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Abstract

Using the integrating factor method, this paper deals with the Hyers-Ulam stability of a class of exact
differential equations of second order. As a direct application of the main result, we also obtain the Hyers-
Ulam stability of a special class of Cauchy-Euler equations of second order. c©2016 All rights reserved.
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1. Introduction

The Ulam stability (it consists primarily of Hyers-Ulam stability and Hyers-Ulam-Rassias stability) has
gradually become an important research branch in the theory of differential equations. Precisely, for an n-th
order differential equation

F (x, y, y′, ·, yn) = 0, x ∈ T,

where T is a subinterval of the real line R. We say that it has the Hyers-Ulam stability or it is stable in
the sense of Hyers-Ulam if for a given ε > 0 and an n times differentiable function f satisfies the differential
inequality

|F (x, y, y′, ·, yn)| ≤ ε
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for all x ∈ T , then there exists a solution g : T → R of the preceding differential equation such that
|f(x) − g(x)| ≤ K(ε) for all x ∈ T , where K(ε) depends only on ε and limε→0K(ε) = 0. More generally, if
the ε and K(ε) mentioned above are replaced by two control functions ϕ(x) and Φ(x), respectively, then we
say that the preceding differential equation has the Hyers-Ulam-Rassias stability(or generalized Hyers-Ulam
stability).

Obloza [16] seems to be the first author who is devoted to the study of the Ulam stability of differential
equations. A few years later, Alsina and Ger [2] considered the Hyers-Ulam stability of the differential
equation y′ = y. Soon afterwards, such stability results of the differential equation y′ = λy in various
abstract spaces have been obtained by Miura and Takahasi et al. [12, 13, 22]. Since then, many interesting
results on the Ulam stability of different types of differential equations have been established by various
authors [1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 17, 18, 19, 20, 21, 23].

Note that various methods have been used to study the Ulam stability of differential equations, such as
the direct method, integrating factor method, power series method, Laplace transform methods, the fixed
point technique and so on. In [23], the authors investigated the Hyers-Ulam stability of linear differential
equation of first order by using the integrating factor method. Inspired by this method, this paper aims to
consider the Hyers-Ulam stability of a class of exact differential equations of second order.

2. Preliminaries

Definition 2.1 ([6]). A second order differential equation

P (x)y′′(x) +Q(x)y′(x) +R(x) = 0 (2.1)

is said to be exact if P ′′(x)−Q′(x) +R(x) = 0.

By a simple calculation, we know that (2.1) can be written as in the following form

[P (x)y′(x)]′ + [W (x)y(x)]′ = 0, (2.2)

where W (x) = Q(x)−P ′(x). Integrating both sides of (2.2) gives the following first order linear differential
equation

P (x)y′ +W (x)y = P (x)y′ + (Q(x)− P ′(x))y = c, (2.3)

where c is the integration constant. For any integration constant c, it is easy to see that the solution of
(2.3) must be the solution of (2.2), and hence the solution of (2.1).

Throughout this paper, let I = (a, b), −∞ < a < b < +∞, denote the open interval of the real line R.
Moreover, we denote by C[I,R], C1[I,R] and C2[I,R] the set of all real continuous functions on I, the set of
all differentiable functions which have a continuous derivative on I and the set of all differentiable functions
which have a second continuous derivative on I, respectively.

3. Main results

In this section, we shall prove the Ulam stability of the second order exact differential equation (2.1) on
a bounded open interval.

Theorem 3.1. Let P ∈ C2[I,R], Q ∈ C1[I,R] and R ∈ C[I,R] with P (x) 6= 0 on I and P ′′(x) − Q′(x) +
R(x) = 0. Let W (x) = Q(x) − P ′(x) such that |W (x)| ≥ α on I for some α > 0 that is independent of x.
For a given ε > 0, if f ∈ C2[I,R] satisfies the differential inequality

|P (x)f ′′(x) +Q(x)f ′(x) +R(x)f(x)| ≤ ε (3.1)

for all x ∈ I, then there exists a solution h ∈ C2[I,R] of (2.1) such that

|f(x)− h(x)| ≤ 3ε(b− a)|N |e
∫ b
a

∣∣W (s)
P (s)

∣∣ds
(3.2)
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for all x ∈ I, where N is an integer with the minimum absolute value such that NW (x) ≥ 1 and

h(x) = e
−

∫ x
a
W (s)
P (s)

ds
[(
f(b1) + ε|N |(b1 − a)

)
e
∫ b1
a

W (s)
P (s)

ds −
∫ b1

x

M

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt
]
,

b1 is any fixed point in I such that y(b1) is finite.

Proof. We may assume that P (x) > 0 for all x ∈ I. By the inequality (3.1), we get

−ε ≤ P (x)f ′′(x) +Q(x)f ′(x) +R(x)f(x) ≤ ε

for all x ∈ I. Since P ′′(x)−Q′(x) +R(x) = 0, we can obtain

− ε ≤ [P (x)f ′(x)]′ + [(Q(x)− P ′(x))f(x)]′ = [P (x)f ′(x)]′ + [W (x)f(x)]′ ≤ ε (3.3)

for all x ∈ I. Integrating both sides of the inequality (3.3) from a to x, it follows that

−ε(x− a) ≤ P (x)f ′(x)− P (a)f ′(a) +W (x)f(x)−W (a)f(a) ≤ ε(x− a)

for all x ∈ I. Setting M = P (a)f ′(a) +W (a)f(a). Then, we have

− ε(x− a) ≤ P (x)f ′(x) +W (x)f(x)−M ≤ ε(x− a) (3.4)

for all x ∈ I. Multiplying both sides of the inequality (3.4) by the function 1
P (x)e

∫ x
a
W (s)
P (s)

ds
, we can infer that

−ε(x− a)
1

P (x)
e
∫ x
a
W (s)
P (s)

ds ≤ f ′(x)e
∫ x
a
W (s)
P (s)

ds
+ f(x)

W (x)

P (x)
e
∫ x
a
W (s)
P (s)

ds − M

P (x)
e
∫ x
a
W (s)
P (s)

ds

≤ ε(x− a)
1

P (x)
e
∫ x
a
W (s)
P (s)

ds
(3.5)

for all x ∈ I. Since |W (x)| ≥ α > 0, there exists an integer number N with the minimum absolute value
such that NW (x) ≥ 1. Then, it follows from (3.5) that

−εN(x− a)
W (x)

P (x)
e
∫ x
a
W (s)
P (s)

ds ≤ f ′(x)e
∫ x
a
W (s)
P (s)

ds
+ f(x)

W (x)

P (x)
e
∫ x
a
W (s)
P (s)

ds − M

P (x)
e
∫ x
a
W (s)
P (s)

ds

≤ εN(x− a)
W (x)

P (x)
e
∫ x
a
W (s)
P (s)

ds
.

(3.6)

Choosing b1 ∈ I such that f(b1) is finite. For any x ∈ (a, b1], by integrating both sides of (3.6) from x to b1
with respect to t, we have

−εN
∫ b1

x
(t− a)

W (t)

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt ≤ f(b1)e

∫ b1
a

W (s)
P (s)

ds − f(x)e
∫ x
a
W (s)
P (s)

ds −
∫ b1

x

M

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt

≤ εN
∫ b1

x
(t− a)

W (t)

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt.

Integrating by parts leads to

− εN
(

(b1 − a)e
∫ b1
a

W (s)
P (s)

ds − (x− a)e
∫ x
a
W (s)
P (s)

ds −
∫ b1

x
e
∫ t
a
W (s)
P (s)

ds
dt
)

≤ f(b1)e
∫ b1
a

W (s)
P (s)

ds − f(x)e
∫ x
a
W (s)
P (s)

ds −
∫ b1

x

M

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt

≤ εN
(

(b1 − a)e
∫ b1
a

W (s)
P (s)

ds − (x− a)e
∫ x
a
W (s)
P (s)

ds −
∫ b1

x
e
∫ t
a
W (s)
P (s)

ds
dt
)
.

(3.7)
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For the sake of clarity, we divide it into two cases to estimate the above equality:
Case I: when N > 0, we have

εN
(

(x− a)e
∫ x
a
W (s)
P (s)

ds
+

∫ b1

x
e
∫ t
a
W (s)
P (s)

ds
dt
)

≤
(
f(b1) + εN(b1 − a)

)
e
∫ b1
a

W (s)
P (s)

ds − f(x)e
∫ x
a
W (s)
P (s)

ds −
∫ b1

x

M

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt

≤ εN
(

2(b1 − a)e
∫ b1
a

W (s)
P (s)

ds − (x− a)e
∫ x
a
W (s)
P (s)

ds −
∫ b1

x
e
∫ t
a
W (s)
P (s)

ds
dt
)
.

Further, we can obtain that

εN(x− a)e
∫ x
a
W (s)
P (s)

ds ≤
(
f(b1) + εN(b1 − a)

)
e
∫ b1
a

W (s)
P (s)

ds − f(x)e
∫ x
a
W (s)
P (s)

ds −
∫ b1

x

M

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt

≤ εN
(

2(b1 − a)e
∫ b1
a

W (s)
P (s)

ds − (x− a)e
∫ x
a
W (s)
P (s)

ds
)
.

Then, we conclude that

εN(x− a) ≤ e−
∫ x
a
W (s)
P (s)

ds
[(
f(b1) + εN(b1 − a)

)
e
∫ b1
a

W (s)
P (s)

ds −
∫ b1

x

M

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt
]
− f(x)

≤ εN
(

2(b1 − a)e
∫ b1
x

W (s)
P (s)

ds − (x− a)
)
.

Case II: when N < 0, we get

− εN
(

2(b1 − a)e
∫ b1
a

W (s)
P (s)

ds − (x− a)e
∫ x
a
W (s)
P (s)

ds −
∫ b1

x
e
∫ t
a
W (s)
P (s)

ds
dt
)

≤
(
f(b1)− εN(b1 − a)

)
e
∫ b1
a

W (s)
P (s)

ds − f(x)e
∫ x
a
W (s)
P (s)

ds −
∫ b1

x

M

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt

≤ −εN
(

(x− a)e
∫ x
a
W (s)
P (s)

ds
+

∫ b1

x
e
∫ t
a
W (s)
P (s)

ds
dt
)
.

Thus, we can infer that

εN
(

(x− a)e
∫ x
a
W (s)
P (s)

ds
+

∫ b1

x
e
∫ t
a
W (s)
P (s)

ds
dt
)

≤
(
f(b1)− εN(b1 − a)

)
e
∫ b1
a

W (s)
P (s)

ds − f(x)e
∫ x
a
W (s)
P (s)

ds −
∫ b1

x

M

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt

≤ −εN
(

(x− a)e
∫ x
a
W (s)
P (s)

ds
+

∫ b1

x
e
∫ t
a
W (s)
P (s)

ds
dt
)
.

Therefore, we can obtain

εN
(

(x− a) + e
∫ x
a −

W (s)
P (s)

ds
∫ b1

x
e
∫ t
a
W (s)
P (s)

ds
dt
)

≤ e
∫ x
a −

W (s)
P (s)

ds
[(
f(b1)− εN(b1 − a)

)
e
∫ b1
a

W (s)
P (s)

ds −
∫ b1

x

M

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt
]
− f(x)

≤ −εN
(

(x− a) + e
∫ x
a −

W (s)
P (s)

ds
∫ b1

x
e
∫ t
a
W (s)
P (s)

ds
dt
)
.
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Using the integral mean value theorem, we get

εN
(

(x− a) + (b1 − x)e
∫ ξ
x
W (s)
P (s)

ds
)

≤ e−
∫ x
a
W (s)
P (s)

ds
[(
f(b1)− εN(b1 − a)

)
e
∫ b1
a

W (s)
P (s)

ds −
∫ b1

x

M

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt
]
− f(x)

≤ −εN
(

(x− a) + (b1 − x)e
∫ ξ
x
W (s)
P (s)

ds
)
,

where ξ ∈ [x, b1].
Based on the above two cases, we conclude that

− ε|N |
(

(x− a) + 2(b1 − a)e
∫ b1
x

W (s)
P (s)

ds
)

≤ e−
∫ x
a
W (s)
P (s)

ds
[(
f(b1) + ε|N |(b1 − a)

)
e
∫ b1
a

W (s)
P (s)

ds −
∫ b1

x

M

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt
]
− f(x)

≤ ε|N |
(

(x− a) + 2(b1 − a)e
∫ b1
x

W (s)
P (s)

ds
)
.

(3.8)

By an argument similar to the above, for any x ∈ [b1, b), integrating both sides of (3.6) from b1 to x with
respect to t, we can infer that

− εN
(

(x− a)e
∫ x
a
W (s)
P (s)

ds − (b1 − a)e
∫ b1
a

W (s)
P (s)

ds −
∫ x

b1

e
∫ t
a
W (s)
P (s)

ds
dt
)

≤ f(x)e
∫ x
a
W (s)
P (s)

ds − f(b1)e
∫ b1
a

W (s)
P (s)

ds −
∫ b1

x

M

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt

≤ εN
(

(x− a)e
∫ x
a
W (s)
P (s)

ds − (b1 − a)e
∫ b1
a

W (s)
P (s)

ds −
∫ x

b1

e
∫ t
a
W (s)
P (s)

ds
dt
)
.

Similarly, by dividing the above inequality into two cases, we have
Case I: when N > 0,

− εN
(

(x− a)−
∫ x

b1

e
∫ t
a
W (s)
P (s)

ds
dt
)

≤ f(x)− e−
∫ x
a
W (s)
P (s)

ds
[(
f(b1) + εN(b1 − a)

)
e
∫ b1
a

W (s)
P (s)

ds −
∫ b1

x

M

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt
]

≤ εN
(

(x− a)− 2(b1 − a)e
∫ b1
x

W (s)
P (s)

ds −
∫ x

b1

e
∫ t
a
W (s)
P (s)

ds
dt
)
.

Furthermore, we can obtain

−εN(x− a) ≤ f(x)− e−
∫ x
a
W (s)
P (s)

ds
[(
f(b1) + εN(b1 − a)

)
e
∫ b1
a

W (s)
P (s)

ds −
∫ b1

x

M

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt
]

≤ εN(x− a).

Case II: when N < 0,

εN
(

2(b1 − a)e
−

∫ x
b1

W (s)
P (s)

ds
+ e
−

∫ x
a
W (s)
P (s)

ds
∫ x

b1

e
∫ t
a
W (s)
P (s)

ds
dt− (x− a)

)
≤ f(x)− e−

∫ x
a
W (s)
P (s)

ds
[(
f(b1)− εN(b1 − a)

)
e
∫ b1
a

W (s)
P (s)

ds −
∫ b1

x

M

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt
]

≤ −εN
(
e
−

∫ x
a
W (s)
P (s)

ds
∫ x

b1

e
∫ t
a
W (s)
P (s)

ds
dt− (x− a)

)
.
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Using the integral mean value theorem, it follows that

εN(3(x− a)e
∫ x
b1

|W (s)|
P (s)

ds
) ≤ εN

(
2(b1 − a)e

−
∫ x
b1

W (s)
P (s)

ds
+ e
−

∫ x
η
W (s)
P (s)

ds
(x− b1)− (x− a)

)
≤ f(x)− e−

∫ x
a
W (s)
P (s)

ds
[(
f(b1)− εN(b1 − a)

)
e
∫ b1
a

W (s)
P (s)

ds −
∫ b1

x

M

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt
]

≤ −εN
(
e
−

∫ x
η
W (s)
P (s)

ds
(x− b1)− (x− a)

)
≤ −εN(3(x− a)e

∫ x
b1

|W (s)|
P (s)

ds
),

where η ∈ [b1, x].
Taking all these two cases, we can obtain

− ε|N |(3(x− a)e
∫ x
b1

|W (s)|
P (s)

ds
)

≤ f(x)− e−
∫ x
a
W (s)
P (s)

ds
[(
f(b1) + ε|N |(b1 − a)

)
e
∫ b1
a

W (s)
P (s)

ds −
∫ b1

x

M

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt
]

≤ ε|N |(3(x− a)e
∫ x
b1

|W (s)|
P (s)

ds
).

(3.9)

From (3.8) and (3.9), it follows that

|f(x)− h(x)| ≤ 3ε(b− a)|N |e
∫ b
a
|W (s)|
P (s)

ds

for all x ∈ I, where

h(x) = e
−

∫ x
a
W (s)
P (s)

ds
[(
f(b1) + ε|N |(b1 − a)

)
e
∫ b1
a

W (s)
P (s)

ds −
∫ b1

x

M

P (t)
e
∫ t
a
W (s)
P (s)

ds
dt
]
.

By a tedious calculation, it is easy to verify that

P (x)h′(x) +W (x)h(x) +M = 0, x ∈ I,

which implies that h(x) is also a solution of (2.1), since M is a constant. This completes the proof of the
theorem.

Remark 3.2. Theorem 3.1 shows that the error estimation is independent of the choice of the point b1. That
is to say, the upper bound of the error is always valid for the solution h(x) of (2.1) obtained by using any
initial value b1.

As a direct consequence of Theorem 3.1, we can obtain the Hyers-Ulam stability result of a special class
of Cauchy-Euler equations.

Corollary 3.3. Let 0 6∈ I = (a, b) and let A,B,C ∈ R with A 6= 0, B = 2A+ C and B − 2A = C 6= 0. For
a given ε > 0, if f ∈ C2[I,R] satisfies the differential inequality

|Ax2f ′′(x) +Bxf ′(x) + Cf(x)| ≤ ε

for all x ∈ I, then there exists a solution h ∈ C2[I,R] of the Cauchy-Euler equation

Ax2y′′(x) +Bxy′(x) + Cy(x) = 0,

such that
|f(x)− h(x)| ≤ 3ε(b− a)Ne|

B−2A
A
|| ln |a|−ln |b||

for all x ∈ I, where N = d 1β e (the smallest integer not less than 1
β ), β = min{|(B − 2A)a|, |(B − 2A)b|}.
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