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Abstract

Recently, by taking full exploitation to the special structure of the separable convex programming, some
splitting methods have been developed. However, in some practical applications, these methods need to
compute the inverse of a matrix, which maybe slow down their convergence rate, especially when the
dimension of the matrix is large. To solve this issue, in this paper we shall study the Peaceman-Rachford
splitting method (PRSM) by adding a proximal term to its first subproblem and get a new method named
proximal Peaceman-Rachford splitting method (PPRSM). Under mild conditions, the global convergence of
the PPRSM is established. Finally, the efficiency of the PPRSM is illustrated by testing some applications
arising in compressive sensing. c©2016 All rights reserved.
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1. Introduction

In this paper, we are interested in the following convex minimization model with linear constraints and
separable objective function:

min{θ1(x1) + θ2(x2)|A1x1 +A2x2 = b, x1 ∈ X1, x2 ∈ X2}, (1.1)
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where Ai ∈ Rl×ni(i = 1, 2), b ∈ Rl and Xi ⊂ Rni(i = 1, 2) are nonempty closed convex sets, θi : Rni →
R(i = 1, 2) are convex but not necessarily smooth functions, such as in compressive sensing, θ1 refers to a
data-fidelity term and θ2 denotes a regularization term. Throughout this paper, we assume that the solution
set of (1.1) is nonempty and Ai(i = 1, 2) are full column-rank matrices.

A fundamental method for solving (1.1) is the Peaceman-Rachford splitting method (PRSM)[6, 7], which
was presented originally in [1]. The standard PRSM iterative scheme is:

xk+1
1 = argminx1∈X1{θ1(x1)− (λk)>(A1x1 +A2x

k
2 − b) + β

2 ‖A1x1 +A2x
k
2 − b‖2},

λk+
1
2 = λk − β(A1x

k+1
1 +A2x

k
2 − b),

xk+1
2 = argminx2∈X2{θ2(x2)− (λk+

1
2 )>(A1x

k+1
1 +A2x2 − b) + β

2 ‖A1x
k+1
1 +A2x2 − b‖2},

λk+1 = λk+
1
2 − β(A1x

k+1
1 +A2x

k+1
2 − b).

(1.2)

The PRSM has been well studied in the literature[3, 4, 5, 8]. The PRSM scheme is always efficient when it
is convergent. However, according to [1, 4], the sequence generated by PRSM maybe does not satisfy the
strictly contractive property, which results in divergence of the PRSM. To deal with this issue, He et al. [4]
developed a strictly contractive Peaceman-Rachford splitting method (SCPRSM), and its iterative scheme
is: 

xk+1
1 = argminx1∈X1{θ1(x1)− (λk)>(A1x1 +A2x

k
2 − b) + β

2 ‖A1x1 +A2x
k
2 − b‖2},

λk+
1
2 = λk − αβ(A1x

k+1
1 +A2x

k
2 − b),

xk+1
2 = argminx2∈X2{θ2(x2)− (λk+

1
2 )>(A1x

k+1
1 +A2x2 − b) + β

2 ‖A1x
k+1
1 +A2x2 − b‖2},

λk+1 = λk+
1
2 − αβ(A1x

k+1
1 +A2x

k+1
2 − b),

(1.3)

where the parameter α ∈ (0, 1). Obviously, the iterative scheme (1.3) reduces to the (1.2) if α = 1. However,
to ensure the global convergence of (1.3), the parameter α must be restricted in the interval (0, 1). The most
important property of the SCPRSM is that its generated sequence satisfies the strictly contractive property.

However, similar to other splitting methods, the SCPRSM also has to compute the inverse of a matrix
in some practical applications, such as the numerical examples in [4]: the statistical learning problems and
the image reconstruction models (see iterative schemes (6.5)-(6.11) or (6.20)-(6.21) in [4]). In fact, we need
to compute the matrix (D>D + βI)−1, where D ∈ Rn×d is the design matrix and I is the identity matrix,
which is quite time consuming if the dimension d is large. In order to solve this issue, in this paper, we
propose a proximal Peaceman-Rachford splitting method (PPRSM), which regularizes the first subproblem
in (1.3) by the proximal regularization 1

2‖A1(x1 − xk1)‖2R, where R ∈ Rl×l is a positive definite matrix. The
relationship between SCPRSM and PPRSM can be summarized as follows: in fact, the matrix (D>D+βI)−1

in SCPRSM is resulted from the quadratic term in the objective function. Similar to [2], we can linearize
the quadratic term and add a proximal term, and get an implementable iterative scheme, which is just
SCPRSM with a special matrix R.

The rest of this paper is organized as follows. In Section 2, we describe the proximal Peaceman-Rachford
splitting method and prove its global convergence in detail. The application of the PPRSM to compressive
sensing are discussed in Section 3. In Section 4, we compare our algorithm with SCPRSM to illustrate the
efficiency by performing numerical experiments. Finally, some conclusions are drawn in Section 5.

To end this section, some notations used in this paper are list. We use Rn+ to denote the nonnegative
quadrant in Rn; the vector x+ denotes the orthogonal projection of vector x ∈ Rn onto Rn+, that is,
(x+)i := max{xi, 0}, 1 ≤ i ≤ n; the norm ‖ · ‖1, ‖ · ‖ and ‖ · ‖M denote the Euclidean 1-norm, 2-norm and
M -norm, respectively. For x, y ∈ Rn, we use (x; y) to denote the column vector (x>, y>)>, and use Im to
denote an identity matrix of order m. The transpose of a matrix M is denoted by M>.

2. Algorithm and Global Convergence

In this section, we first develop an equivalent reformulation of the problem (1.1) by a mixed variational
inequality problem (denoted by VI(W, F, θ)). Then we describe a proximal Peaceman-Rachford splitting
method (PPRSM) for the VI(W, F, θ), and establish its global convergence.
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First, we define some auxiliary variables: x = (x1, x2), w = (x, λ) and θ(x) = θ1(x1) + θ2(x2). Then, by
invoking the first-order optimality condition for convex programming, we can reformulate problem (1.1) as
the following variational inequality problem (denoted by VI(W, F, θ)): Finding a vector w∗ ∈ W such that

θ(x)− θ(x∗) + (w − w∗)>F (w∗) ≥ 0, ∀w ∈ W, (2.1)

where W = X1 ×X2 ×Rl, w = (x, λ) = (x1, x2, λ) and

F (w) =

 −A>1 λ
−A>2 λ

A1x1 +A2x2 − b

 = M̄w + p̄, (2.2)

where

M̄ =

 0 0 −A>1
0 0 −A>2
A1 A2 0

 , p̄ =

 0
0
b

 .

We denote the set of (2.1) by W∗. Then, W∗ is nonempty under nonempty assumption onto the solution
set of problem (1.1).

In this following, a proximal Peaceman-Rachford splitting method (PPRSM) for solving the VI(W, F, θ)
is outlined.

Algorithm 2.1. PPRSM
Step 0. Choose the parameters α ∈ (0, 1), β > 0, a positive definite matrix R ∈ Rl×l, the tolerance

ε > 0 and the initial iterate w0 = (x01, x
0
2, λ

0) ∈ X1 ×X2 ×Rl. Set k := 0.
Step 1. The new iterate wk+1 = (xk+1

1 , xk+1
2 , λk+1) by solving the following problem

xk+1
1 = argminx1∈X1{θ1(x1)− (λk)>A1x1 + β

2 ‖A1x1 +A2x
k
2 − b‖2 + 1

2‖A1(x1 − xk1)‖2R},
λk+

1
2 = λk − αβ(A1x

k+1
1 +A2x

k
2 − b),

xk+1
2 = argminx2∈X2{θ2(x2)− (λk+

1
2 )>A2x2 + β

2 ‖A1x
k+1
1 +A2x2 − b‖2},

λk+1 = λk+
1
2 − αβ(A1x

k+1
1 +A2x

k+1
2 − b).

(2.3)

Step 2. If
max{‖A1(x

k
1 − xk+1

1 )‖, ‖A2(x
k
2 − xk+1

2 )‖, ‖λk − λk+1‖} < ε, (2.4)

stop, then (xk+1
1 , xk+1

2 , λk+1) is a solution of VI(W, F, θ); otherwise, set k := k + 1, go to Step 1.
For the ease of description,we denote the sequence {ŵk} as

ŵk =

 x̂k1
x̂k2
λ̂k

 =

 xk+1
1

xk+1
2

λk − β(A1x
k+1
1 +A2x

k
2 − b)

 . (2.5)

By the second equality of (2.3), one has

λk+
1
2 = λk − α[λk − (λk − β(A1x

k+1
1 +A2x

k
2 − b))] = λk − α(λk − λ̂k). (2.6)

Combining this with the fourth equality of (2.3), one has

λk+1 = λk+
1
2 − αβ[(A1x

k+1
1 +A2x

k
2 − b)− (A2x

k
2 −A2x

k+1
2 )]

= λk+
1
2 − αβ(A1x

k+1
1 +A2x

k
2 − b) + αβA2(x

k
2 − x

k+1
2 )

= λk+
1
2 − α[λk − (λk − β(A1x

k+1
1 +A2x

k
2 − b))] + αβA2(x

k
2 − x

k+1
2 )

= λk+
1
2 − α(λk − λ̂k) + αβA2(x

k
2 − x

k+1
2 )

= λk − [2α(λk − λ̂k)− αβA2(x
k
2 − x̂k2)].

(2.7)
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Combining this with (2.5), we obtian

wk+1 =

 xk1
xk2
λk

−
 xk1 − x

k+1
1

xk2 − x
k+1
2

λk − λk+1


=

 xk1
xk2
λk

−
 xk1 − x̂k1

xk2 − x̂k2
−αβA2(x

k
2 − x̂k2) + 2α(λk − λ̂k)


= wk −M(wk − ŵk),

(2.8)

where

M =

 In1 0 0
0 In2 0
0 −αβA2 2αIl

 . (2.9)

Based on above analysis, we would show that the algorithm is globally convergent. To this end, we first
give the following needed lemma.

Lemma 2.1. If Aix
k
i = Aix

k+1
i (i = 1, 2) and λk = λk+1, then wk+1 = (xk+1

1 , xk+1
2 , λk+1) produced by

PPRSM is a solution of VI(W, F, θ).

Proof. By deriving the first-order optimality condition of x1-subproblem in (2.3), for any x1 ∈ X1, we have

θ1(x1)− θ1(xk+1
1 ) + (x1 − xk+1

1 )>
{
A>1 [−λk + β(A1x

k+1
1 +A2x

k
2 − b) +RA1(x

k+1
1 − xk1)]

}
≥ 0. (2.10)

From the definition of λ̂k in (2.5), (2.10) can be written as

θ1(x1)− θ1(xk+1
1 ) + (x1 − xk+1

1 )>
{
−A>1 λ̂k +A>1 RA1(x

k+1
1 − xk1)

}
≥ 0, ∀x1 ∈ X1. (2.11)

Similarly, from the x2-subproblem in (2.3), we have

θ2(x2)− θ2(xk+1
2 ) + (x2 − xk+1

2 )>
{
−A>2 λk+

1
2 + βA>2 (A1x

k+1
1 +A2x

k+1
2 − b)

}
≥ 0,∀x2 ∈ X2. (2.12)

By the definition of λk+
1
2 in (2.3) and λ̂k in (2.5), one has

−A>2 λk+
1
2 + βA>2 (A1x

k+1
1 +A2x

k+1
2 − b)

= A>2 [−λk + αβ(A1x
k+1
1 +A2x

k
2 − b) + β(A1x

k+1
1 +A2x

k+1
2 − b)]

= A>2 [−λk + β(A1x
k+1
1 +A2x

k
2 − b) + αβ(A1x

k+1
1 +A2x

k
2 − b)− β(A1x

k+1
1 +A2x

k
2 − b)

+ β(A1x
k+1
1 +A2x

k
2 − b) + β(A2x

k+1
2 −A2x

k
2)]

= −A>2 λ̂k + βA>2 A2(x
k+1
2 − xk2)− αA>2 (λ̂k − λk)].

(2.13)

Combining (2.12) with (2.13), one has

θ2(x2)− θ2(xk+1
2 ) + (x2 − xk+1

2 )>
{
−A>2 λ̂k + βA>2 A2(x

k+1
2 − xk2)− αA>2 (λ̂k − λk)]

}
≥ 0,∀x2 ∈ X2. (2.14)

In addition, from (2.5) again, we have

(A1x
k+1
1 +A2x

k+1
2 − b)−A2(x

k+1
2 − xk2) +

1

β
(λ̂k − λk) = 0. (2.15)

Using (2.11), (2.14), (2.15) and xk+1
i = x̂ki (i = 1, 2), for any w = (x1, x2, λ) ∈ W, it holds that

θ(x)− θ(x̂k) + (w − ŵk)>

 −A>1 λ̂k

−A>2 λ̂k
A1x̂

k
1 +A2x̂

k
2 − b

 +

 A>1 RA1(x̂
k
1 − xk1)

βA>2 A2(x̂
k
2 − xk2)− αA>2 (λ̂k − λk)

−A2(x̂
k
2 − xk2) + (λ̂k − λk)/β

 ≥ 0.
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For any w ∈ W, the above inequality can be written as

θ(x)− θ(x̂k) + (w − ŵk)>F (ŵk) ≥ (w − ŵk)>Q(wk − ŵk), (2.16)

where

Q =

 A>1 RA1 0 0
0 βA>2 A2 −αA>2
0 −A2

1
β Il

 . (2.17)

If Aix
k
i = Aix

k+1
i (i = 1, 2) and λk = λk+1, combining (2.5) with (2.7), we have Aix

k
i = Aix̂

k
i (i = 1, 2) and

λk = λ̂k. Thus,
Q(wk − ŵk) = 0. (2.18)

Combining this with (2.16), one has

θ(x)− θ(x̂k) + (w − ŵk)>F (ŵk) ≥ 0, ∀w ∈ W,

which implies that ŵk = (x̂k1, x̂
k
2, λ̂

k) is a solution of VI(W, F, θ). Since ŵk = wk+1, so wk+1 is a solution of
VI(W, F, θ).

Lemma 2.2. The matrices M,Q defined in (2.9) and (2.17), respectively. Then, we have

HM = Q, (2.19)

and the matrix H is positive definite, where

H =

 A>1 RA1 0 0
0 2−α

2 βA>2 A2 −1
2A
>
2

0 −1
2A2

1
2αβ Il

 . (2.20)

Proof. Using (2.9) and (2.17), one has

HM =

 A>1 RA1 0 0
0 2−α

2 βA>2 A2 −1
2A
>
2

0 −1
2A2

1
2αβ Il

 In2 0 0
0 In2 0
0 −αβA2 2αIl


=

 A>1 RA1 0 0
0 βA>2 A2 −αA>2
0 −A2

1
β Il

 = Q.

Then the first assertion is proved.
Since R is a positive definite matrix, there exists positive definite matrix R1 ∈ Rl×l, such that R = R>1 R1.

By a simple manipulation, we obtain

H =

 A>1 R
>
1 0 0

0
√
βA>2 0

0 0 1√
β
Il

 Il 0 0
0 2−α

2 Il
1
2Il

0 1
2Il

1
2αIl

 R1A1 0 0
0

√
βA2 0

0 0 1√
β
Il

 .

Since the matrix  Il 0 0
0 2−α

2 Il
1
2Il

0 1
2Il

1
2αIl


is positive definite if α ∈ (0, 1), and Ai(i = 1, 2) are full column-rank matrices. Thus, H is positive definite
if α ∈ (0, 1).
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Lemma 2.3. Let the sequence {wk} be generated by PPRSM. Then, for any w ∈ W, one has

(w − ŵk)>Q(wk − ŵk) ≥ 1

2
(‖w − wk+1‖2H − ‖w − wk‖2H) +

1

2
‖wk − ŵk‖2N , (2.21)

where the matrices Q,H defined in (2.17) and (2.20), respectively, and

N =

 A>1 RA1 0 0

0 β(1−α)
4 A>2 A2 0

0 0 2(1−α)
3β Il

 .

Proof. From the fact that

(a− b)>H(c− d) =
1

2
(‖a− d‖2H − ‖a− c‖2H) +

1

2
(‖c− b‖2H − ‖d− b‖2H), ∀a, b, c, d ∈ Rn.

Setting a = w, b = ŵk, c = wk, d = wk+1, one has

(w − ŵk)>H(wk − wk+1) =
1

2
(‖w − wk+1‖2H − ‖w − wk‖2H) +

1

2
(‖wk − ŵk‖2H − ‖wk+1 − ŵk‖2H).

Using the above equality, combining (2.19) with (2.8), we obtain

(w − ŵk)>Q(wk − ŵk) = (w − ŵk)>HM(wk − ŵk)
= (w − ŵk)>H(wk − wk+1)

=
1

2
(‖w − wk+1‖2H − ‖w − wk‖2H) +

1

2
(‖wk − ŵk‖2H − ‖wk+1 − ŵk‖2H).

(2.22)

For the last term of (2.22), using (2.8), one has

‖wk − ŵk‖2H − ‖wk+1 − ŵk‖2H
= ‖wk − ŵk‖2H − ‖(wk − ŵk)− (wk − wk+1)‖2H
= ‖wk − ŵk‖2H − ‖(wk − ŵk)−M(wk − ŵk)‖2H
= 2(wk − ŵk)>HM(wk − ŵk)− (wk − ŵk)>M>HM(wk − ŵk)
= (wk − ŵk)>(Q> +Q−M>HM)(wk − ŵk).

(2.23)

Using (2.9),(2.17) and (2.19), a direct computation yields that

Q> +Q−M>HM = Q> +Q−M>Q =

 A>1 RA1 0 0
0 (1− α)βA>2 A2 −(1− α)A>2
0 −(1− α)A2

2(1−α)
β Il

 .

Combining this with (2.23), using the Cauchy-Schwartz Inequality, one has

(wk − ŵk)>(Q> +Q−M>HM)(wk − ŵk)
= ‖A1(x

k
1 − x̂k1)‖2R + (1− α){β‖A2(x

k
2 − x̂k2)‖2 − 2[A2(x

k
2 − x̂k2)]>(λk − λ̂k)

+
2

β
‖λk − λ̂k‖2}

= ‖A1(x
k
1 − x̂k1)‖2R + (1− α){β

4
‖A2(x

k
2 − x̂k2)‖2 +

2

3β
‖λk − λ̂k‖2

+
3β

4
‖A2(x

k
2 − x̂k2)‖2 − 2[A2(x

k
2 − x̂k2)]>(λk − λ̂k) +

4

3β
‖λk − λ̂k‖2}

≥ ‖A1(x
k
1 − x̂k1)‖2R + (1− α){β

4
‖A2(x

k
2 − x̂k2)‖2 +

2

3β
‖λk − λ̂k‖2}

= ‖wk − ŵk‖2N .
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Combining this with (2.23), one has

‖wk − ŵk‖2H − ‖wk+1 − ŵk‖2H ≥ ‖wk − ŵk‖2N .

Combining this with (2.22), we have that (2.21) holds.

Theorem 2.4. Let {wk} be the sequence generated by PPRSM. Then, for any w ∈ W, we have

θ(x)− θ(x̂k) + (w − ŵk)>F (w) ≥ 1

2
(‖w − wk+1‖2H − ‖w − wk‖2H) +

1

2
‖wk − ŵk‖2N . (2.24)

Proof. From (2.2), a direct computation yields that

(w − ŵk)>(F (w)− F (ŵk)) = 0.

Thus, one has (w− ŵk)>F (w) = (w− ŵk)>F (ŵk). Combining this, using (2.16) and (2.21), we obtain that
(2.24) holds.

Using the above theorem, we first prove that the stopping criterion (2.4) is reasonable.

Theorem 2.5. Let {wk} be the sequence generated by PPRSM. Then, we have

lim
k→∞

‖A1(x
k
1 − x̂k1)‖ = 0, lim

k→∞
‖A2(x

k
2 − x̂k2)‖ = 0, and lim

k→∞
‖λk − λ̂k‖ = 0. (2.25)

Proof. Setting w = w∗ ∈ W∗ in (2.24), we obtain

‖wk − w∗‖2H − ‖wk − ŵk‖2N ≥ 2{θ(x̂k)− θ(x∗) + (ŵk − w∗)>F (w∗)}+ ‖wk+1 − w∗‖2H
≥ ‖wk+1 − w∗‖2H ,

where the second inequality follows from w∗ ∈ W∗. Thus, one has

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − ‖wk − ŵk‖2N . (2.26)

Using (2.26), a direct computation yields that

∞∑
k=0

‖wk − ŵk‖2N ≤ ‖w0 − w∗‖2H ,

which implies that
lim
k→∞

‖wk − ŵk‖N = 0. (2.27)

Combining (2.27) with the matrix N defined in Lemma 2.3, we have that (2.25) holds.

Now, we are ready to establish the global convergence of PPRSM for solving VI(W, F, θ).

Theorem 2.6. Let {wk} be the sequence generated by PPRSM. Then, the sequence {wk} converges to some
w̄ ∈ W∗.

Proof. From (2.26), we have
‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H . (2.28)

Using (2.28), a direct computation yields that

‖wk+1 − w∗‖2H ≤ ‖w0 − w∗‖2H ,
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which indicates that the sequence {wk} is bounded. Combining this with (2.27), the sequence {ŵk} is also
bounded. Therefore, it has at least one cluster point. Let w̄ be a cluster point of {ŵk} and the subsequence
{ŵkj} converges to w̄.

On the other hand, combining (2.25) with the definition of Q in (2.17), we have

lim
k→∞

Q(wk − ŵk) = 0.

Combining this with (2.16), we get

lim
k→∞
{θ(x)− θ(x̂k) + (w − ŵk)>F (ŵk)} ≥ 0, ∀w ∈ W. (2.29)

Substituting x̂k in (2.29) with ŵkj , and letting kj →∞, we have

θ(x)− θ(x̄) + (w − w̄)>F (w̄) ≥ 0, ∀w ∈ W,

which implies that w̄ ∈ W∗.
From limk→∞ ‖wk−ŵk‖N = 0, we can deduce limk→∞ ‖wk−ŵk‖H = 0, combining this with {ŵkj} → w̄,

for any given ε > 0, there exists an integer l such that

‖wkl − ŵkl‖H <
ε

2
, and ‖ŵkl − w̄‖H <

ε

2
.

Thus, for any k ≥ kl, using the above two equalities and (2.28) that

‖wk − w∞‖H ≤ ‖wkl − w̄‖H ≤ ‖wkl − ŵkl‖H + ‖ŵkl − w̄‖H < ε.

Thus, the sequence {wk} converges to w̄ ∈ W∗.

3. Application to Compressive Sensing

Compressive sensing (CS) is to recover a sparse signal x̄ ∈ Rn from an undetermined linear system
y = Ax̄, where A ∈ Rm×n (m � n) is the sensing matrix, and a fundamental decoding model in CS is the
so-called unconstrained basis pursuit denoising (QPρ) problem, which can be depicted as

min
x∈Rn

f(x) =
1

2
‖Ax− y‖22 + ρ‖x‖1, (3.1)

where ρ > 0 is the regularization parameter and ‖x‖1 is the l1-norm of the vector x defined as
‖x‖1 =

∑n
i=1 |xi|.

Now, by introducing auxiliary variables µi and νi, i = 1, 2, · · · , n, and letting

µi + νi = |xi|, µi − νi = xi, i = 1, 2, · · · , n.

Thus, the problem QPρ is written as

min
(µ;ν)∈R2n

1

2
‖(A,−A)(µ; ν)− y‖22 + ρ(e>, e>)(µ; ν),

s.t. (µ; ν) ≥ 0,

(3.2)

where e ∈ Rn denote the vector composed by elements 1.
Now, we can transform the problem (3.2) into the following problem. Letting x1 = (µ; ν), x2 = (µ; ν),

one has

min
1

2
‖(A,−A)x1 − y‖22 + ρ(e>, e>)x2,

s.t. x1 − x2 = 0, x1 ≥ 0, x2 ≥ 0,
(3.3)
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which is a special case of (1.1) with

θ1(x1) =
1

2
‖(A,−A)x1 − y‖22, θ2(x2) = ρ(e>, e>)x2, A1 = In, A2 = −In, b = 0,X1 = X2 = R2n

+ .

Combining PPRSM with (3.3), we first consider the following problem

min
1

2
‖(A,−A)x1 − y‖22 − (λk)>x1 +

β

2
‖x1 − xk2‖22,

s.t. x1 ∈ R2n
+ .

(3.4)

By a direct computation, we can establish the following equivalent formulation of (3.4)

min
1

2
‖x1 − ([(A,−A)>(A,−A) + βI2n]−1[(A,−A)>y + λk + βxk2])‖2

M̂
,

s.t. x1 ∈ R2n
+ ,

(3.5)

where M̂ = (A,−A)>(A,−A) + βI2n. Thus, the solution of (3.5) is given by

xk+1
1 = ([(A,−A)>(A,−A) + βI2n]−1[(A,−A)>y + λk + βxk2])+.

However, the computation of [(A,−A)>(A,−A) + βI2n]−1 is very time consuming if n is large. Then, we
linearize 1

2‖(A,−A)x1 − y‖22 at the current point xk1 and add a proximal term, i.e.,

1

2
‖(A,−A)x1 − y‖22 ≈

1

2
‖(A,−A)xk1 − y‖22 + (gk)>(x1 − xk1) +

1

2τ
‖x1 − xk1‖2,

where gk = (A,−A)>((A,−A)xk1 − y) denotes the gradient at xk1, and τ > 0 is a parameter. Thus, (3.4) is
approximated by the following problem

min
1

2
‖(A,−A)xk1 − y‖22 + (gk)>(x1 − xk1) +

1

2τ
‖x1 − xk1‖2 − (λk)>x1 +

β

2
‖x1 − xk2‖2

s.t. x1 ∈ R2n
+ ,

which can be written as

min (gk)>x1 +
1

2τ
‖x1 − xk1‖2 − (λk)>x1 +

β

2
‖x1 − xk2‖2

s.t. x1 ∈ R2n
+ .

(3.6)

Obviously, the above problem has the solution

xk+1
1 =

τ

1 + βτ
(λk +

1

τ
xk1 + βxk2 − gk)+.

In the following, we show that (3.6) is the x1-subproblem of (2.3) with R = 1
τ I2n − (A,−A)>(A,−A). In

fact, setting R = 1
τ I2n − (A,−A)>(A,−A) in (2.3), we have

argminx1∈R2n
+
{1

2
‖(A,−A)x1 − y‖22 − (λk)>x1 +

β

2
‖x1 − xk2‖2 +

1

2
‖x1 − xk1‖2R}

= argminx1∈R2n
+

{
1
2‖(A,−A)x1 − y‖22 − (λk)>x1 + β

2 ‖x1 − x
k
2‖2

+1
2(x1 − xk1)>( 1τ In − (A,−A)>(A,−A))(x1 − xk1)

}
= argminx1∈R2n

+

{
1
2‖(A,−A)x1 − y‖22 − (λk)>x1 + β

2 ‖x1 − x
k
2‖2

+ 1
2τ ‖x1 − x

k
1‖2 − 1

2‖(A,−A)x1 − (A,−A)xk1‖2

}
= argminx1∈R2n

+
{(x1)>(A,−A)>((A,−A)xk1 − y)− (λk)>x1 +

β

2
‖x1 − xk2‖2 +

1

2τ
‖x1 − xk1‖2}.
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In addition, if 0 < τ < 1/λmax((A,−A)>(A,−A)), then R is a positive definite matrix.
Using the newly generated xk+1

1 , the Lagrange multiplier λ is updated via

λk+
1
2 = λk − αβ(xk+1

1 − xk2). (3.7)

Using the updated xk+1
1 , λk+

1
2 , the x2-subproblem in (2.3) is given

xk+1
2 = argminx2∈R2n

+
{ρ(e>, e>)x2 + (λk+

1
2 )>x2 +

β

2
‖x2 − xk+1

1 ‖2}

= argminx2∈R2n
+
{β

2
‖x2 − (xk+1

1 − 1

β
λk+

1
2 − ρ

β
(e; e))‖2}

and its solution is given by

xk+1
2 = (xk+1

1 − 1

β
λk+

1
2 − ρ

β
(e; e))+. (3.8)

Using the newly generated xk+1
1 , λk+

1
2 and xk+1

2 , the Lagrange multiplier λ is second updated via

λk+1 = λk+
1
2 − αβ(xk+1

1 − xk+1
2 ). (3.9)

4. Numerical Experiments

In this section, we conduct some numerical experiments about compressive sensing to verify the efficiency
of the proposed PPRSM, and compared it with the strictly contractive Peaceman-Rachford splitting method
(SCPRSM) in [4]. All the code were written by Matlab 7.0 and were performed on a ThinkPad computer
equipped with Windows XP, 997MHz and 4.00 GB of memory.

For two methods, the stop criterion is

‖fk − fk−1‖
‖fk−1‖

< 10−5,

where fk denotes the function value at iteration xk. All the initial points are set as [A>y; 0n×1].
Firstly, we use PPRSM and SCPRSM to recover a simulated sparse signal from the observation data

corrupted by additive Gaussian white noise, where n = 1000,m = floor(γ×n), k = floor(σ×m). Therefore k
is the number of random nonzero elements contained in the original signal. In addition, we set γ = 0.3, σ =
0.2, y = Ax+ sw, where sw is the additive Gaussian white noise of zero mean and standard derivation 0.01,
β = mean(|y|), τ = 1.1, ρ = 0.01, and A is generated by:

B = randn(m,n), [Q,R] = qr(B>, 0), A = Q>.

Define

RelErr =
‖x̃− x̄‖
‖x̄‖

,

where x̃ denotes the reconstructive signal. The original signal, the measurement and the reconstructed
signal by SCPRSM and PPRSM are given in Figure 1. Compared the first and the last two subplots in
Figure 1, we clearly see that the original signal is recovered almost exactly by the test two methods. In
addition, the RelErr of SCPRSM is a little smaller than that of our proposed method. In the following,
we shall compare the two methods with respect to the computing time, the number of iterations and the
RelErr. The parameters are set just same as the above discussion except γ and σ, and for SCPRSM, we
use the same parameters as PPRSM. The codes of the two methods are repeatedly run 20 times, and the
average numerical results are listed in Table 1.

From Table 1, we conclude that both methods are efficient in reconstructing the given sparse signals,
and they attained the solutions successfully with comparable RelErr. However, the computing time of the
PPRSM is a little less than that of the SCPRSM. Thus, we conclude that the PPRSM provides a valid
approach for solving CS, and it is competitive with the SCPRSM.
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Figure 1: The original signal, noisy measurement and reconstruction results

γ σ PPRSM SCPRSM

Time Iter RelErr Time Iter RelErr

0.3 0.2 1.0772 255.8500 0.0492 1.0475 50.0000 0.0452
0.2 0.2 1.0608 370.8500 0.0837 1.0624 61.6500 0.0752
0.2 0.1 0.4017 145.8500 0.0562 1.0585 60.5500 0.0571
Average 0.8466 257.5167 0.0630 1.0561 57.4000 0.0592

Table 1: Comparison of PPRSM with SCPRSM

5. Conclusions

In this paper, we developed a new proximal Peaceman-Rachford splitting method (PPRSM), which does
not need to compute the inverse of large matrix. Under mild conditions, we proved its global convergence.
Numerical results of compressive sensing indicate that the new method is efficient for the compressive sensing.
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