)

Algorithm 3.4. For given u0 ∈ K, compute sequence {un}n≥0 ⊂ K by the below iterative schemes:

〈gwn, η(v, wn)〉 ≥ (1− αn)〈gun, η(v, wn)〉
+ αn〈gwn − ρN(Awn, Bwn) + ρM(Cwn, Dun) + ρf, η(v, wn)〉
− αnρa(wn, v − wn)− αnρb(un, v) + αnρb(un, wn)

+ 〈rn, η(v, wn)〉, ∀v ∈ K, n ≥ 0

(3.9)

and

〈gun+1, η(v, un+1)〉 ≥ (1− βn)〈gwn, η(v, un+1)〉
+ βn〈gun+1 − ρN(Aun+1, Bun+1) + ρM(Cun+1, Dwn) + ρf, η(v, un+1)〉
− βnρa(un+1, v − un+1)− βnρb(wn, v) + βnρb(wn, un+1)

+ 〈sn, η(v, un+1)〉, ∀v ∈ K, n ≥ 0,

(3.10)

where {αn}n≥0, {βn}n≥0 ⊂ [0, 1] and {rn}n≥0, {sn}n≥0 are two arbitrary sequences in K introduced to take
into account possible inexact computation and satisfy that

lim
n→∞

‖rn‖ = lim
n→∞

‖sn‖ = 0. (3.11)

Remark 3.5. Algorithm 3.4 is an Ishikawa iterative methods with errors of inequality type and it is different
from the algorithms in [1]–[9], [11]–[20].

4. Existence and Convergence

Now we show the existence and uniqueness of solution for the generalized mixed nonlinear variational-
like inequality (2.1) and discuss the convergence of the iterative sequences generated by Algorithms 3.3 and
3.4, respectively.
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Theorem 4.1. Let K,H, f, η, a, b and g be as in Theorem 3.1 Let A,B,C,D : K → H and N,M : H×H →
H be mappings such that D is Lipschitz continuous with constant µ, N is η-strongly monotone with respect
to A in the first argument with constant α, η-relaxed Lipschitz with respect to B in the second argument
with constant β, η-monotone with respect to A and B in the first and second arguments, M is η-relaxed
Lipschitz with respect to C in the first argument with constant λ, g-relaxed Lipschitz with respect to D in
the second argument with constant γ and Lipschitz continuous in the second argument with constant q. Let
T = δ2γ + τ(c + λ − l), Q = δ2ξ2 − τ2, P = δ2µ2q2 − (c + λ − l)2 and l + δµq < c + λ. Assume that and
Assumption 2.6 holds. If there exists a constant ρ > 0 satisfying

T 2 > PQ,

∣∣∣∣ρ− T

P

∣∣∣∣ >
√
T 2 − PQ
−P

, (4.1)

then the generalized mixed nonlinear variational-like inequality (2.1) possesses a unique solution u ∈ K and
the iterative sequence {un}n≥0 generated by Algorithm 3.3 converges strongly to u.

Proof. It follows from Theorem 3.1 that there exists a mapping F : K → K such that for each u ∈ K,
F (u) = ŵ is the unique solution of the auxiliary problem (3.1). Next we show that F is a contraction
mapping in K. Let u1 and u2 be arbitrary elements in K. Using (3.1), we see that

〈gFu1, η(v, Fu1)〉
≥ 〈gu1, η(v, Fu1)〉 − ρ〈N(AFu1, BFu1)−M(CFu1, Du1)− f, η(v, Fu1)〉
− ρa(Fu1, v − Fu1)− ρb(u1, v) + ρb(u1, Fu1), ∀v ∈ K

(4.2)

and
〈gFu2, η(v, Fu2)〉
≥ 〈gu2, η(v, Fu2)〉 − ρ〈N(AFu2, BFu2)−M(CFu2, Du2)− f, η(v, Fu2)〉
− ρa(Fu2, v − Fu2)− ρb(u2, v) + ρb(u2, Fu2), ∀v ∈ K.

(4.3)

Letting v = Fu2 in (4.2) and v = Fu1 in (4.3), and adding these inequalities, we arrive at

τ‖Fu1 − Fu2‖2

≤ 〈gFu1 − gFu2, η(Fu1, Fu2)〉
≤ 〈gu1 − gu2, η(Fu1, Fu2)〉 − ρ〈N(AFu1, BFu1)−M(CFu1, Du1)

−N(AFu2, BFu2) +M(CFu2, Du2), η(Fu1, Fu2)〉
− ρa(Fu1 − Fu2, Fu1 − Fu2) + ρb(u1 − u2, Fu2 − Fu1)

= −ρ〈N(AFu1, BFu1)−N(AFu2, BFu2), η(Fu1, Fu2)〉
+ ρ〈M(CFu1, Du1)−M(CFu2, Du1), η(Fu1, Fu2)〉
+ 〈gu1 − gu2 + ρ(M(CFu2, Du1)−M(CFu2, Du2)), η(Fu1, Fu2)〉
− ρa(Fu1 − Fu2, Fu1 − Fu2) + ρb(u1 − u2, Fu2 − Fu1)

≤ (δ
√
ξ2 − 2ργ + ρ2µ2q2 + ρl)‖u1 − u2‖‖Fu1 − Fu2‖

− ρ(c+ λ)‖Fu1 − Fu2‖2,

that is,
‖Fu1 − Fu2‖ ≤ θ‖u1 − u2‖,

where

θ =
δ
√
ξ2 − 2ργ + ρ2µ2q2 + ρl

τ + ρ(c+ λ)
. (4.4)

It is obvious that (4.1) is equivalent to θ < 1. Therefore, F : K → K is a contraction mapping. It follows
from the Banach fixed-point theorem that F has a unique fixed point u ∈ K. In light of (3.1), we get that

〈gu, η(v, u)〉 ≥ 〈gu, η(v, u)〉 − ρ〈N(Au,Bu)−M(Cu,Du)− f, η(v, u)〉
− ρa(u, v − u)− ρb(u, v) + ρb(u, u), ∀v ∈ K,

(4.5)
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which implies that

〈N(Au,Bu)−M(Cu,Du)− f, η(v, u)〉+ a(u, v − u) ≥ b(u, u)− b(u, v), ∀v ∈ K,

that is, u ∈ K is a solution of the generalized mixed nonlinear variational-like inequality (2.1).
Now we prove the uniqueness. Suppose that the generalized mixed nonlinear variational-like inequality

(2.1) has two solutions û, u0 ∈ K. It follows that

〈N(Aû,Bû)−M(Cû,Dû)− f, η(v, û)〉+ a(û, v − û) ≥ b(û, û)− b(û, v), (4.6)

〈N(Au0, Bu0)−M(Cu0, Du0)− f, η(v, u0)〉+ a(u0, v − u0) ≥ b(u0, u0)− b(u0, v), (4.7)

for all v ∈ K. Taking v = u0 in (4.6) and v = û in (4.7), we obtain that

〈N(Aû,Bû)−M(Cû,Dû)− f, η(u0, û)〉+ a(û, u0 − û) ≥ b(û, û)− b(û, u0), (4.8)

〈N(Au0, Bu0)−M(Cu0, Du0)− f, η(û, u0)〉+ a(u0, û− u0) ≥ b(u0, u0)− b(u0, û). (4.9)

Adding (4.8) and (4.9), we deduce that

(c+ λ− µqδ − l)‖û− u0‖2

≤ 〈N(Aû,Bû)−N(Au0, Bu0), η(û, u0)〉 − 〈M(Cû,Dû)−M(Cu0, Du0), η(û, u0)〉
+ a(û− u0, û− u0)− b(û− u0, û− u0)
≤ 0,

which yields that û = u0 by l + δµq < c + λ. That is, the generalized mixed nonlinear variational-like
inequality (2.1) has a unique solution in K.

Next we discuss the convergence of the iterative sequence generated by Algorithm 3.3. Taking v = un+1

in (4.5) and v = u in (3.7), and adding these inequalities, we infer that

τ‖un+1 − u‖2 ≤ −ρ〈N(Aun+1, Bun+1)−N(Au,Bu), η(un+1, u)〉
+ ρ〈M(Cun+1, Dun)−M(Cu,Dun), η(un+1, u)〉
+ 〈gun − gu+ ρM(Cu,Dun)−M(Cu,Du), η(un+1, u)〉
− ρa(un+1 − u, un+1 − u) + ρb(un − u, u− un+1) + 〈en, η(un+1, u)〉

≤ −ρ(c+ λ)‖un+1 − u‖2 + (δ
√
ξ2 − 2ργ + ρ2µ2q2

+ ρl)‖un+1 − u‖‖un − u‖+ δ‖en‖‖un+1 − u‖, ∀n ≥ 0.

That is,

‖un+1 − u‖ ≤ θ‖un − u‖+
δ

τ + ρ(c+ λ)
‖en‖, ∀n ≥ 0. (4.10)

It follows from Lemma 2.5, (3.8), (4.1), (4.4) and (4.10) that the iterative sequence {un}n≥0 generated
by Algorithm 3.3 converges strongly to u. This completes the proof.

As in the proof of Theorem 4.1, we have,

Theorem 4.2. Let K,H, f, η, a, b, g, A,B,C,D and N be as in Theorem 4.1 and Assumption 2.6 hold. Let
M : H ×H → H be η-generalized pseudocontrative with respect to C in the first argument with constant λ,
g-relaxed Lipschitz with respect to D in the second argument with constant γ and Lipschitz continuous in the
second argument with constant q. Let T = δ2γ+τ(c−λ− l), Q = δ2ξ2−τ2, P = δ2µ2q2−(c−λ− l)2 and c >
λ+l+δµq. If there exists a constant ρ > 0 satisfying (4.1), then the generalized mixed nonlinear variational-
like inequality (2.1) possesses a unique solution u ∈ K and the iterative sequence {un}n≥0 generated by
Algorithm 3.3 converges strongly to u.
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Theorem 4.3. Let K,H, f, η, a, b, g, A,B,C,D,N and M be as in Theorem 4.1 with c + λ > l + δµq and
Assumption 2.6 hold. Assume that

inf{αn, βn : n ≥ 0} > 0. (4.11)

If there exists a constant ρ > 0 satisfying

max

{
δξ − τ inf{1− αn, 1− βn : n ≥ 0}

(c+ λ) inf{αn, βn : n ≥ 0}
,
ξ2

2γ

}
≤ ρ < δξ

l + µqδ
, (4.12)

then the generalized strongly nonlinear variational-like inequality (2.1) possesses a unique solution u ∈ K
and the iterative sequence {un}n≥0 generated by Algorithm 3.4 converges strongly to u.

Proof. Put

θ1 =
δξ

τ inf{1− αn, 1− βn : n ≥ 0}+ ρ(c+ λ) inf{αn, βn : n ≥ 0}
,

and

θ2 =
ρl

δξ
+
ρµq

ξ
.

In view of (4.4), (4.11) and (4.12), we conclude easily that

θ =
δ
√
ξ2 − 2ργ + ρ2µ2q2 + ρl

τ + ρ(c+ λ)

=
δξ

τ + ρ(c+ λ)

( ρl
δξ

+

√
ξ2 − 2ργ + ρ2µ2q2

ξ

)
≤ δξ

τ + ρ(c+ λ)

( ρl
δξ

+
ρµq

ξ

)
≤ δξθ2
τ + ρ(c+ λ) inf{αn, βn : n ≥ 0}

≤ θ1θ2 ≤ θ2 < 1.

(4.13)

It follows from Theorem 4.1 that the generalized strongly nonlinear variational-like inequality (2.1) has
a unique solution u ∈ K such that

〈gu, η(v, u)〉 ≥ (1− αn)〈gu, η(v, u)〉
+ αn〈gu− ρN(Au,Bu) + ρM(Cu,Du) + ρf, η(v, u)〉
− αnρa(u, v − u)− αnρb(u, v) + αnρb(u, u)

(4.14)

and
〈gu, η(v, u)〉 ≥ (1− βn)〈gu, η(v, u)〉

+ βn〈gu− ρN(Au,Bu) + ρM(Cu,Du) + ρf, η(v, u)〉
− βnρa(u, v − u)− βnρb(u, v) + βnρb(u, u),

(4.15)

for all v ∈ K and n ≥ 0. Taking v = u in (3.9), v = wn in (4.14) and adding these inequalities, we get that

(1− αn)τ‖wn − u‖2

≤ (1− αn)〈gun − gu, η(wn, u)〉 − αnρ〈N(Awn, Bwn)−N(Au,Bu), η(wn, u)〉
+ αnρ〈M(Cwn, Dun)−M(Cu,Dun), η(wn, u)〉+ αnρ〈M(Cu,Dun)−M(Cu,Du)), η(wn, u)〉
− αnρa(wn − u,wn − u) + αnρb(un − u, u− wn) + 〈rn, η(wn, u)〉
≤ (1− αn)ξδ‖un − u‖‖wn − u‖ − αnρλ‖wn − u‖2

+ αnδρµq‖un − u‖‖wn − u‖+ δ‖rn‖‖wn − u‖, ∀n ≥ 0,
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which means that

‖wn − u‖ ≤
δξ

(1− αn)τ + ρ(c+ λ)αn
[1− αn(1− θ2)]‖un − u‖

+
δ

(1− αn)τ + ρ(c+ λ)αn
‖rn‖

≤ θ1[1− αn(1− θ2)]‖un − u‖+
θ1
ξ
‖rn‖

≤ [1− αn(1− θ2)]‖un − u‖+
1

ξ
‖rn‖

≤ ‖un − u‖+
1

ξ
‖rn‖, ∀n ≥ 0.

(4.16)

From (3.10), (4.11), (4.12) and (4.15), we deduce similarly that

‖un+1 − u‖ ≤ [1− βn(1− θ2)]‖wn − u‖+
1

ξ
‖sn‖

≤ [1− βn(1− θ2)]‖un − u‖+
1

ξ
‖sn‖+

1

ξ
‖rn‖, ∀n ≥ 0.

(4.17)

It follows from Lemma 2.5, (3.11), (4.11) and (4.17) that limn→∞ ‖un+1 − u‖ = 0. This completes the
proof.

Similarly we have the following result.

Theorem 4.4. Let K,H, f, η, a, b, g, A,B,C,D,N and M be as in Theorem 4.2 with c > λ + l + δµq. Let
(4.11) and Assumption 2.6 hold. If there exists a constant ρ > 0 satisfying

max

{
δξ − τ inf{1− αn, 1− βn : n ≥ 0}

(c− λ) inf{αn, βn : n ≥ 0}
,
ξ2

2γ

}
≤ ρ < δξ

l + µqδ
,

then the generalized strongly nonlinear variational-like inequality (2.1) possesses a unique solution u ∈ K
and the iterative sequence {un}n≥0 generated by Algorithm 3.4 converges strongly to u.

Proof. Put

θ1 =
δξ

τ inf{1− αn, 1− βn : n ≥ 0}+ ρ(c− λ) inf{αn, βn : n ≥ 0}
,

and

θ2 =
ρl

δξ
+
ρµq

ξ
.

The rest of the proof is similar to that of Theorem 4.3, and is omitted. This completes the proof.

Remark 4.5. Theorems 4.1 to 4.4 extend and improve the corresponding results in [1]–[3] and [17, 18].
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