Brunn-Minkowski type inequalities for L_p Blaschke-Minkowski homomorphisms

Feixiang Chen, Gangsong Leng

Abstract

In this paper, the Brunn-Minkowski type inequalities for L_p Blaschke-Minkowski homomorphisms and L_p radial Minkowski homomorphisms are established. ©2016 All rights reserved.

Keywords: Brunn-Minkowski inequality, L_p Blaschke-Minkowski homomorphisms.

2010 MSC: 52A20, 52A40.

1. Introduction and preliminaries

The Brunn-Minkowski inequality is one of the most important geometric inequalities. There is a huge amount of work on its generalizations and on its connections with other areas (see [1, 5–7, 16, 18]). The excellent survey article of Gardner [5] gives a comprehensive account of various aspects and consequences of the Brunn-Minkowski inequality.

Projection bodies and intersection bodies played a critical role in the solution of the Shephard problem and the Busemann-Petty problem, respectively (see [14]). Through the work of Ludwig [12, 13], projection bodies and intersection bodies were characterized as continuous and $GL(n)$ contravariant valuations. Recently, Schuster [19, 20] introduced the Blaschke-Minkowski homomorphisms and radial Blaschke-Minkowski homomorphisms which are more general than the well-known projection body operators and intersection bodies, respectively. In order to state their definition, let K^n denote the space of all convex bodies in \mathbb{R}^n endowed with the Hausdorff topology.

A map $\Phi : K^n \rightarrow K^n$ is called a Blaschke-Minkowski homomorphism, if it satisfies the following conditions:

*Corresponding author

Email addresses: cfx2002@126.com (Feixiang Chen), gleng@staff.shu.edu.cn (Gangsong Leng)

Received 2016-03-23
(a) Φ is continuous with respect to the Hausdorff metric.

(b) For all $K_1, K_2 \in \mathcal{K}^n$,
\[\Phi(K_1 \# K_2) = \Phi K_1 + \Phi K_2, \]
where $K_1 \# K_2$ denotes Blaschke addition (see [9]) of K_1 and K_2, and $\Phi K_1 + \Phi K_2$ is the Minkowski addition of ΦK_1 and ΦK_2.

(c) For all $K \in \mathcal{K}^n$ and every $\nu \in SO(n)$,
\[\Phi(\nu K) = \nu \Phi K, \]
where $SO(n)$ is the group of rotations of \mathbb{R}^n.

Let \mathcal{S}^n denote the space of all star bodies in \mathbb{R}^n endowed with the radial metric. A map $\Psi : \mathcal{S}^n \to \mathcal{S}^n$ is called a radial Blaschke-Minkowski homomorphism if it satisfies the following conditions:

(a*) Ψ is continuous with respect to the radial metric.

(b*) For all $L_1, L_2 \in \mathcal{S}^n$,
\[\Psi(L_1 \tilde{\#} L_2) = \Psi L_1 \tilde{+} \Psi L_2, \]
where $L_1 \tilde{\#} L_2$ denotes the radial Blaschke addition (see [8]) of L_1 and L_2, and $\Psi L_1 \tilde{+} \Psi L_2$ is the radial Minkowski addition of ΨL_1 and ΨL_2.

(c*) For all $L \in \mathcal{S}^n$ and every $\nu \in SO(n)$,
\[\Psi(\nu L) = \nu \Psi L. \]

Volume inequalities for convex body and star body valued valuations are an active field of research (see [2–4, 17, 21, 23, 25]).

In the recent paper [22], Wang introduced the following concept of the L_p Blaschke-Minkowski homomorphisms:

A map $\Phi_p : \mathcal{K}^n_s \to \mathcal{K}^n_s$ is called an L_p Blaschke-Minkowski homomorphism, if it satisfies the following conditions:

(1) Φ_p is continuous with respect to the Hausdorff metric.

(2) For all $K_1, K_2 \in \mathcal{K}^n_s$,
\[\Phi_p(K_1 \#_p K_2) = \Phi_p K_1 +_p \Phi_p K_2, \]
where $K_1 \#_p K_2$ denotes L_p Blaschke addition of K_1 and K_2, and $\Phi_p K_1 +_p \Phi_p K_2$ is the L_p Minkowski addition of $\Phi_p K_1$ and $\Phi_p K_2$.

(3) For all $K \in \mathcal{K}^n_s$ and every $\nu \in SO(n)$,
\[\Phi_p(\nu K) = \nu \Phi_p K, \]
where $SO(n)$ is the group of rotations of \mathbb{R}^n.

In the paper [24], Wang et al. defined L_p radial Minkowski homomorphisms as follows:

A map $\Psi_p : \mathcal{S}^n \to \mathcal{S}^n$ is called an L_p radial Minkowski homomorphism, if it satisfies the following conditions:

(1*) Ψ_p is continuous with respect to the radial metric.

(2*) For all $L_1, L_2 \in \mathcal{S}^n$,
\[\Psi_p(L_1 \tilde{+}_{n-p} L_2) = \Psi_p L_1 \tilde{+}_{n-p} \Psi_p L_2, \]
where $L_1 \tilde{+}_{n-p} L_2$ denotes the radial addition of L_1 and L_2, and $\Psi_p L_1 \tilde{+}_{n-p} \Psi_p L_2$ is the radial Minkowski addition (see [8]) of $\Psi_p L_1$ and $\Psi_p L_2$.
(3*) For all \(L \in S^n \) and every \(v \in SO(n) \),
\[
\Psi_p(vL) = v\Psi_pL.
\]

In [19], Schuster has established the following Brunn-Minkowski type inequalities.

Theorem 1.1 ([19]). Let \(\Phi : K^n \to K^n \) be a Blaschke-Minkowski homomorphism. If \(K_1, K_2 \in K^n \), then
\[
V(\Phi(K_1 + K_2))^{1/(n-1)} \geq V(\Phi(K_1))^{1/(n-1)} + V(\Phi(K_2))^{1/(n-1)},
\]
with equality, if and only if \(K_1 \) and \(K_2 \) are homothetic.

The operator \(\Phi \) is called even, if \(\Phi K = \Phi(-K) \) for all \(K \in K^n \).

Theorem 1.2 ([19]). Let \(\Phi : K^n \to K^n \) be an even Blaschke-Minkowski homomorphism. If \(K_1, K_2 \in K^n \), then
\[
V(\Phi^+(K_1 + K_2))^{1/(n-1)} \geq V(\Phi^+(K_1))^{1/(n-1)} + V(\Phi^+(K_2))^{1/(n-1)},
\]
with equality, if and only if \(K_1 \) and \(K_2 \) are homothetic. Here \(\Phi^+K \) is the polar body of \(\Phi K \).

The aim of this paper is to establish Brunn-Minkowski type inequalities for \(L_p \) Blaschke-Minkowski homomorphisms and \(L_p \) radial Minkowski homomorphisms.

Theorem 1.3. Let \(\Phi_p : K^n_s \to K^n_s \) be an \(L_p \) Blaschke-Minkowski homomorphism. If \(K_1, K_2 \in K^n_s \) and \(n \neq p \geq 1 \), then
\[
V(\Phi_p(K_1 \#_p K_2))^{p/n} \geq V(\Phi_p(K_1))^{p/n} + V(\Phi_p(K_2))^{p/n}, \tag{1.1}
\]
with equality in (1.1), if and only if \(\Phi_pK_1 \) and \(\Phi_pK_2 \) are dilates.

Theorem 1.4. Let \(\Phi_p : K^n_s \to K^n_s \) be an \(L_p \) Blaschke-Minkowski homomorphism. If \(K_1, K_2 \in K^n_s \) and \(n \neq p \geq 1 \), then
\[
V(\Phi_p^+(K_1 \#_p K_2))^{-p/n} \geq V(\Phi_p^+(K_1))^{-p/n} + V(\Phi_p^+(K_2))^{-p/n}, \tag{1.2}
\]
with equality in (1.2), if and only if \(\Phi_pK_1 \) and \(\Phi_pK_2 \) are dilates.

Theorem 1.5. Let \(\Psi_p : S^n \to S^n \) be an \(L_p \) radial Minkowski homomorphism. If \(K_1, K_2 \in S^n_0 \) and \(0 < p < n \), then
\[
V(\Psi_p(K_1 ^{+}_{p-n} K_2))^{p/n} \leq V(\Psi_p(K_1))^{p/n} + V(\Psi_p(K_2))^{p/n}, \tag{1.3}
\]
with equality in (1.3), if and only if \(\Psi_pK_1 \) and \(\Psi_pK_2 \) are dilates.

If \(p < 0 \) or \(p > n \), then we get
\[
V(\Psi_p(K_1 ^{+}_{p-n} K_2))^{p/n} \geq V(\Psi_p(K_1))^{p/n} + V(\Psi_p(K_2))^{p/n}, \tag{1.4}
\]
with equality (1.4), if and only if \(\Psi_pK_1 \) and \(\Psi_pK_2 \) are dilates.

2. Notation and background material

Let \(K^n \) denote the set of all convex bodies (compact, convex subsets with non-empty interiors) in \(\mathbb{R}^n \), and let \(K^n_0 \) denote the set of convex bodies that contain the origin in their interiors. The subset of \(K^n_0 \) consisting of the centered convex bodies will be denoted by \(K^n_s \). \(S^{n-1} \) is the unit sphere. A convex body is uniquely determined by its support function. The support function of \(K \in K^n, h(K, \cdot) \), is defined on \(S^{n-1} \) by
\[
h(K, u) = \max\{u \cdot x : x \in K\}.
\]

Let \(\delta \) denote the Hausdorff metric on \(K^n \), i.e., for \(K, L \in K^n \), \(\delta(K, L) = |h_K - h_L|_\infty \), where \(|\cdot|_\infty\) denotes the sup-norm on the space of continuous functions, \(C(S^{n-1}) \).
Associated with a compact subset \(L \in \mathbb{R}^n \), which is star-shaped with respect to the origin, is its radial function \(\rho(L, \cdot) : S^{n-1} \to \mathbb{R} \), defined by

\[
\rho(L, u) = \max \{ \lambda \geq 0 : \lambda u \in L \}.
\]

If \(\rho(L, \cdot) \) is positive and continuous, we call \(L \) a star body. Let \(S^n \) and \(S^n_0 \) denote the set of star bodies and the set of star bodies (about the origin) in \(\mathbb{R}^n \), respectively. Two star bodies \(K, L \) are said to be dilates (of one another), if \(\rho_K(u)/\rho_L(u) \) is independent of \(u \in S^{n-1} \).

If \(K \in \mathcal{K}^n_0 \), then the polar body of \(K, K^* \), is defined by

\[
K^* := \{ x \in \mathbb{R}^n : x \cdot y \leq 1, \forall y \in K \}.
\]

From (2.1), it follows that \((K^*)^* = K \) and

\[
h_{K^*} = \frac{1}{\rho_K}, \quad \rho_{K^*} = \frac{1}{h_K}.
\]

Let \(K_1, K_2 \in \mathcal{K}^n_0, p \geq 1 \), and \(\lambda_1, \lambda_2 \geq 0 \) (not both 0). The \(L_p \) Minkowski sum \(\lambda_1 \cdot K_1 +_p \lambda_2 \cdot K_2 \) is the convex body whose support function is given by (see [15])

\[
h(\lambda_1 \cdot K_1 +_p \lambda_2 \cdot K_2, \cdot)^p = \lambda_1 h(K_1, \cdot)^p + \lambda_2 h(K_2, \cdot)^p.
\]

For \(p \geq 1 \), the \(L_p \)-mixed volume \(V_p(K, L) \) of \(K, L \in \mathcal{K}^n_0 \), can be defined by

\[
\frac{n}{p} V_p(K, L) = \lim_{\varepsilon \to 0^+} \frac{V(K +_p \varepsilon \cdot L) - V(K)}{\varepsilon}.
\]

In [15], Lutwak has shown that for \(p \geq 1 \), and each \(K \in \mathcal{K}^n_0 \), there exists a positive Borel measure \(S_p(K, \cdot) \) on \(S^{n-1} \), such that the \(L_p \)-mixed volume \(V_p(K, L) \) has the following integral representation:

\[
V_p(K, L) = \frac{1}{n} \int_{S^{n-1}} h^p(L, u)dS_p(K, u),
\]

for all \(L \in \mathcal{K}^n_0 \). The \(L_p \)-Minkowski inequality states that for \(K, L \in \mathcal{K}^n_0 \) and \(p \geq 1 \)

\[
V_p(K, L) \geq V(K)^{(n-p)/n} V(L)^{p/n},
\]

with equality, if and only if \(K \) and \(L \) are dilates.

For \(n \neq p \geq 1 \) and \(K, L \in \mathcal{K}^n_0 \), the \(L_p \)-Blaschke addition \(K +_p L \in \mathcal{K}^n_0 \) was defined in [15] by

\[
S_p(K +_p L, \cdot) = S_p(K, \cdot) + S_p(L, \cdot).
\]

Let \(K, L \in \mathcal{S}^n \), and \(p \in \mathbb{R} \) and \(p \neq 0 \). The \(L_p \) radial addition \(K +_p L \cdot \cdot \) is the star body defined by

\[
\rho(K +_p L \cdot \cdot , \cdot)^p = \rho(K, \cdot)^p + \rho(L, \cdot)^p.
\]

The \(L_p \) dual mixed volume \(V_p(K, L) \) of \(K, L \in \mathcal{K}^n_0 \), can be defined by

\[
\frac{n}{p} \tilde{V}_p(K, L) = \lim_{\varepsilon \to 0^+} \frac{V(K +_p \varepsilon \cdot L) - V(K)}{\varepsilon}.
\]

The definition above and the polar coordinate formula for volume give the following integral representation of the dual mixed volume \(\tilde{V}_p(K, L) \)

\[
\tilde{V}_p(K, L) = \frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n-p} \rho(L, u)^p dS(u).
\]
3. Proof of the main results

In this section, we give the proofs of our main results Theorems 1.3–1.5. First, we need the following lemma.

Lemma 3.1 ([10]). Let $K, L \in S^n$, if $0 < p < n$, then
\[
\tilde{V}_p(K, L) \leq V(K)^{(n-p)/n}V(L)^{p/n},
\]
with equality, if and only if K and L are dilates. If $p < 0$ or $p > n$, then
\[
\tilde{V}_p(K, L) \geq V(K)^{(n-p)/n}V(L)^{p/n},
\]
with equality, if and only if K and L are dilates.

Proof of Theorem 1.3 Let $K, L \in K^n_s$ and $n \neq p \geq 1$. From the definition of L_p Blaschke-Minkowski homomorphisms and the L_p-Minkowski inequality, for any $M \in K^n_0$, it follows that
\[
V_p(M, \Phi_p(K_1\#_p K_2)) = V_p(M, \Phi_p K_1 + p \Phi_p K_2)

= V_p(M, \Phi_p K_1) + V_p(M, \Phi_p K_2)

\geq V(M)^{(n-p)/n}(V(\Phi_p K_1)^{p/n} + V(\Phi_p K_2)^{p/n}),
\]
with equality, if and only if $M, \Phi_p K_1$ and $\Phi_p K_2$ are dilates.

By taking $M = \Phi_p(K_1\#_p K_2)$, we get
\[
V(\Phi_p(K_1\#_p K_2))^{p/n} \geq V(\Phi_p K_1)^{p/n} + V(\Phi_p K_2)^{p/n},
\]
with equality, if and only if $\Phi_p K_1$ and $\Phi_p K_2$ are dilates.

Therefore we have proved inequality (1.1). \qed

Proof of Theorem 1.4 Let $K, L \in K^n_s$ and $n \neq p \geq 1$. From the polar coordinate formula for volume and the Minkowski integral inequality, it follows that
\[
V(\Phi_p(K_1\#_p K_2))^{p/n} = \left(\frac{1}{n} \int_{S^{n-1}} (h(\Phi_p(K_1\#_p K_2), u)^p)^{-n/p} dS(u)\right)^{-p/n}

= n^{p/n} \|h(\Phi_p(K_1, u))^p + h(\Phi_p(K_2, u))^p\|^{-n/p}
\]
\[
\geq n^{p/n} \|h(\Phi_p(K_1, u))^p\|^{-p/n} + n^{p/n} \|h(\Phi_p(K_2, u))^p\|^{-p/n},
\]
with equality, if and only if $\Phi_p K_1$ and $\Phi_p K_2$ are dilates.

Therefore we have proved inequality (1.2). \qed

Proof of Theorem 1.5 Let $K_1, K_2 \in S^n_0$ and $0 < p < n$. From Lemma 3.1 and the L_p-Minkowski inequality, for any $M \in S^n_0$, it follows that
\[
\tilde{V}_p(M, \Psi_p(K_1\#_{-p} K_2)) = \tilde{V}_p(M, \Psi_p K_1 + \Psi_p K_2)

= \tilde{V}_p(M, \Psi_p K_1) + \tilde{V}_p(M, \Psi_p K_2)

\leq V(M)^{(n-p)/n}(V(\Psi_p K_1)^{p/n} + V(\Psi_p K_2)^{p/n}),
\]
with equality, if and only if $M, \Psi_p K_1$ and $\Psi_p K_2$ are dilates.

By taking $M = \Psi_p(K_1\#_{-p} K_2)$, we get
\[
V(\Psi_p(K_1\#_{-p} K_2))^{p/n} \leq V(\Psi_p K_1)^{p/n} + V(\Psi_p K_2)^{p/n},
\]
with equality, if and only if $Ψ_pK_1$ and $Ψ_pK_2$ are dilates.

Therefore we have proved inequality (1.3).

If $p < 0$ or $p > n$, then we get

$$V(Ψ_p(K_1+_{n−p}K_2))^{p/n} ≥ V(Ψ_pK_1)^{p/n} + V(Ψ_pK_2)^{p/n},$$

with equality, if and only if $Ψ_pK_1$ and $Ψ_pK_2$ are dilates. The inequality (1.4) is proved. □

Since the L_p projection body operator $Π_p$ is an L_p Blaschke-Minkowski homomorphism, we get the following inequalities which were established by Lu and Leng in [11].

Corollary 3.2 ([11]). Let $Π_p : K^n_s → K^n_s$ be the L_p projection body operator. If $K_1, K_2 ∈ K^n_s$ and $n ≠ p ≥ 1$, then

$$V(Π_p(K_1#_{p}K_2))^{p/n} ≥ V(Π_pK_1)^{p/n} + V(Π_pK_2)^{p/n},$$

(3.1)

$$V(Π_p(K_1#_{p}K_2))^{−p/n} ≥ V(Π_pK_1)^{−p/n} + V(Π_pK_2)^{−p/n},$$

(3.2)

with equality in (3.1) and (3.2), if and only if $Π_pK_1$ and $Π_pK_2$ are dilates.

Acknowledgment

We are grateful to the referee for the suggested improvements. We would like to acknowledge the support from the National Natural Science Foundation of China (11671249) and the Natural Science Foundation of Chongqing Municipal Education Commission (No. KJ1501009).

References

