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Abstract

Trapezoid maps are a kind of continuous and piecewise linear maps with a flat top. By the conjugacy
relationship, we present a complete classification for four families of trapezoid maps. Firstly, using an
extension method, we construct all homeomorphic solutions of conjugacy equation ϕ ◦ f = g ◦ ϕ for some
non-monotone continuous maps f and g. Secondly, using an iterative construction method and an extension
method, we construct respectively all topological conjugacies for four families of trapezoid maps. Finally,
all construction algorithms are implemented in MATLAB, and three examples are illustrated to construct
topological conjugacies and a topological semi-conjugacy. c©2016 All rights reserved.
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1. Introduction

An outstanding problem of iteration theory and ergodic theory [4] is to decide whether two maps f : I → I
and g : J → J are topologically conjugate, i.e., whether there exists a homeomorphism ϕ : I → J such that
ϕ ◦ f = g ◦ ϕ. Such a homeomorphism ϕ is called a conjugacy. If there exists a continuous, monotone (not
necessarily strictly monotone) and onto map ϕ such that ϕ ◦ f = g ◦ ϕ, then we say that f is topologically
semi-conjugate to g, and ϕ is a semi-conjugacy. If f, g are topological conjugate, write in symbols f ∼ g,
otherwise, f � g.

Topological conjugation is an equivalence relation which is useful in the topological classification of
dynamical systems.

The aim of this paper is to give a complete classification of four families of trapezoid maps, respectively
denoted by Mi, i = 1, 2, 3, 4, of forms:
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ta,b(x) =


x
a , x ∈ [0, a],
1, x ∈ (a, b],
1−x
1−b , x ∈ (b, 1],

t̃a,b(x) =


bx
a , x ∈ [0, a],
b, x ∈ (a, b],
b(1−x)
1−b , x ∈ (b, 1],

t̄a,b,c(x) =


bx
a , x ∈ [0, a],
b, x ∈ (a, c],
b(1−x)
1−c , x ∈ (c, 1],

t̂a,b,c(x) =


ax
b , x ∈ [0, b],
a, x ∈ [b, c],
a(1−x)
1−c , x ∈ [c, 1],

where a, b, c are three fixed parameters with 0 < a < b < c < 1, see Figs. 1, 2, 3, 4.

Figure 1: ta,b Figure 2: t̃a,b

Figure 3: t̄a,b,c Figure 4: t̂a,b,c

Schweizer and Sklar in [8] investigated the familyM1 of trapezoid maps. They showed that any two maps
in M1 are topologically conjugate, Their results were generalized to Markov maps [2], and to combination
of multiple trapezoids, which is the so-called weakly multimodal maps [7, 9]. In this paper, we construct
all homeomorphic solutions of conjugacy equation ϕ ◦ f = g ◦ ϕ for some non-monotone continuous maps
f and g. And we shall prove that: (i) f ∼ g if f, g ∈ Mi, i = 1, 2, 3, 4; (ii)f � g if f ∈ Mi and g ∈ Mj ,
i 6= j. Meanwhile, we show that fn ∈M3 for n ≥ 2 if f ∈M2, and f ∈M3 is topologically semi-conjugate
to g ∈ M2. Using an iterative construction method and an extension method, we construct respectively
all topological conjugacies for four families of trapezoid maps. Finally, all construction algorithms are
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implemented in MATLAB, and three examples are illustrated to construct topological conjugacies and a
topological semi-conjugacy.

2. Preliminaries

2.1. Dynamics of trapezoid maps

Each trapezoid map inM1 is a chaotic map, which produces various interesting behaviors. Many authors
investigated their delta-pseudo orbit shadowing [5], symbolic dynamics [6] and monotonicity properties of
kneading sequences [3].

In this subsection, we first study the dynamics of other three families of trapezoid maps Mi, i = 2, 3, 4.

Lemma 2.1. Assume that t̃a1,b1 ∈M2. Then

(i) t̃a1,b1 has only two fixed points 0 and b1;

(ii) for any x0 ∈ (0, b1) ∪ (b1, 1], the sequence {t̃na1,b1(x0)}∞n=1 converges to b1;

(iii) t̃na1,b1 = t̄an,bn,cn for n ≥ 2 where

an =
an+1
1

bn1
, bn = b1, cn =

bn1 − an1 + an1b1
bn1

.

Proof. One immediately verifies that the results of (i) and (ii) by direct computation. Now we prove (iii)
by induction.

We first check the case n = 2. Put f1, f2, f3 be respectively the restrictions of t̃a1,b1 to the subintervals
[0, a1], [a1, b1] and [b1, 1]. One can see that

(1) t̃2a1,b1(x) = f21 (x) ∈ [0, a1] for x ∈
[
0,

a31
b21

]
;

(2) t̃2a1,b1(x) = t̃a1,b1(f1(x)) = b1 for x ∈
[
a31
b21
, a1

]
;

(3) t̃2a1,b1(x) = f22 (b1) = b1 for x ∈ [a1, b1];

(4) t̃2a1,b1(x) = t̃a1,b1(f3(x)) for x ∈
[
b1,

b21−a21+a21b

b21

]
;

(5) t̃2a1,b1(x) = f1(f3(x)) ∈ [0, a1] for x ∈
[
b21−a21+a21b

b21
, 1
]
.

Thus t̃2a1,b1 = t̄a2,b2,c2 . Assume that t̃ka1,b1 = t̄ak,bk,ck for some positive integer k ≥ 2. When n = k + 1, we
have for x ∈ [0, 1]

t̃n+1
a1,b1

(x) = t̃a1,b1(t̃na1,b1(x)) = t̃a1,b1(t̄an,bn,cn(x)) = t̄an+1,bn+1,cn+1(x).

Therefore the result of (iii) follows.

Proofs of the following two lemmas are easily supplied by a similar method in proving Lemma 2.1.

Lemma 2.2. Assume that t̄a1,b1,c1 ∈M3. Then

(i) t̄a1,b1,c1 has only two fixed points 0 and b1;

(ii) for any x0 ∈ (0, b1) ∪ (b1, 1], the sequence {t̄na1,b1,c1(x0)}∞n=1 converges to b1;

(iii) t̄na1,b1,c1 = t̄an,bn,cn for n ≥ 2 where an =
an+1
1
bn1

, bn = b1, cn = 1− (1−c1)c1an1
bn+1
1

.
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Lemma 2.3. Assume that t̂a1,b1,c1 ∈M4. Then

(i) t̂a1,b1,c1 has only one fixed point 0;

(ii) for any x0 ∈ (0, 1], the sequence {t̂na1,b1,c1(x0)}∞n=1 is monotonically decreasing, and converges to zero;

(iii) t̂na1,b1,c1 = t̂an,bn,cn for n ≥ 2 where an =
an+1
1
bn1

, bn = b1, cn = c1.

2.2. Homeomorphic solutions of conjugacy equation

Lemma 2.4. Let f1, g1 be respectively the restrictions of t̃a1,b1 and t̃a2,b2 (or t̄a1,b1,c1 and t̄a2,b2,c2) to the
subintervals [0, a1] and [0, a2]. Then all homeomorphic solutions of conjugacy equation ϕ1 ◦ f1 = g1 ◦ϕ1 are
given by ϕ1 : [0, a1]→ [0, a2]

ϕ1(x) =


φ0(x), x ∈ [f−11 (a1), a1],
g−i ◦ φ0 ◦ f i(x), x ∈ [(f−i−1(a1), f

−i(a1)], i = 1, 2, . . . ,
0, x = 0,

(2.1)

where φ0 is any strictly increasing continuous map from [f−11 (a1), a1] onto [g−11 (a2), a2].

Proof. Firstly, we prove that any homeomorphic solution of ϕ1 ◦ f1 = g1 ◦ ϕ1 is strictly increasing. Since
f(x) > x, ∀x ∈ (0, a1], we can see that f−1(x) < x. Similarly, g−1(x) < x. Suppose that ϕ is a homeo-
morphic solution of ϕ1 ◦ f1 = g1 ◦ ϕ1. Assume that ϕ(x0) = y0 for some x0 ∈ [0, a1] and y0 ∈ [0, b1]. We
have ϕ(f−1(x0)) = g−1(y0). Since f−1(x0) < x0 and g−1(y0) < x0, we see that ϕ is strictly increasing.
Consequently, ϕ(a1) = b1 and ϕ(f−1(a1)) = g−1(b1).

Secondly, one can easily check that the function ϕ1(x) in (2.1) is a homeomorphic solution of ϕ1 ◦ f1 =
g1 ◦ ϕ1 and every homeomorphic solution can be obtained in this manner.

The analogous statements hold for t̂a1,b1,c1 .

Lemma 2.5. Let f1, g1 be respectively the restrictions of t̂a1,b1,c1 and t̂a2,b2,c2 to the subintervals [0, a1] and
[0, a2]. Then all homeomorphic solutions of conjugacy equation ϕ1 ◦ f1 = g1 ◦ ϕ1 are given by ϕ1 : [0, b1]→
[0, b2]

ϕ1(x) =


φ0(x), x ∈ [f1(b1), b1],
gi ◦ φ0 ◦ f−i(x), x ∈ [(f i+1(b1), f

i(b1)], i = 1, 2, . . . ,
0, x = 0,

where φ0 is any strictly increasing continuous map from [f1(b1), b1] onto [g1(b2), b2].

Lemma 2.6. Let f2 and g2 be respectively the restrictions of t̃a1,b1 and t̃a2,b2 (or t̄a1,b1,c1 and t̄a2,b2,c2) to the
subintervals [0, b1] and [0, b2]. Then all homeomorphic solutions of conjugacy equation ϕ2 ◦ f2 = g2 ◦ ϕ2 are
given by ϕ2 : [0, b1]→ [0, b2]

ϕ2(x) =

{
ϕ1(x), x ∈ [0, a1],
h1(x), x ∈ [a1, b1],

(2.2)

where ϕ1 is determined by Lemma 2.4 and h1 : [a1, b1]→ [a2, b2] is any strictly increasing continuous map.

Proof. Note that both f2 : [0, b1]→ [0, b1] and g2 : [0, b2]→ [0, b2] are self-maps.
Firstly, we prove by contradiction that any homeomorphic solution of ϕ2 ◦ f2 = g2 ◦ ϕ2 is strictly

increasing. Assume that ϕ is a strictly decreasing homeomorphic solution. Thus there exists a subinterval
[x0, 1] ⊂ [a1, 1] such that ϕ([x0, 1]) ⊂ [0, a2]. For some x ∈ (x0, 1), we have ϕ ◦ f2(x) = ϕ(b1) = 0. However
g2 ◦ ϕ(x) > 0 due to ϕ(x) > 0. This contradicts the fact ϕ ◦ f2(x) = g2 ◦ ϕ(x). Therefore ϕ is a strictly
increasing homeomorphism with ϕ(b1) = b2.
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Secondly, we prove by contradiction that ϕ(a1) = a2. For any x ∈ [a1, 1], we have g2 ◦ϕ(x) = ϕ◦f2(x) =
ϕ(b1) = b2. Then ϕ(x) ∈ [a2, b2]. Assume that ϕ(a1) = y0 > a2. Then there exists a point x0 < a1 such that
ϕ(x0) = a2. Thus ϕ ◦ f2(x0) = g2 ◦ ϕ(x0) = g2(a2) = b2 while f2(x0) < b1, which contradicts ϕ(b1) = b2.

Finally, one can easily check that ϕ2(x) in (2.2) is a homeomorphic solution of ϕ1 ◦ f1 = g1 ◦ ϕ1 and
every homeomorphic solution can be obtained in this manner.

3. Classification of trapezoid maps

According to [7, the proof of Theorem 2.1] (cf. [2]), we have the following result for M1.

Theorem 3.1. Any two trapezoid maps ta1,b1 and ta2,b2 in M1 are topologically conjugate. Further, any
conjugacy from ta1,b1 to ta2,b2 is the limit of the functional sequence

ϕn+1(x) =


g−11 ◦ ϕn ◦ f1(x), x ∈ [1, a1),
h(x), x ∈ [a1, b1],

g−12 ◦ ϕn ◦ f2(x), x ∈ (b1, 1],

(3.1)

where g1 = ta2,b2 |[0,a2], f1 = ta1,b1 |[0,a1], g2 = ta2,b2 |[b2,1], f2 = ta1,b1 |[b1,1], and h is any order-preserving
homeomorphism from [a1, b1] onto [a2, b2].

When a2 = b2, the trapezoid map ta2,b2 degenerates to a skew tent map ta2,a2 . According to [7, Corollary
3.1] (cf. [2]), we have the following result:

Proposition 3.2. Any trapezoid map ta1,b1 in M1 is topologically semi-conjugate to a skew tent map ta2,a2.
Further, there exists a unique semi-conjugacy from ta1,b1 to ta2,a2, which is given by the limit of the functional
sequence

ϕn+1(x) =


g−11 ◦ ϕn ◦ f1(x), x ∈ [1, a1),
a2, x ∈ [a1, b1],

g−12 ◦ ϕn ◦ f2(x), x ∈ (b1, 1],

(3.2)

where g1 = ta2,a2 |[0,a2], f1 = ta1,b1 |[0,a1], g2 = ta2,a2 |[a2,1], f2 = ta1,b1 |[b1,1].

Theorem 3.3. Any two trapezoid maps t̃a1,b1 and t̃a2,b2 in M2 are topologically conjugate. Further, all
conjugacies are given by

ϕ(x) =

{
ϕ2(x), x ∈ [0, b1],

g−13 ◦ ϕ2 ◦ f3(x), x ∈ (b1, 1],
(3.3)

where ϕ2 is determined by Lemma 2.6, f3 = t̃a1,b1 |[b1,1] and g3 = t̃a2,b2 |[b2,1].

Proof. One can immediately check that ϕ(x) given in (3.3) is a homeomorphic solution of ϕ◦ t̃a1,b1 = t̃a2,b2 ◦ϕ
and every homeomorphic solution can be obtained in this manner.

Theorem 3.4. Any two trapezoid maps t̄a1,b1,c1 and t̄a2,b2,c2 in M3 are topologically conjugate. Further, all
conjugacies are given by

ϕ(x) =


ϕ2(x), x ∈ [0, b1],
h2(x), x ∈ [b1, c1],

g−14 ◦ ϕ2 ◦ f4(x), x ∈ [c1, 1],

(3.4)

where ϕ2 is determined by Lemma 2.6, h2 : [b1, c1] → [b2, c2] is any strictly increasing continuous map,
f4 = t̄a1,b1,c1 |[c1,1] and g4 = t̄a2,b2,c2 |[c2,1].
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Proof. Firstly, suppose ϕ is a conjugacy from t̄a1,b1,c1 to t̄a2,b2,c2 . Let f2 and g2 be respectively the restrictions
of t̄a1,b1,c1 and t̄a2,b2,c2 to the subintervals [0, b1] and [0, b2]. By Lemma 2.6, the restriction of ϕ to [0, b1] is
ϕ2. Consequently, ϕ is a strictly increasing homeomorphism with ϕ(b1) = b2.

Secondly, we prove by contradiction that ϕ(c1) = c2. For any x ∈ [b1, c1], we have t̄a2,b2,c2 ◦ ϕ(x) =
ϕ ◦ t̄a1,b1,c1(x) = ϕ(b1) = b2. Then ϕ(x) ∈ [b2, c2]. Assume that ϕ(c1) = y0 < c2. Then there exists a
point x0 > c1 such that ϕ(x0) = c2. Thus ϕ ◦ t̄a1,b1,c1(x0) = t̄a2,b2,c2 ◦ ϕ(x0) = t̄a2,b2,c2(c2) = b2 while
t̄a1,b1,c1(x0) < b1, which contradicts ϕ(b1) = b2.

Finally, one can immediately check that ϕ(x) in (3.4) is a homeomorphic solution of ϕ ◦ t̄a1,b1,c1 =
t̄a2,b2,c2 ◦ ϕ and every homeomorphic solution can be obtained in this manner.

With the similar argument as the proof of Theorem 3.4, we have the following result for M4.

Theorem 3.5. Any two trapezoid maps t̂a1,b1,c1 and t̂a2,b2,c2 in M4 are topologically conjugate. Further, all
conjugacies are given by

ϕ(x) =


ϕ1(x), x ∈ [0, b1],
h2(x), x ∈ [b1, c1],

g−13 ◦ ϕ1 ◦ f3(x), x ∈ [c1, 1],

where ϕ1 is determined by Lemma 2.5, h2 : [b1, c1] → [b2, c2] is any strictly increasing continuous map,
f3 = t̂a1,b1,c1 |[c1,1] and g3 = t̂a2,b2,c2 |[c2,1].

The following result can be found in [1, Theorem 12.4.2].

Lemma 3.6. If f is topologically conjugate to g via a homeomorphism h, then h maps every periodic of f
to a periodic point of g with the same period.

Theorem 3.7. Suppose f ∈Mi and g ∈Mj for i 6= j. Then f � g.

Proof. Since any map inM1 has a four-periodic point, according to Lemmas 2.1, 2.2, 2.3 and 3.6, any map
in M1 is not topologically conjugate to any map in Mi, i = 2, 3, 4.

By Lemmas 2.1, 2.2 and 2.3, any map in M4 has only one fixed point while any map in M2 or M3 has
two fixed points. It follows from Lemma 3.6 that any map inM4 is not topologically conjugate to any map
in Mi, i = 2, 3.

Suppose t̄a1,b1,c1 ∈ M3 and t̃a2,b2 ∈ M2. We prove by contradiction that f � g. Assume that f ∼ g via
a homeomorphism ϕ. It follows from Lemma 2.6 that ϕ(b1) = b2. Let g3 be the restrictions of t̃a2,b2 to the
subintervals [b2, 1]. For ∀x ∈ [b1, c1], we have ϕ(x) ∈ [b2, 1] and

t̃a2,b2 ◦ ϕ(x) = ϕ ◦ t̄a1,b1,c1(x) = ϕ(b1) = b2.

Thus,
ϕ(x) = g−13 (b2) = constant, ∀x ∈ [b1, c1].

This is a contradiction.

Proposition 3.8. Suppose that t̃a2,b2 ∈M2 and t̄a1,b1,c1 ∈M3. Then t̄a1,b1,c1 is topologically semi-conjugate
to t̃a2,b2.

Proof. Let f4 and g3 be respectively the restrictions of t̄a1,b1,c1 and t̃a2,b2 to the subintervals [c1, 1] and [b2, 1].
Define ϕ : [0, 1]→ [0, 1] as

ϕ(x) =


ϕ2(x), x ∈ [0, b1],
b2, x ∈ [b1, c1],

g−13 ◦ ϕ2 ◦ f4(x), x ∈ [c1, 1],

(3.5)

where ϕ2 is determined by Lemma 2.6. One can immediately check that ϕ(x) in (3.5) is a continuous,
increasing and surjective solution of ϕ ◦ t̄a1,b1,c1 = t̄a2,b2,c2 ◦ ϕ. Therefore, t̄a1,b1,c1 is topologically semi-
conjugate to t̃a2,b2 .
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4. Examples

In this section, we end the paper with the following three examples.

Example 4.1. Let f := t 2
9
, 7
9

and g := t 3
8
, 5
8
. By Theorem 3.1, choosing h(x) = 9

20x + 11
40 . we can obtain a

piecewise linear conjuacy from f to g, see Fig. 5.
By Corollary 3.2, we can obtain the unique semi-conjugacy from the isosceles trapezoid map t 1

3
, 2
3

to the

tent map t 1
2
, 1
2

is just the Cantor function (cf. [7]), see Fig. 6.

Figure 5: f := t 2
9
, 7
9

and g := t 3
8
, 5
8
. Figure 6: f := t 1

3
, 1
3

and g := t 1
2
, 1
2
.

Figure 7: A piecewise linear conjuacy. Figure 8: A piecewise linear semi-conjuacy.

Example 4.2. Let f := t̃ 1
6
, 1
3

and g := t̃ 1
4
, 6
7
. By Theorem 3.3, we can obtain a piecewise linear conjuacy

from f to g, see Fig. 7.

Example 4.3. Let f := t̄ 1
6
, 1
3
, 1
2

and g := t̃ 1
2
, 6
7
. By Theorem 3.8, we can obtain a piecewise linear semi-

conjuacy from f to g, see Fig. 8.
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