On the solutions and periodicity of some nonlinear systems of difference equations

M. M. El-Dessoky

King AbdulAziz University, Faculty of Science, Mathematics Department, P. O. Box 80203, Jeddah 21589, Saudi Arabia.

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

Communicated by C. Alaca

Abstract

We investigate the expressions of solutions and the periodicity nature of the following system of rational difference equations of order four

\[
\begin{align*}
x_{n+1} &= \frac{z_{n-3}}{a_1 + b_1 z_n y_{n-1} x_{n-2} z_{n-3}}, \\
y_{n+1} &= \frac{x_{n-3}}{a_2 + b_2 x_n z_{n-1} y_{n-2} x_{n-3}}, \\
z_{n+1} &= \frac{y_{n-3}}{a_3 + b_3 y_n x_{n-1} z_{n-2} y_{n-3}},
\end{align*}
\]

where the initial conditions \(x_{-3}, \ x_{-2}, \ x_{-1}, \ x_0, \ y_{-3}, \ y_{-2}, \ y_{-1}, \ y_0, \ z_{-3}, \ z_{-2}, \ z_{-1}\) and \(z_0\) are arbitrary real numbers and \(a_1, b_1, a_2, b_2, a_3, b_3\) are integers. ©2016 All rights reserved.

Keywords: System of difference equations, recursive sequences, stability, periodic solution, solution of difference equation.

1. Introduction

Our goal is to obtain a form of the solutions and the periodicity character of the systems of rational difference equations

\[
\begin{align*}
x_{n+1} &= \frac{z_{n-3}}{a_1 + b_1 z_n y_{n-1} x_{n-2} z_{n-3}}, \\
y_{n+1} &= \frac{x_{n-3}}{a_2 + b_2 x_n z_{n-1} y_{n-2} x_{n-3}}, \\
z_{n+1} &= \frac{y_{n-3}}{a_3 + b_3 y_n x_{n-1} z_{n-2} y_{n-3}},
\end{align*}
\]

Email address: dessokym@mans.edu.eg (M. M. El-Dessoky)

Received 2015-09-04
\[z_{n+1} = \frac{y_{n-3}}{a_3 + b_3 y_n x_{n-1} z_{n-2} y_{n-3}}, \]

where the initial conditions are arbitrary real numbers. Also, the constants \(a_i, b_i \), \(i = 1, 2, 3 \) are integer numbers. Throughout this paper, we assume that \(A = x_{-3} y_{-2} z_{-1} x_0 \), \(B = y_{-3} z_{-2} x_{-1} y_0 \) and \(C = y_{-3} z_{-2} x_{-1} y_0 \).

In recent years, with the wide application of computers, difference system has become one of the important theoretical bases for computer, information system, ecological balance, engineering control, biological system, economical systems, and so forth. As typical nonlinear difference equations, rational difference equations have become a research hot spot in mathematical modelling. The behavior of solutions of systems of rational difference equations has received extensive attention. Recently a great effort has been made in studying the qualitative analysis of rational difference equations and their systems; see [1]-[39].

Din et al. [9] studied the equilibrium points, local asymptotic stability of an equilibrium point, instability of equilibrium points, periodicity behavior of positive solutions, and global character of an equilibrium point of the system of rational difference equations

\[x_{n+1} = \frac{\alpha x_{n-3}}{\beta + \gamma y_n y_{n-1} y_{n-2} y_{n-3}}, \quad y_{n+1} = \frac{\alpha_1 y_{n-3}}{\beta_1 + \gamma_1 x_n x_{n-1} x_{n-2} x_{n-3}}. \]

Qianhong Zhang et al. [37] obtained the boundedness, persistence, and global asymptotic stability of positive solution of the system of third-order rational difference equations

\[x_{n+1} = A + \frac{x_n}{y_{n-1} y_{n-2}}, \quad y_{n+1} = B + \frac{y_n}{x_{n-1} x_{n-2}}. \]

El-Dessoky et al. [13] got the form of the solution of the following system of rational difference equations

\[x_{n+1} = \frac{x_{n-1}}{1 + y_n x_{n-1}}, \quad y_{n+1} = \frac{y_{n-1}}{1 + x_n y_{n-1}}, \quad z_{n+1} = \frac{z_{n-m}}{x_n y_n}. \]

In [29], Papaschinopoulos et al. studied the existence of a unique positive equilibrium, the boundedness, persistence and global attractivity of the positive solutions of the system of the following two difference equations

\[x_{n+1} = a x_n + b y_{n-1} e^{-x_n}, \quad y_{n+1} = c y_n + d x_{n-1} e^{-y_n}. \]

Hui-li Ma et al. [26] investigated the behavior of positive solutions for the following systems of rational difference equations

\[x_{n+1} = \frac{A}{y_{n-k}}, \quad y_{n+1} = \frac{B y_n}{x_{n-1} y_{n-1}}. \]

Özban [28] investigated the periodicity of solutions of the system of difference equations

\[x_{n+1} = \frac{1}{y_{n-k}}, \quad y_{n+1} = \frac{y_n}{x_{n-m} y_{n-m-k}}. \]

Touafek et al. [33] investigated the periodic nature and got the form of the solutions of the following systems of rational difference equations

\[x_{n+1} = \frac{x_{n-3}}{\pm 1 \pm x_{n-3} y_{n-1}}, \quad y_{n+1} = \frac{y_{n-3}}{\pm 1 \pm y_{n-3} x_{n-1}}. \]

Banyat Sroysang [30] studied the solutions, stability character, and asymptotic behavior of the system of a rational \(m \)-th order difference equation

\[x_{n+1} = \frac{x_{n-m+1}}{A + y_n y_{n-1} \ldots y_{n-m+1}}, \quad y_{n+1} = \frac{y_{n-m+1}}{B + x_n x_{n-1} \ldots x_{n-m+1}}. \]
The behavior of positive solutions of the following system

\[x_{n+1} = \frac{x_{n-1}}{1 + x_{n-1}y_n}, \quad y_{n+1} = \frac{y_{n-1}}{1 + y_{n-1}x_n} \]

was studied by Kurbanli et al. \[24\].

In the same year, Kurbanli \[22\] studied the behavior of the solutions of the system of rational difference equations

\[x_{n+1} = \frac{x_{n-1}}{x_{n-1}y_n - 1}, \quad y_{n+1} = \frac{y_{n-1}}{y_{n-1}x_n - 1}, \quad z_{n+1} = \frac{z_{n-1}}{z_{n-1}y_n - 1}. \]

Liu et al. \[25\] studied the behavior of the solutions of the system of rational difference equations

\[x_{n+1} = \frac{x_{n-1}}{x_{n-1}y_n - 1}, \quad y_{n+1} = \frac{y_{n-1}}{y_{n-1}x_n - 1}, \quad z_{n+1} = \frac{1}{z_{n-1}x_n}. \]

In \[5\] Cinar obtained the periodicity of the positive solutions of the system of rational difference equations

\[x_{n+1} = \frac{1}{y_n}, \quad y_{n+1} = \frac{y_n}{x_{n-1}y_n - 1}. \]

Moreover, the system of rational difference equations

\[x_{n+1} = \frac{x_n}{cy_n + a}, \quad y_{n+1} = \frac{y_n}{dx_n + b}, \]

was studied by Clark et al. \[6\] \[7\].

2. The First Case \(a_i = b_i = 1, \ i = 1, \ 2, \ 3\)

We investigate, in this section, the solutions of the following system of three difference equations

\[x_{n+1} = \frac{z_{n-3}}{1 + z_{n-3}y_n - 1}, \quad y_{n+1} = \frac{x_{n-3}}{1 + x_{n-3}y_n - 1}, \quad z_{n+1} = \frac{y_{n-3}}{1 + y_{n-3}x_n - 1}, \quad (2.1) \]

where \(n \in \mathbb{N}_0\) and the initial conditions are arbitrary real numbers.

Theorem 2.1. Assume that \(\{x_n, y_n, z_n\}\) are solutions of system \((2.1)\). Then for \(n = 0, 1, 2, \ldots\), all the solutions of system \((2.1)\) are given by the following formulae

\[
\begin{align*}
x_{12n-3} &= x_{-3} \prod_{i=0}^{n-1} \left(\frac{1+(12i+4)A}{1+(12i+5)A} \right), \\
x_{12n-2} &= x_{-2} \prod_{i=0}^{n-1} \left(\frac{1+(12i+5)B}{1+(12i+6)B} \right), \\
x_{12n-1} &= x_{-1} \prod_{i=0}^{n-1} \left(\frac{1+(12i+6)C}{1+(12i+7)C} \right), \\
x_{12n} &= x_0 \prod_{i=0}^{n-1} \left(\frac{1+(12i+7)A}{1+(12i+8)A} \right), \\
x_{12n+1} &= x_{-1} \prod_{i=0}^{n-1} \left(\frac{1+(12i+8)B}{1+(12i+9)B} \right), \\
x_{12n+2} &= x_{-2} \prod_{i=0}^{n-1} \left(\frac{1+(12i+9)C}{1+(12i+10)C} \right).
\end{align*}
\]
\[x_{12n+3} = \frac{z_{-1}(1+2A)}{(1+A)} \prod_{i=0}^{n-1} \frac{(1+(12i+6)A)(1+(12i+10)A)(1+(12i+14)A)}{(1+(12i+7)A)(1+(12i+11)A)(1+(12i+15)A)}, \]

\[x_{12n+4} = \frac{z_{0}(1+3B)}{(1+4B)} \prod_{i=0}^{n-1} \frac{(1+(12i+7)B)(1+(12i+11)B)(1+(12i+15)B)}{(1+(12i+8)B)(1+(12i+12)B)(1+(12i+16)B)}, \]

\[x_{12n+5} = \frac{y_{-1}(1+4C)}{(1+5C)} \prod_{i=0}^{n-1} \frac{(1+(12i+8)C)(1+(12i+12)C)(1+(12i+16)C)}{(1+(12i+9)C)(1+(12i+13)C)(1+(12i+17)C)}, \]

\[x_{12n+6} = \frac{y_{-2}(1+6A)(1+5A)}{(1+7A)(1+6A)} \prod_{i=0}^{n-1} \frac{(1+(12i+9)A)(1+(12i+13)A)(1+(12i+17)A)}{(1+(12i+10)A)(1+(12i+14)A)(1+(12i+18)A)}, \]

\[x_{12n+7} = \frac{y_{-1}(1+2B)(1+6B)}{(1+3B)(1+7B)} \prod_{i=0}^{n-1} \frac{(1+(12i+10)B)(1+(12i+14)B)(1+(12i+18)B)}{(1+(12i+11)B)(1+(12i+15)B)(1+(12i+19)B)}, \]

\[x_{12n+8} = \frac{y_{0}(1+3C)(1+7C)}{(1+4C)(1+8C)} \prod_{i=0}^{n-1} \frac{(1+(12i+11)C)(1+(12i+15)C)(1+(12i+19)C)}{(1+(12i+12)C)(1+(12i+16)C)(1+(12i+20)C)}, \]

\[y_{12n-3} = y_{-3} \prod_{i=0}^{n-1} \frac{(1+(12i+1)C)(1+(12i+4)C)(1+(12i+8)C)}{(1+(12i+1)+C)(1+(12i+5)+C)(1+(12i+9)+C)}, \]

\[y_{12n-2} = y_{-2} \prod_{i=0}^{n-1} \frac{(1+(12i+1)+A)(1+(12i+5)+A)(1+(12i+9)+A)}{(1+(12i+2)+A)(1+(12i+6)+A)(1+(12i+10)+A)}, \]

\[y_{12n-1} = y_{-1} \prod_{i=0}^{n-1} \frac{(1+(12i+2)+B)(1+(12i+6)+B)(1+(12i+10)+B)}{(1+(12i+3)+B)(1+(12i+7)+B)(1+(12i+11)+B)}, \]

\[y_{12n} = y_{0} \prod_{i=0}^{n-1} \frac{(1+(12i+3)+C)(1+(12i+7)+C)(1+(12i+11)+C)}{(1+(12i+4)+C)(1+(12i+8)+C)(1+(12i+12)+C)}, \]

\[y_{12n+1} = \frac{x_{-3}}{1+A} \prod_{i=0}^{n-1} \frac{(1+(12i+4)+A)(1+(12i+8)+A)(1+(12i+12)+A)}{(1+(12i+5)+A)(1+(12i+9)+A)(1+(12i+13)+A)}, \]

\[y_{12n+2} = \frac{x_{-2}}{1+2B} \prod_{i=0}^{n-1} \frac{(1+(12i+5)B)(1+(12i+9)B)(1+(12i+13)B)}{(1+(12i+6)B)(1+(12i+10)B)(1+(12i+14)B)}, \]

\[y_{12n+3} = \frac{x_{-1}}{1+3C} \prod_{i=0}^{n-1} \frac{(1+(12i+6)+C)(1+(12i+10)+C)(1+(12i+14)+C)}{(1+(12i+7)+C)(1+(12i+11)+C)(1+(12i+15)+C)}, \]

\[y_{12n+4} = \frac{x_{0}(1+3A)(1+4A)}{(1+4B)(1+5B)} \prod_{i=0}^{n-1} \frac{(1+(12i+7)+A)(1+(12i+11)+A)(1+(12i+15)+A)}{(1+(12i+8)+A)(1+(12i+12)+A)(1+(12i+16)+A)}, \]

\[y_{12n+5} = \frac{x_{-1}}{1+4B} \prod_{i=0}^{n-1} \frac{(1+(12i+8)+B)(1+(12i+12)+B)(1+(12i+16)+B)}{(1+(12i+9)+B)(1+(12i+13)+B)(1+(12i+17)+B)}, \]

\[y_{12n+6} = \frac{x_{-2}(1+C)(1+5C)}{(1+2C)(1+6C)} \prod_{i=0}^{n-1} \frac{(1+(12i+9)+C)(1+(12i+13)+C)(1+(12i+17)+C)}{(1+(12i+10)+C)(1+(12i+14)+C)(1+(12i+18)+C)}, \]

\[y_{12n+7} = \frac{x_{-1}(1+2A)(1+6A)}{(1+3A)(1+7A)} \prod_{i=0}^{n-1} \frac{(1+(12i+10)+A)(1+(12i+14)+A)(1+(12i+18)+A)}{(1+(12i+11)+A)(1+(12i+15)+A)(1+(12i+19)+A)}, \]

\[y_{12n+8} = \frac{x_{0}(1+3B)(1+7B)}{(1+4B)(1+8B)} \prod_{i=0}^{n-1} \frac{(1+(12i+11)+B)(1+(12i+15)+B)(1+(12i+19)+B)}{(1+(12i+12)+B)(1+(12i+16)+B)(1+(12i+20)+B)}. \]
\[z_{12n-3} = -3 \prod_{i=0}^{n-1} \frac{(1+(12i+8)B)(1+(12i+9)B)}{(1+(12i+1)B)(1+(12i+5)B)(1+(12i+9)B)}, \]

\[z_{12n-2} = -2 \prod_{i=0}^{n-1} \frac{(1+(12i+1)C)(1+(12i+5)C)(1+(12i+9)C)}{(1+(12i+2)C)(1+(12i+6)C)(1+(12i+10)C)}, \]

\[z_{12n-1} = -1 \prod_{i=0}^{n-1} \frac{(1+(12i+2)A)(1+(12i+6)A)(1+(12i+10)A)}{(1+(12i+3)A)(1+(12i+7)A)(1+(12i+11)A)}, \]

\[z_{12n} = 2 \prod_{i=0}^{n-1} \frac{(1+(12i+3)B)(1+(12i+7)B)(1+(12i+11)B)}{(1+(12i+4)B)(1+(12i+8)B)(1+(12i+12)B)}, \]

\[z_{12n+1} = \frac{y_{-3}}{1+C} \prod_{i=0}^{n-1} \frac{(1+(12i+4)C)(1+(12i+8)C)(1+(12i+12)C)}{(1+(12i+5)C)(1+(12i+9)C)(1+(12i+13)C)}, \]

\[z_{12n+2} = \frac{y_{-2}(1+4A)}{(1+2A)} \prod_{i=0}^{n-1} \frac{(1+(12i+5)A)(1+(12i+9)A)(1+(12i+13)A)}{(1+(12i+6)A)(1+(12i+10)A)(1+(12i+14)A)}, \]

\[z_{12n+3} = \frac{y_{-1}(1+2B)}{(1+B)} \prod_{i=0}^{n-1} \frac{(1+(12i+6)B)(1+(12i+10)B)(1+(12i+14)B)}{(1+(12i+7)B)(1+(12i+11)B)(1+(12i+15)B)}, \]

\[z_{12n+4} = \frac{y_{0}(1+3C)}{(1+4C)} \prod_{i=0}^{n-1} \frac{(1+(12i+7)C)(1+(12i+11)C)(1+(12i+15)C)}{(1+(12i+8)C)(1+(12i+12)C)(1+(12i+16)C)}, \]

\[z_{12n+5} = \frac{x_{-3}(1+4A)(1+5A)}{(1+A)(1+5A)} \prod_{i=0}^{n-1} \frac{(1+(12i+8)A)(1+(12i+12)A)(1+(12i+16)A)}{(1+(12i+9)A)(1+(12i+13)A)(1+(12i+17)A)}, \]

\[z_{12n+6} = \frac{x_{-2}(1+B)(1+5B)}{(1+B)(1+6B)} \prod_{i=0}^{n-1} \frac{(1+(12i+9)B)(1+(12i+13)B)(1+(12i+17)B)}{(1+(12i+10)B)(1+(12i+14)B)(1+(12i+18)B)}, \]

\[z_{12n+7} = \frac{x_{-1}(1+2C)(1+6C)(1+7C)}{(1+3C)(1+7C)} \prod_{i=0}^{n-1} \frac{(1+(12i+10)C)(1+(12i+14)C)(1+(12i+18)C)}{(1+(12i+11)C)(1+(12i+15)C)(1+(12i+19)C)}, \]

\[z_{12n+8} = \frac{x_{0}(1+3A)(1+7A)}{(1+4A)(1+8A)} \prod_{i=0}^{n-1} \frac{(1+(12i+11)A)(1+(12i+15)A)(1+(12i+19)A)}{(1+(12i+12)A)(1+(12i+16)A)(1+(12i+20)A)}, \]

where \(\prod_{i=0}^{1} t_i = 1 \) and \(A, B, C \notin \{ -\frac{1}{n}, n = 1, 2, \ldots \} \).

Proof. For \(n = 0 \), the assertion holds. Now suppose that \(n > 0 \) and that our assertion holds for \(n - 1 \) that is,

\[x_{12n-7} = \frac{y_{-3}(1+4C)}{(1+C)(1+5C)} \prod_{i=0}^{n-2} \frac{(1+(12i+8)C)(1+(12i+12)C)(1+(12i+16)C)}{(1+(12i+9)C)(1+(12i+13)C)(1+(12i+17)C)}, \]

\[x_{12n-6} = \frac{y_{-2}(1+4A)(1+5A)}{(1+2A)(1+6A)} \prod_{i=0}^{n-2} \frac{(1+(12i+9)A)(1+(12i+13)A)(1+(12i+17)A)}{(1+(12i+10)A)(1+(12i+14)A)(1+(12i+18)A)}, \]

\[x_{12n-5} = \frac{y_{-1}(1+2B)(1+6B)}{(1+3B)(1+7B)} \prod_{i=0}^{n-2} \frac{(1+(12i+10)B)(1+(12i+14)B)(1+(12i+18)B)}{(1+(12i+11)B)(1+(12i+15)B)(1+(12i+19)B)}, \]

\[x_{12n-4} = \frac{y_{0}(1+3C)(1+7C)}{(1+4C)(1+8C)} \prod_{i=0}^{n-2} \frac{(1+(12i+11)C)(1+(12i+15)C)(1+(12i+19)C)}{(1+(12i+12)C)(1+(12i+16)C)(1+(12i+20)C)}. \]
\[
\begin{align*}
y_{12n-7} &= \frac{z_{-3}(1+4B)}{(1+B)(1+3B)} \prod_{i=0}^{n-2} \left(\frac{1+(12i+8)A}{1+(12i+7)A} \right) \prod_{i=0}^{n-2} \left(\frac{1+(12i+9)B}{1+(12i+15)A} \right) \prod_{i=0}^{n-2} \left(\frac{1+(12i+13)B}{1+(12i+7)B} \right) \\
y_{12n-6} &= z_{-2}(1+C)(1+5C) \prod_{i=0}^{n-2} \left(\frac{1+(12i+9)C}{1+(12i+14)C} \right) \prod_{i=0}^{n-2} \left(\frac{1+(12i+10)C}{1+(12i+14)C} \right) \prod_{i=0}^{n-2} \left(\frac{1+(12i+13)C}{1+(12i+18)C} \right) \\
y_{12n-5} &= z_{-1}(1+2A)(1+6A) \prod_{i=0}^{n-2} \left(\frac{1+(12i+10)A}{1+(12i+11)A} \right) \prod_{i=0}^{n-2} \left(\frac{1+(12i+11)A}{1+(12i+15)A} \right) \prod_{i=0}^{n-2} \left(\frac{1+(12i+19)A}{1+(12i+19)A} \right) \\
y_{12n-4} &= z_0(1+3B)(1+7B) \prod_{i=0}^{n-2} \left(\frac{1+(12i+11)B}{1+(12i+15)B} \right) \prod_{i=0}^{n-2} \left(\frac{1+(12i+12)B}{1+(12i+16)B} \right) \prod_{i=0}^{n-2} \left(\frac{1+(12i+20)B}{1+(12i+20)B} \right) \\
y_{12n-3} &= z_{12n-7} \\
&= \frac{1}{1 + x_{12n-4}y_{12n-5}x_{12n-6}y_{12n-7}} \\
&= \frac{z_{-3}(1+4A)}{(1+4A)(1+5A)} \prod_{i=0}^{n-2} \left(\frac{1+(12i+8)A}{1+(12i+7)A} \right) \prod_{i=0}^{n-2} \left(\frac{1+(12i+9)A}{1+(12i+15)A} \right) \prod_{i=0}^{n-2} \left(\frac{1+(12i+13)A}{1+(12i+7)A} \right) \\
y_{12n-4} &= \frac{x_{-3}(1+4A)}{(1+4A)(1+5A)} \prod_{i=0}^{n-2} \left(\frac{1+(12i+8)A}{1+(12i+7)A} \right) \prod_{i=0}^{n-2} \left(\frac{1+(12i+9)A}{1+(12i+15)A} \right) \prod_{i=0}^{n-2} \left(\frac{1+(12i+13)A}{1+(12i+7)A} \right) \\
y_{12n-3} &= \frac{x_{-2}(1+2A)(1+6A)}{(1+2A)(1+3A)} \prod_{i=0}^{n-2} \left(\frac{1+(12i+8)A}{1+(12i+7)A} \right) \prod_{i=0}^{n-2} \left(\frac{1+(12i+9)A}{1+(12i+15)A} \right) \prod_{i=0}^{n-2} \left(\frac{1+(12i+13)A}{1+(12i+7)A} \right) \\
y_{12n-2} &= \frac{x_{-1}(1+2C)(1+6C)}{(1+2C)(1+3C)} \prod_{i=0}^{n-2} \left(\frac{1+(12i+8)A}{1+(12i+7)A} \right) \prod_{i=0}^{n-2} \left(\frac{1+(12i+9)A}{1+(12i+15)A} \right) \prod_{i=0}^{n-2} \left(\frac{1+(12i+13)A}{1+(12i+7)A} \right) \\
y_{12n-1} &= \frac{x_{-3}(1+4A)}{(1+4A)(1+5A)} \prod_{i=0}^{n-2} \left(\frac{1+(12i+8)A}{1+(12i+7)A} \right) \prod_{i=0}^{n-2} \left(\frac{1+(12i+9)A}{1+(12i+15)A} \right) \prod_{i=0}^{n-2} \left(\frac{1+(12i+13)A}{1+(12i+7)A} \right) \\
&= \frac{1}{1 + x_{12n-2}y_{12n-3}x_{12n-4}} \\
&= \frac{1}{1 + x_{12n-2}y_{12n-3}x_{12n-4}}
\end{align*}
\]

From [2.1], we see that
\[
y_{-1}(1+2B)(1+6B) \prod_{i=0}^{n-1} \left(\frac{1+(12i+11)B}{1+(12i+12)B} \right) \frac{(1+(12i+11)B)(1+(12i+12)B)(1+(12i+14)B)(1+(12i+18)B)}{(1+3B)(1+7B)} \]

\[
= \frac{y_{-1}(1+2B)(1+6B)}{(1+3B)(1+7B)} \prod_{i=0}^{n-1} \left(\frac{1+(12i+11)B}{1+(12i+12)B} \right) \prod_{i=0}^{n-1} \left(\frac{1+(12i+11)B}{1+(12i+12)B} \right) \frac{(1+(12i+11)B)(1+(12i+12)B)(1+(12i+14)B)(1+(12i+18)B)}{(1+3B)(1+7B)}
\]

\[
y_{-1}(1+2B)(1+6B) \prod_{i=0}^{n-1} \left(\frac{1+(12i+11)B}{1+(12i+12)B} \right) \prod_{i=0}^{n-1} \left(\frac{1+(12i+11)B}{1+(12i+12)B} \right) \frac{(1+(12i+11)B)(1+(12i+12)B)(1+(12i+14)B)(1+(12i+18)B)}{(1+3B)(1+7B)}
\]

\[
= y_{-1} \prod_{i=0}^{n-1} \left(\frac{1+(12i+2)B}{1+(12i+3)B} \right) \frac{(1+(12i+2)B)(1+(12i+4)B)(1+(12i+8)B)}{(1+(12i+1)B)(1+(12i+2)B)(1+(12i+3)B)(1+(12i+4)B)(1+(12i+8)B)}
\]

Also, we see from (2.1) that

\[
z_{12n} = \frac{y_{12n-1}}{1 + y_{12n-1} x_{12n-2} z_{12n-3} y_{12n-4}}
\]

\[
\times \left(\frac{z_0(1+3B)(1+7B)}{(1+4B)(1+8B)} \prod_{i=0}^{n-1} \left(\frac{1+(12i+1)B}{1+(12i+2)B} \right) \frac{(1+(12i+1)B)(1+(12i+2)B)(1+(12i+3)B)(1+(12i+7)B)(1+(12i+11)B)}{(1+3B)(1+7B)(1+16B)} \frac{(1+(12i+1)B)(1+(12i+2)B)(1+(12i+3)B)(1+(12i+7)B)(1+(12i+11)B)}{(1+3B)(1+7B)(1+16B)} \right)
\]

\[
= \frac{z_0(1+3B)(1+7B)}{(1+4B)(1+8B)} \prod_{i=0}^{n-1} \left(\frac{1+(12i+1)B}{1+(12i+2)B} \right) \frac{(1+(12i+1)B)(1+(12i+2)B)(1+(12i+3)B)(1+(12i+7)B)(1+(12i+11)B)}{(1+3B)(1+7B)(1+16B)} \frac{(1+(12i+1)B)(1+(12i+2)B)(1+(12i+3)B)(1+(12i+7)B)(1+(12i+11)B)}{(1+3B)(1+7B)(1+16B)} \right)
\]

\[
= \frac{z_0(1+3B)(1+7B)}{(1+4B)(1+8B)} \prod_{i=0}^{n-1} \left(\frac{1+(12i+1)B}{1+(12i+2)B} \right) \frac{(1+(12i+1)B)(1+(12i+2)B)(1+(12i+3)B)(1+(12i+7)B)(1+(12i+11)B)}{(1+3B)(1+7B)(1+16B)} \frac{(1+(12i+1)B)(1+(12i+2)B)(1+(12i+3)B)(1+(12i+7)B)(1+(12i+11)B)}{(1+3B)(1+7B)(1+16B)} \right)
\]

\[
z_{12n} = \frac{z_0(1+3B)(1+7B)}{(1+4B)(1+8B)} \prod_{i=0}^{n-1} \left(\frac{1+(12i+1)B}{1+(12i+2)B} \right) \frac{(1+(12i+1)B)(1+(12i+2)B)(1+(12i+3)B)(1+(12i+7)B)(1+(12i+11)B)}{(1+3B)(1+7B)(1+16B)} \frac{(1+(12i+1)B)(1+(12i+2)B)(1+(12i+3)B)(1+(12i+7)B)(1+(12i+11)B)}{(1+3B)(1+7B)(1+16B)} \right)
\]
Also, we can prove the other relations. This completes the proof. \(\square\)

Lemma 2.2. Let \(\{x_n, y_n, z_n\}\) be a positive solution of system (2.1); then \(\{x_n\}\), \(\{y_n\}\), and \(\{z_n\}\) are bounded and converge to zero.

Proof. It follows from (2.1) that

\[
x_{n+1} = \frac{z_{n-3}}{1 + z_n y_{n-1} - x_{n-2} z_{n-3}} < z_{n-3}, \quad y_{n+1} = \frac{x_{n-3}}{1 + x_n z_{n-1} y_{n-2} x_{n-3}} < x_{n-3}, \\
z_{n+1} = \frac{y_{n-3}}{1 + y_n x_{n-1} z_{n-2} y_{n-3}} < y_{n-3}.
\]

Thus

\[
x_{n+5} < z_{n+1}, \quad y_{n+5} < x_{n+1}, \quad z_{n+5} < y_{n+1} \Rightarrow x_{n+5} < y_{n-3}, \quad y_{n+5} < z_{n-3}, \quad z_{n+5} < x_{n-3} \\
\Rightarrow x_{n+9} < y_{n+1} < x_{n-3}, \quad y_{n+9} < z_{n+1} < y_{n-3}, \quad z_{n+9} < x_{n+1} < z_{n-3}.
\]

Then the subsequences \(\{x_{12n+i}\}_{n=0}^{\infty}, i = -3, -2, -1, 0, 1, 2, \ldots, 8\), are decreasing and bounded from above by \(M = \max\{x_{-3}, x_{-2}, x_{-1}, x_0, \ldots, x_8\}\). Also, the subsequences \(\{y_{12n+i}\}_{n=0}^{\infty}, i = -3, -2, -1, 0, 1, 2, \ldots, 8\) are decreasing and bounded from above by \(L = \max\{y_{-3}, y_{-2}, \ldots, y_8\}\) respectively. This completes the proof. \(\square\)

Lemma 2.3. If \(x_i, y_i, z_i, i = -3, -2, -1, 0\), are arbitrary real numbers and \(\{x_n, y_n, z_n\}\) a solution of system (2.1), then the following statements are true:

(i) If \(x_{-3} = 0\), then we have \(x_{12n-3} = y_{12n+1} = z_{12n+5} = 0\) and \(x_{12n} = y_{12n+4} = z_{12n+8} = x_0, x_{12n+6} = y_{12n-2} = z_{12n+2} = y_{-2}, x_{12n+3} = y_{12n+7} = z_{12n-1} = z_{-1}\).

(ii) If \(x_{-2} = 0\), then we have \(x_{12n-2} = y_{12n+2} = z_{12n+6} = 0, \) and \(x_{12n+1} = y_{12n+5} = z_{12n-3} = z_{-3}, x_{12n+4} = y_{12n+8} = z_{12n} = z_0, x_{12n+7} = y_{12n-1} = z_{12n+3} = y_{-1}\).

(iii) If \(x_{-1} = 0\), then we have \(x_{12n-1} = y_{12n+3} = z_{12n+7} = 0, \) and \(x_{12n+2} = y_{12n+6} = z_{12n+2} = z_{-2}, x_{12n+5} = y_{12n-3} = z_{12n+1} = y_{-3}, x_{12n+8} = y_{12n} = z_{12n+4} = y_0\).

(iv) If \(x_0 = 0\), then we have \(x_{12n} = y_{12n+4} = z_{12n+8} = 0\) and \(x_{12n-3} = y_{12n+1} = z_{12n+5} = x_{-3}, x_{12n+3} = y_{12n+7} = z_{12n-1} = z_{-1}, x_{12n+6} = y_{12n-2} = z_{12n+2} = y_{-2}\).

(v) If \(y_{-3} = 0\), then we have \(x_{12n+5} = y_{12n-3} = z_{12n+1} = 0\) and \(x_{12n-1} = y_{12n+3} = z_{12n+7} = x_{-1}, x_{12n+2} = y_{12n+6} = z_{12n-2} = z_{-2}, x_{12n+8} = y_{12n} = z_{12n+4} = y_0\).

(vi) If \(y_{-2} = 0\), then we have \(x_{12n+6} = y_{12n-2} = z_{12n+2} = 0\) and \(x_{12n-3} = y_{12n+1} = z_{12n+5} = x_{-3}, x_{12n} = y_{12n+4} = z_{12n+8} = x_0, x_{12n+3} = y_{12n+7} = z_{12n-1} = z_{-1}\).

(vii) If \(y_{-1} = 0\), then we have \(x_{12n+7} = y_{12n-1} = z_{12n+3} = 0, \) and \(x_{12n-2} = y_{12n+2} = z_{12n+6} = x_{-1}, x_{12n+1} = y_{12n+5} = z_{12n-3} = z_{-3}, x_{12n+4} = y_{12n+8} = y_{12n} = z_{12n+4} = y_0\).

(viii) If \(y_0 = 0\), then we have \(x_{12n+8} = y_{12n} = z_{12n+4} = 0\) and \(x_{12n-1} = y_{12n+3} = z_{12n+7} = x_{-1}, x_{12n+2} = y_{12n+6} = z_{12n-2} = z_{-2}, x_{12n+5} = y_{12n-3} = z_{12n+1} = y_{-3}\).

(ix) If \(z_{-3} = 0\), then we have \(x_{12n+1} = y_{12n+5} = z_{12n-3} = 0\) and \(x_{12n-2} = y_{12n+2} = z_{12n+6} = x_{-2}, x_{12n+4} = y_{12n+8} = z_{12n} = 0, x_{12n+7} = y_{12n-1} = z_{12n+3} = y_{-1}\).
(x) If \(z_{-2} = 0 \), then we have \(x_{12n+2} = y_{12n+6} = z_{12n-2} = 0 \) and \(x_{12n+1} = y_{12n+3} = z_{12n+7} = x_{-1} \), \(x_{12n+5} = y_{12n-3} = z_{12n+1} = y_{-3} \), \(x_{12n+8} = y_{12n} = z_{12n+4} = y_0 \).

(xi) If \(z_{-1} = 0 \), then we have \(x_{12n+3} = y_{12n+7} = z_{12n-1} = 0 \) and \(x_{12n-3} = y_{12n+1} = z_{12n+5} = x_{-3} \), \(x_{12n} = y_{12n+4} = z_{12n+8} = x_0 \), \(x_{12n+6} = y_{12n-2} = z_{12n+2} = y_{-2} \).

(xii) If \(z_0 = 0 \), then we have \(x_{12n+4} = y_{12n+8} = z_{12n} = 0 \) and \(x_{12n-2} = y_{12n+2} = z_{12n+6} = x_{-2} \), \(x_{12n+1} = y_{12n+5} = z_{12n-3} = z_{-3} \), \(x_{12n+7} = y_{12n-1} = z_{12n+3} = y_{-1} \).

Proof. The proof follows from the form of the solutions of system (2.1).

Example 2.4. For confirming the results of this section, we consider a numerical example for the difference system (2.1) with the initial conditions \(x_{-3} = 0.6 \), \(x_{-2} = -0.3 \), \(x_{-1} = 0.8 \), \(x_0 = -1.3 \), \(y_{-3} = 0.2 \), \(y_{-2} = -4 \), \(y_{-1} = 0.2 \), \(y_0 = 0.7 \), \(z_{-3} = 0.8 \), \(z_{-2} = 1.1 \), \(z_{-1} = 0.02 \) and \(z_0 = 0.4 \). (See Fig. 1).

\[\text{Figure 1: Plot of system (2.1).}\]

Example 2.5. We consider interesting numerical example for the difference system (2.1) with the initial conditions \(x_{-3} = 0.6 \), \(x_{-2} = -0.3 \), \(x_{-1} = 0 \), \(x_0 = -1.3 \), \(y_{-3} = 2 \), \(y_{-2} = -4 \), \(y_{-1} = 0.2 \), \(y_0 = 0.7 \), \(z_{-3} = 0.8 \), \(z_{-2} = 1.1 \), \(z_{-1} = 0 \), and \(z_0 = 0.4 \). (See Fig. 2).

\[\text{Figure 2: Plot of periodicity of system (2.1).}\]
3. The Second Case $a_i = -1, b_i = 1, i = 1, 2, 3$

In this section, we obtain the form of the solutions of the system of three difference equations

$$
x_{n+1} = -\frac{z_{n-3}}{1 + z_n y_{n-1} x_{n-2} z_{n-3}}, \quad y_{n+1} = -\frac{x_{n-3}}{1 + x_n z_{n-1} y_n - 2 x_{n-3}}, \quad z_{n+1} = -\frac{y_{n-3}}{1 + y_n x_{n-1} z_{n-2} y_{n-3}},
$$

(3.1)

where $n \in \mathbb{N}_0$ and the initial conditions are arbitrary real numbers with $A, B, C \neq 1$.

The following theorem is devoted to the expression of the form of the solutions of system (3.1).

Theorem 3.1. Let $\{x_n, y_n, z_n\}_{n=-3}^{\infty}$ be a solution of system (3.1). Then $\{x_n\}_{n=-3}^{\infty}, \{y_n\}_{n=-3}^{\infty}$ and $\{z_n\}_{n=-3}^{\infty}$ are given by the formulae, for $n = 0, 1, 2, \ldots$,

$$
x_{12n-3} = \frac{x_{-3}}{(-1 + A)^{3n}}, \quad x_{12n-2} = x_{-2}(-1 + B)^{3n}, \quad x_{12n-1} = \frac{x_{-1}}{(-1 + C)^{3n}},
$$

$$
x_{12n} = x_0(-1 + A)^{3n}, \quad x_{12n+1} = \frac{y_{-3}}{(-1 + B)^{3n+1}}, \quad x_{12n+2} = z_{-2}(-1 + C)^{3n+1},
$$

$$
x_{12n+3} = \frac{z_{-1}}{(-1 + A)^{3n+1}}, \quad x_{12n+4} = z_0(-1 + B)^{3n+1}, \quad x_{12n+5} = \frac{y_{-3}}{(-1 + C)^{3n+2}},
$$

$$
x_{12n+6} = y_{-2}(-1 + A)^{3n+2}, \quad x_{12n+7} = \frac{x_{-1}}{(-1 + A)^{3n+1}}, \quad x_{12n+8} = y_0(-1 + C)^{3n+2},
$$

$$
y_{12n-3} = \frac{y_{-3}}{(-1 + C)^{3n}}, \quad y_{12n-2} = y_{-2}(-1 + A)^{3n+1}, \quad y_{12n-1} = \frac{y_{-1}}{(-1 + B)^{3n}},
$$

$$
y_{12n} = y_0(-1 + C)^{3n}, \quad y_{12n+1} = \frac{x_{-3}}{(-1 + A)^{3n+1}}, \quad y_{12n+2} = x_{-2}(-1 + B)^{3n+1},
$$

$$
y_{12n+3} = \frac{x_{-1}}{(-1 + A)^{3n+2}}, \quad y_{12n+4} = y_{-2}(-1 + C)^{3n+2}, \quad y_{12n+5} = \frac{z_{-1}}{(-1 + A)^{3n+1}},
$$

$$
y_{12n+6} = z_{-2}(-1 + C)^{3n+2}, \quad y_{12n+7} = \frac{y_{-1}}{(-1 + C)^{3n+2}}, \quad y_{12n+8} = y_0(-1 + A)^{3n+2},
$$

$$
z_{12n-3} = \frac{y_{-3}}{(-1 + B)^{3n}}, \quad z_{12n-2} = z_{-2}(-1 + C)^{3n}, \quad z_{12n-1} = \frac{z_{-1}}{(-1 + A)^{3n}},
$$

$$
z_{12n} = z_0(-1 + B)^{3n}, \quad z_{12n+1} = \frac{y_{-3}}{(-1 + C)^{3n+1}}, \quad z_{12n+2} = y_{-2}(-1 + A)^{3n+1},
$$

$$
z_{12n+3} = \frac{y_{-1}}{(-1 + B)^{3n+1}}, \quad z_{12n+4} = y_0(-1 + C)^{3n+1}, \quad z_{12n+5} = \frac{z_{-1}}{(-1 + A)^{3n+2}},
$$

$$
z_{12n+6} = x_{-2}(-1 + B)^{3n+2}, \quad z_{12n+7} = \frac{x_{-1}}{(-1 + C)^{3n+2}}, \quad z_{12n+8} = x_0(-1 + A)^{3n+2}.
$$

Proof. For $n = 0$ the assertion holds. Now suppose that $n > 0$ and that our assertion holds for $n - 1$, that is,

$$
x_{12n-7} = \frac{y_{-3}}{(-1 + C)^{3n-1}}, \quad x_{12n-6} = y_{-2}(-1 + A)^{3n-1},
$$

$$
x_{12n-5} = \frac{y_{-1}}{(-1 + B)^{3n-1}}, \quad x_{12n-4} = y_0(-1 + C)^{3n-1},
$$

$$
x_{12n-7} = \frac{z_{-3}}{(-1 + A)^{3n-1}}, \quad x_{12n-6} = z_0(-1 + B)^{3n-1},
$$

$$
x_{12n-5} = \frac{z_{-1}}{(-1 + B)^{3n-2}}, \quad x_{12n-4} = z_0(-1 + C)^{3n-1},
$$

$$
x_{12n-7} = \frac{y_{-3}}{(-1 + C)^{3n-1}}, \quad x_{12n-6} = y_0(-1 + A)^{3n-1},
$$

$$
x_{12n-5} = \frac{y_{-1}}{(-1 + B)^{3n-2}}, \quad x_{12n-4} = y_0(-1 + C)^{3n-1},
$$

$$
x_{12n-7} = \frac{z_{-3}}{(-1 + A)^{3n-2}}, \quad x_{12n-6} = z_0(-1 + B)^{3n-2},
$$

$$
x_{12n-5} = \frac{z_{-1}}{(-1 + B)^{3n-3}}, \quad x_{12n-4} = z_0(-1 + C)^{3n-2}.
Now it follows from (3.1) that
\[
x_{12n-3} = \frac{z_{12n-7}}{-1 + z_{12n-4}y_{12n-5} x_{12n-6} z_{12n-7}} = -1 + \frac{\left(x_0(-1 + A)^{3n-1} \right)}{\left(-1 + A \right)^{3n-1}} (y_{-2}(-1 + A)^{3n-1}) \frac{\left(x_{-3} \right)}{\left(-1 + A \right)^{3n-1}} \frac{\left(y_{-2}(-1 + A)^{3n-1} \right)}{\left(-1 + A \right)^{3n-1}}
\]
\[
x_{12n-6} = \frac{y_{12n-2}}{-1 + x_{12n-3} y_{12n-4} x_{12n-5} y_{12n-6} x_{12n-7} y_{12n-8}} = -1 + \frac{\left(y_{-2}(-1 + A)^{3n-1} \right)}{\left(-1 + A \right)^{3n-1}} (y_{-2}(-1 + A)^{3n-1}) \frac{\left(x_{-3} \right)}{\left(-1 + A \right)^{3n-1}} \frac{\left(y_{-2}(-1 + A)^{3n-1} \right)}{\left(-1 + A \right)^{3n-1}}
\]
\[
y_{12n-4} = \frac{z_{12n}}{-1 + y_{12n-1} x_{12n-2} z_{12n-3} y_{12n-4} x_{12n-5} y_{12n-6} z_{12n-7} y_{12n-8}} = -1 + \frac{\left(y_{-2}(-1 + B)^{3n-1} \right)}{\left(-1 + B \right)^{3n-1}} (y_{-2}(-1 + B)^{3n-1}) \frac{\left(x_{-3} \right)}{\left(-1 + B \right)^{3n-1}} \frac{\left(y_{-2}(-1 + B)^{3n-1} \right)}{\left(-1 + B \right)^{3n-1}}
\]
wherefrom
\[
x_{12n+1} = \frac{z_{12n-3}}{-1 + z_{12n-2} y_{12n-1} x_{12n-2} z_{12n-3}} = -1 + \frac{\left(y_{-2}(-1 + B)^{3n-1} \right)}{\left(-1 + B \right)^{3n-1}} (y_{-2}(-1 + B)^{3n-1}) \frac{\left(x_{-3} \right)}{\left(-1 + B \right)^{3n-1}} \frac{\left(y_{-2}(-1 + B)^{3n-1} \right)}{\left(-1 + B \right)^{3n-1}}
\]
\[
y_{12n+3} = \frac{z_{12n}}{-1 + y_{12n+1} x_{12n+2} z_{12n+1} y_{12n+2} x_{12n+3} y_{12n+4} z_{12n+3} y_{12n+5} x_{12n+6} y_{12n+7} z_{12n+8} y_{12n+9}} = -1 + \frac{\left(y_{-2}(-1 + B)^{3n-1} \right)}{\left(-1 + B \right)^{3n-1}} (y_{-2}(-1 + B)^{3n-1}) \frac{\left(x_{-3} \right)}{\left(-1 + B \right)^{3n-1}} \frac{\left(y_{-2}(-1 + B)^{3n-1} \right)}{\left(-1 + B \right)^{3n-1}}
\]
\[
y_{12n+4} = \frac{z_{12n+4}}{-1 + y_{12n+3} x_{12n+4} z_{12n+3} y_{12n+4} x_{12n+5} y_{12n+5} x_{12n+6} y_{12n+7} z_{12n+8} y_{12n+9}} = -1 + \frac{\left(y_{-2}(-1 + B)^{3n-1} \right)}{\left(-1 + B \right)^{3n-1}} (y_{-2}(-1 + B)^{3n-1}) \frac{\left(x_{-3} \right)}{\left(-1 + B \right)^{3n-1}} \frac{\left(y_{-2}(-1 + B)^{3n-1} \right)}{\left(-1 + B \right)^{3n-1}}
\]

Also, we can prove the other relations. This completes the proof.

Lemma 3.2. The solutions of system (3.1) are unbounded except in the cases from the following two theorems.
Theorem 3.3. System \([3.1]\) has a periodic solution of period twelve iff \(A = B = C = 2\) and it can be written in the following form
\[
\begin{align*}
x_n &= \{x_{-3}, x_{-2}, x_{-1}, x_0, z_{-2}, z_{-1}, \ldots\}, \\
y_n &= \{y_{-3}, y_{-2}, y_{-1}, y_0, x_{-2}, x_{-1}, z_{-2}, z_{-1}, \ldots\}, \\
z_n &= \{z_{-3}, z_{-2}, z_{-1}, y_{-3}, y_{-2}, y_{-1}, y_0, x_{-3}, x_{-2}, x_{-1}, x_0, z_{-3}, z_{-2}, z_{-1}, \ldots\}.
\end{align*}
\]
Proof. First, there exists a periodic solution of period twelve
\[
\begin{align*}
x_n &= \{x_{-3}, x_{-2}, x_{-1}, x_0, z_{-2}, z_{-1}, z_{-2}, z_{-1}, \ldots\}, \\
y_n &= \{y_{-3}, y_{-2}, y_{-1}, y_0, x_{-2}, x_{-1}, z_{-2}, z_{-1}, \ldots\}, \\
z_n &= \{z_{-3}, z_{-2}, z_{-1}, y_{-3}, y_{-2}, y_{-1}, y_0, x_{-3}, x_{-2}, x_{-1}, x_0, \ldots\}.
\end{align*}
\]
of system \([3.1]\). From its form, we see that
\[
\begin{align*}
x_{-3} &= x_{-3}, \\
x_{-2} &= x_{-2} - x_{-1} + B, \\
x_{-1} &= x_{-1} - x_0, \\
x_0 &= x_0 - (1 + A)\beta^3n,
\end{align*}
\]
where from we get
\[
A = B = C = 2.
\]
Second, assume now that \(A = B = C = 2\). Then we see from the form of the solution of system \([3.1]\) that
\[
\begin{align*}
x_{12n-3} &= x_{-3}, \\
x_{12n-2} &= x_{-2}, \\
x_{12n-1} &= x_{-1}, \\
x_{12n} &= x_0, \\
x_{12n+1} &= x_{-3}, \\
x_{12n+2} &= x_{-2}, \\
x_{12n+3} &= x_{-1}, \\
x_{12n+4} &= y_0, \\
x_{12n+5} &= x_0, \\
x_{12n+6} &= x_{-1}, \\
x_{12n+7} &= x_{-2}, \\
x_{12n+8} &= x_{-3}, \\
y_{12n-3} &= y_{-3}, \\
y_{12n-2} &= y_{-2}, \\
y_{12n-1} &= y_{-1}, \\
y_{12n} &= y_0, \\
y_{12n+1} &= y_{-3}, \\
y_{12n+2} &= y_{-2}, \\
y_{12n+3} &= y_{-1}, \\
y_{12n+4} &= y_0, \\
y_{12n+5} &= y_{-3}, \\
y_{12n+6} &= y_{-2}, \\
y_{12n+7} &= y_{-1}, \\
y_{12n+8} &= y_0.
\end{align*}
\]
Thus we have a periodic solution of period twelve. This completes the proof.

Theorem 3.4. System \([3.1]\) has a periodic solution of period four iff \(x_{-i} = y_{-i} = z_{-i}, i = 0, 1, 2, 3, A = 2\) which has the form
\[
\{x_n\} = \{y_n\} = \{z_n\} = \{x_{-3}, x_{-2}, x_{-1}, x_0, x_{-3}, x_{-2}, \ldots\}.
\]
Proof. The proof follows from the formulae of solutions of system \([3.1]\).

Example 3.5. We consider an interesting numerical example for \([3.1]\) with the initial conditions \(x_{-3} = 0.6, x_{-2} = -0.3, x_{-1} = 0.8, x_0 = -1.3, y_{-3} = 0.2, y_{-2} = -4, y_{-1} = 0.2, y_0 = 0.7, z_{-3} = 0.8, z_{-2} = 1.1, z_{-1} = 0.02, \) and \(z_0 = 0.4\). See Figure 3.
Example 3.6. See Figure 4 when we take system (3.1) with the initial conditions $x_{-3} = 6$, $x_{-2} = 1/14$, $x_{-1} = -1/6$, $x_0 = -2$, $y_{-3} = 0.3$, $y_{-2} = -3$, $y_{-1} = 8$, $y_0 = -2$, $z_{-3} = -7$, $z_{-2} = 20$, $z_{-1} = 1/18$, and $z_0 = -0.5$.

Example 3.7. Figure 5 shows the behavior of the solution of system (3.1) with the initial conditions $x_{-3} = y_{-3} = z_{-3} = 6$, $x_{-2} = y_{-2} = z_{-2} = -3$, $x_{-1} = y_{-1} = z_{-1} = 1/18$ and $x_0 = y_0 = z_0 = -2$.

The following cases can be treated similarly.

4. The Third Case $a_i = b_i = b_3 = 1$, $i = 1, 2, a_3 = -1$

Here we obtain a form of the solutions of the system of the difference equations

$$
x_{n+1} = \frac{x_{n-3}}{1 + z_n y_{n-1} x_{n-2} z_{n-3}}, \quad y_{n+1} = \frac{y_{n-3}}{1 + x_n z_{n-1} y_{n-2} x_{n-3}}, \quad z_{n+1} = \frac{z_{n-3}}{-1 + y_n x_{n-1} z_{n-2} y_{n-3}},
$$

where $n = 0, 1, 2, \ldots$ and the initial conditions are arbitrary real numbers with $A \neq \pm 1, -\frac{1}{2}$, $B \neq \pm 1, -\frac{1}{2}$ and $C \neq 1, -\frac{1}{2}, -\frac{1}{3}$.
Figure 5: Plot of system (3.1) when \(x_{-i} = y_{-i} = z_{-i}, \ i = 0, 1, 2, 3, A = 2. \)

Theorem 4.1. Let \(\{x_i, y_i, z_i\}_{n=-3}^{+\infty} \) be a solution of system (4.1). Then for \(n = 0, 1, 2, \ldots, \) we have

\[
\begin{align*}
x_{12n-3} &= \frac{x_{-3}(-1+2A)^n}{(-1+A)^2n(1+A)^n}, \\
x_{12n-1} &= \frac{x_{-1}(1-2C)^{2n}}{(-1+C)^{2n}(-1+3C)^n}, \\
x_{12n+1} &= \frac{z_{-3}(1+2B)^n}{(-1+B)^n(1+B)^{2n+1}}, \\
x_{12n+3} &= \frac{z_{-1}(-1+2A)^n}{(-1+A)^{2n+1}(1+A)^n}, \\
x_{12n+5} &= \frac{z_{-3}(1+2B)^{2n+1}}{(-1+C)^{2n+2}(-1+3C)^n}, \\
x_{12n+7} &= \frac{y_{-1}(1+2B)^{n+1}}{(-1+B)^n(1+B)^{2n+2}}, \\
x_{12n+9} &= \frac{z_{-3}(1+2A)^n}{(-1+A)^{2n+1}(1+A)^{n+1}}, \\
x_{12n+11} &= \frac{z_{-1}(-1+2A)^n}{(-1+A)^{2n+1}(1+A)^{n+1}}, \\
y_{12n-3} &= \frac{x_{-3}(-1+2A)^n}{(-1+A)^2n(1+A)^n+1}, \\
y_{12n-1} &= \frac{x_{-1}(1-2C)^{2n}}{(-1+C)^{2n}(-1+3C)^{n+1}}, \\
y_{12n+1} &= \frac{z_{-3}(1+2B)^n}{(-1+B)^n(1+B)^{2n+1}}, \\
y_{12n+3} &= \frac{z_{-1}(-1+2A)^n}{(-1+A)^{2n+1}(1+A)^{n+1}}, \\
y_{12n+5} &= \frac{z_{-3}(1+2B)^{2n+1}}{(-1+C)^{2n+2}(-1+3C)^{n+1}}, \\
y_{12n+7} &= \frac{y_{-1}(1+2B)^{n+1}}{(-1+B)^n(1+B)^{2n+2}}, \\
y_{12n+9} &= \frac{z_{-3}(1+2A)^n}{(-1+A)^{2n+1}(1+A)^{n+1}}, \\
y_{12n+11} &= \frac{z_{-1}(-1+2A)^n}{(-1+A)^{2n+1}(1+A)^{n+1}}, \\
z_{12n-3} &= \frac{x_{-3}(-1+2A)^n}{(-1+A)^2n(1+A)^n+1}, \\
z_{12n-1} &= \frac{x_{-1}(1-2C)^{2n}}{(-1+C)^{2n}(-1+3C)^n}, \\
z_{12n+1} &= \frac{z_{-3}(1+2B)^n}{(-1+B)^n(1+B)^{2n+1}}, \\
z_{12n+3} &= \frac{z_{-1}(-1+2A)^n}{(-1+A)^{2n+1}(1+A)^{n+1}}, \\
z_{12n+5} &= \frac{z_{-3}(1+2B)^{2n+1}}{(-1+C)^{2n+2}(-1+3C)^{n+1}}, \\
z_{12n+7} &= \frac{y_{-1}(1+2B)^{n+1}}{(-1+B)^n(1+B)^{2n+2}}, \\
z_{12n+9} &= \frac{z_{-3}(1+2A)^n}{(-1+A)^{2n+1}(1+A)^{n+1}}, \\
z_{12n+11} &= \frac{z_{-1}(-1+2A)^n}{(-1+A)^{2n+1}(1+A)^{n+1}}, \\
x_{12n-2} &= \frac{x_{-2}(-1+B)^n(1+B)^{2n}}{(1+2B)^n}, \\
x_{12n} &= \frac{x_0(-1+A)^n(1+A)^n}{(-1+2A)^n}, \\
x_{12n+2} &= \frac{z_{-2}(-1+C)^{2n+1}(-1+3C)^n}{(-1+2C)^{2n+1}}, \\
x_{12n+4} &= \frac{z_0(-1+B)^n(1+B)^{2n+1}}{(1+2B)^n}, \\
x_{12n+6} &= \frac{y_{-2}(-1+A)^{2n+1}(1+A)^{n+1}}{(-1+2A)^n}, \\
x_{12n+8} &= \frac{y_0(-1+C)^{2n+1}(-1+3C)^{n+1}}{(-1+2C)^{2n+2}}, \\
y_{12n-2} &= \frac{y_{-2}(-1+A)^n(1+A)^n}{(-1+2A)^n}, \\
y_{12n} &= \frac{y_0(-1+C)^{2n}(-1+3C)^n}{(-1+2C)^{2n}}, \\
y_{12n+2} &= \frac{x_{-2}(-1+B)^n(1+B)^{2n+1}}{(1+2B)^{n+1}}, \\
y_{12n+4} &= \frac{x_0(-1+A)^n(1+A)^n}{(-1+2A)^{n+1}}, \\
y_{12n+6} &= \frac{y_{-2}(-1+C)^{2n+1}(-1+3C)^{n+1}}{(-1+2C)^{2n+2}}, \\
y_{12n+8} &= \frac{y_0(-1+B)^{2n}(-1+B)^{2n+1}}{(1+2B)^{n+1}}, \\
z_{12n-2} &= \frac{z_{-2}(-1+C)^{2n}(-1+3C)^n}{(-1+2C)^{2n}}, \\
z_{12n} &= \frac{z_0(-1+B)^n(1+B)^{2n}}{(1+2B)^n}, \\
z_{12n+2} &= \frac{z_{-2}(-1+C)^{2n+1}(-1+3C)^{n+1}}{(-1+2C)^{2n+1}}, \\
z_{12n+4} &= \frac{z_0(-1+B)^n(1+B)^{2n+1}}{(1+2B)^{n+1}}, \\
z_{12n+6} &= \frac{z_{-2}(-1+C)^{2n+2}(1+3C)^n}{(-1+2C)^{2n+2}}, \\
z_{12n+8} &= \frac{z_0(-1+B)^{2n+1}(1+B)^{2n+1}}{(1+2B)^{n+1}}.
\]
\[
\begin{align*}
 z_{12n+1} &= \frac{y_{-3}(-1 + 2C)^{2n}}{(-1 + B)^{2n+1}(-1 + 3C)^{n+1}}, \\
 z_{12n+3} &= -\frac{y_{-1}(1 + 2B)^{n+1}}{(-1 + B)^{n}(1 + B)^{2n+1}}, \\
 z_{12n+5} &= -\frac{x_{-3}(-1 + 2A)^{n+1}}{(-1 + A)^{2n+1}(1 + A)^{n+1}}, \\
 z_{12n+7} &= -\frac{x_{-1}(-1 + 2C)^{2n+1}}{(-1 + C)^{2n+1}(-1 + 3C)^{n+1}}.
\end{align*}
\]

Example 4.2. In the following example for system (4.1), we put the initial conditions \(x_{-3} = 0.6, \ x_{-2} = -0.3, \ x_{-1} = 0.7, \ x_0 = -1.3, \ y_{-3} = 0.2, \ y_{-2} = -0.4, \ y_0 = 0.2, \ z_{-3} = 0.8, \ z_{-2} = 0.24, \ z_{-1} = 0.5, \) and \(z_0 = 0.4.\) See Figure 6.

\[\text{Figure 6: Plot of system (4.1).}\]

5. Other Cases

In this section, we get a form of the solutions of the following systems of the difference equations

\[
\begin{align*}
 x_{n+1} &= \frac{z_{n-3}}{1 + z_n x_{n-1} x_{n-2} z_{n-3} - y_{n-3}}, \\
 y_{n+1} &= -1 - x_n z_{n-1} y_{n-2} x_{n-3}, \\
 z_{n+1} &= \frac{x_{n-3}}{1 - y_n x_{n-1} z_{n-2} y_{n-3}}.
\end{align*}
\] (5.1)

\[
\begin{align*}
 x_{n+1} &= \frac{z_{n-3}}{1 - z_n y_{n-1} x_{n-2} z_{n-3} - y_{n-3}}, \\
 y_{n+1} &= -1 - x_n z_{n-1} y_{n-2} x_{n-3}, \\
 z_{n+1} &= \frac{x_{n-3}}{1 - y_n x_{n-1} z_{n-2} y_{n-3}}.
\end{align*}
\] (5.2)

Theorem 5.1. Let \(\{x_n, y_n, z_n\}\) be a solution of system (5.1). Then for \(n = 0, 1, 2, \ldots,\) we have

\[
\begin{align*}
 x_{12n-3} &= \frac{x_{-3}(1 + 2A)^n}{(1 + A)^{2n}(-1 + A)^n}, \\
 x_{12n-1} &= \frac{x_{-1}(1 + 2C)^n}{(1 + C)^{2n}(-1 + C)^n}, \\
 x_{12n} &= \frac{x_0(1 + A)^{2n}(-1 + A)^n}{(1 + 2A)^n}, \\
 x_{12n-2} &= \frac{x_{-2}(1 + B)^{2n}(1 + 3B)^n}{(-1 + 2B)^{2n}}, \\
 z_{12n} &= \frac{y_0(-1 + C)^{2n}(-1 + 3C)^{n+1}}{(-1 + 2C)^{2n+1}}, \\
 z_{12n+2} &= \frac{y_{-2}(-1 + A)^{2n}(1 + A)^{n+1}}{(-1 + 2A)^n}, \\
 z_{12n+4} &= \frac{y_{-1}(1 + 2B)^{n+1}}{(-1 + B)^n(1 + B)^{2n+1}}, \\
 z_{12n+6} &= \frac{x_{-2}(-1 + B)^{n+1}(1 + B)^{2n+1}}{(1 + 2B)^{n+1}}, \\
 z_{12n+8} &= \frac{x_{-1}(-1 + A)^{2n+1}(1 + A)^{n+1}}{(-1 + 2A)^{n+1}}.
\end{align*}
\]
where, \(A, C \neq \pm 1, \neq -\frac{1}{2}, \neq -\frac{1}{3}\).

Theorem 5.2. Let \(\{x_n, y_n, z_n\}_{n=-3}^{+\infty}\) be a solution of system (5.2) and \(A, B, C \neq -1\). Then for \(n = 0, 1, 2, \ldots\), we have

\[
\begin{align*}
x_{12n+1} & = \frac{z_{-3}(-1)^n(1 + 2B)^{2n}}{(1 + B)^{2n+1}(1 + 3B)^n}, \\
x_{12n+3} & = \frac{z_{-1}(1 + 2A)^{n+1}}{(1 + A)^{2n+1}(-1 + A^n)}, \\
x_{12n+5} & = \frac{y_{-3}(1 + 2C)^{n+1}}{(1 + C)^{2n+1}(-1 + C^n)^{1}}, \\
x_{12n+7} & = \frac{y_{-1}(1 + 2B)^{n+1}}{(1 + B)^{2n+1}}, \\
y_{12n+3} & = \frac{y_{-3}(1 + 2A)^n}{(1 + A)^{2n+1}(-1 + A^n)}, \\
y_{12n+5} & = \frac{y_{-1}(1 + 2B)^{2n+2}}{(1 + B)^{2n+1}}, \\
y_{12n+7} & = \frac{y_{-1}(1 + 2A)^n}{(1 + A)^{2n+1}(-1 + A^n)}, \\
z_{12n+3} & = \frac{z_{-3}(-1)^n(1 + 2B)^{2n+1}}{(1 + B)^{2n}(1 + 3B)^{n+1}}, \\
z_{12n+5} & = \frac{z_{-1}(1 + 2A)^{n+1}}{(1 + A)^{2n+2}(-1 + A^n)}, \\
z_{12n+7} & = \frac{z_{-1}(1 + 2C)^n}{(1 + C)^{2n+1}(-1 + C^n)^{1}}, \\
x_{12n+4} & = \frac{z_{-2}(-1 + C)^{n+1}(1 + C)^{2n}}{(1 + 2C)^n}, \\
x_{12n+6} & = \frac{y_{-2}(1 + A)^{2n+1}(-1 + A^n)}{(1 + 2A)^{n+1}}, \\
x_{12n+8} & = \frac{y_{0}(1 + C)^{2n+1}(1 + C)^{2n+1}}{(1 + 2C)^{n+1}}, \\
y_{12n+2} & = \frac{y_{-2}(1 + A)^{2n+1}(-1 + A^n)}{(1 + 2A)^{n+1}}, \\
y_{12n} & = \frac{y_{0}(1 + C)^{2n+1}(1 + C)^{2n+1}}{(1 + 2C)^{n+1}}, \\
y_{12n+4} & = \frac{x_{0}(1 + A)^{2n+1}(-1 + A^n)}{(1 + 2A)^{n+1}}, \\
y_{12n+6} & = \frac{x_{0}(1 + C)^{2n+1}(1 + C)^{2n+1}}{(1 + 2C)^{n+1}}, \\
y_{12n+8} & = \frac{x_{0}(1 + A)^{2n+1}(-1 + A^n)}{(1 + 2A)^{n+1}},
\end{align*}
\]
Lemma 5.3. The solutions of system (5.2) are unbounded except in the cases given in the following two theorems.

Theorem 5.4. System (5.2) has a periodic solution of period twelve iff $A = B = C = -2$ and it has the form

\[
\begin{align*}
\{x_n\} &= \{x_3, x_2, x_1, x_0, z_3, z_2, z_1, z_0, y_3, y_2, y_1, y_0, x_3, x_2, x_1, x_0, \ldots \}, \\
\{y_n\} &= \{y_3, y_2, y_1, y_0, x_3, x_2, x_1, x_0, z_3, z_2, z_1, z_0, y_3, y_2, y_1, y_0, \ldots \}, \\
\{z_n\} &= \{z_3, z_2, z_1, z_0, y_3, y_2, y_1, y_0, x_3, x_2, x_1, x_0, z_3, z_2, z_1, z_0, \ldots \}.
\end{align*}
\]

Theorem 5.5. System (5.2) has a periodic solution of period four iff $x_{-i} = y_{-i} = z_{-i}$, $i = 0, 1, 2, 3$, $A = -2$ and it is of the form

\[
\begin{align*}
\{x_n\} &= \{y_n\} = \{z_n\} = \{x_{-3}, x_{-2}, x_{-1}, x_0, x_{-3}, x_{-2}, \ldots \}.
\end{align*}
\]

Acknowledgements

The author thanks the editor and the referees for their constructive comments and suggestions which improved the quality of the paper.

References

[2] N. Battaloglu, C. Cinar, I. Yalçınkaya, The dynamics of the difference equation $x_{n+1} = \frac{x_{n-k} + e^{x_{n-l}}}{x_{n-k} + e},$ Ars Combin., 97 (2010), 281–288.
[5] C. Cinar, On the positive solutions of the difference equation system $x_{n+1} = \frac{1}{y_n}, y_{n+1} = \frac{y_n}{x_{n-1} y_{n-1}},$ Appl. Math. Comput., 158 (2004), 303–305.

[22] A. S. Kurbanli, On the behavior of solutions of the system of rational difference equations: $x_{n+1} = \frac{x_n - y_n}{y_{n-1} - y_n - 1}$, $y_{n+1} = \frac{y_n - y_{n-1}}{x_{n-1} - y_n - 1}$, and $z_{n+1} = \frac{z_n - y_{n-1}}{z_{n-1} - y_n - 1}$, Discrete Dyn. Nat. Soc., 2011 (2011), 12 pages.

[24] A. S. Kurbanli, C. Cinar, I. Yalçınkaya, On the behavior of positive solutions of the system of rational difference equations $x_{n+1} = \frac{x_n - y_{n-1}}{y_n - y_{n-1} - 1}$, $y_{n+1} = \frac{y_n - y_{n-1}}{x_n - y_{n-1} - 1}$, Math. Comput. Model., 53 (2011), 1261–1267.

[25] K. Liu, Z. Wei, P. Li, W. Zhong, On the behavior of a system of rational difference equations $x_{n+1} = \frac{x_{n-1}}{x_{n-1} - y_n - 1}$, $y_{n+1} = \frac{y_{n-1}}{y_{n-1} - x_n}$, Discrete Dyn. Nat. Soc., 2012 (2012), 9 pages.

[26] H. Ma, H. Feng, On positive solutions for the rational difference equation systems $x_{n+1} = \frac{A}{x_n y_n^2}$, $y_{n+1} = \frac{x_n y_n}{x_{n-1} y_{n-1} - 1}$, Int. Schol. Res. Notices, 2014 (2014), 4 pages.

[28] A. Y. Ozban, On the positive solutions of the system of rational difference equations $x_{n+1} = \frac{1}{y_{n-k}}$, $y_{n+1} = \frac{y_n}{x_{n-m} y_{n-m-k}}$, J. Math. Anal. Appl., 323 (2006), 26–32.

[36] X. Yang, Y. Liu, S. Bai, On the system of high order rational difference equations $x_n = \frac{a}{y_{n-p}}$, $y_n = \frac{b y_{n-p}}{x_{n-q} y_{n-q}}$, Appl. Math. Comput., 171 (2005), 853–856.

