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Abstract

We consider a two-dimensional autonomous system of rational difference equations with three positive
parameters. It was conjectured by Ladas that every positive solution of this system converges to a finite
limit. Here we confirm this conjecture. (©2014 All rights reserved.
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1. Introduction and Preliminaries

Rational systems of first order difference equations in the plane have been studied for a long time.
Recently, in [3], [, 5] (see the references therein), efforts have been made for a more systematic approach. In
particular, the rational system

. 1:a1+yn Yt — ag + oy + YV2Un (11)
n—+ xn I n+ A2 +Ban +02yn .

with nonnegative coefficients and initial conditions was studied in [5]. Along with the results published in

[5], there were also posed several conjectures about some nontrivial cases. Our goal here is to confirm one

of them, namely for the case when a; = as = 52 = 0.
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Conjecture 1.0. (see [5, Conjecture 2.4, page 1223]) Let a,b,c > 0. Then every positive solution of the
system

Yn ClYn
z = —, =——""—— n €Ny, 1.2
n+1 o Yn+1 @+ 20 + yn 0 (1.2)
converges to a finite limit.
By utilizing the relation
Yn = TnZnt1, N € N, (1.3)

it is easy to see that the z-component of any solution {(xy,yn)}nen, of (1.2) must satisfy the difference

equation
Ty,

a+ 2bxy, + TrTni1

LTn+2 = - f($n+17$n)7 n e N07 (14)

where the function f is decreasing in the first variable and increasing in the second variable. We will need
the following theorem, proved in [I] (see also [2, page 11]).

Theorem 1.1. (see [1]) Let I C R and suppose F : I xI — I is decreasing in the first variable and increasing
in the second variable. Then, for every solution {x,}nen, of the difference equation

Tnt2 = F(xn-i—laxn)a ne NO;
each of the subsequences {xan nen, and {Tan+t1}nen, s eventually monotone.

In the next section, we will prove that every positive solution {xy}nen, of (1.4]) converges to a finite
limit z*. Then, every positive solution of (I.2)) must converge to (z*, (z*)?), since {z, }nen, must satisfy

and (T3)

2. Main Results

In light of Theorem we start with the following auxiliary result about eventually monotone positive

solutions of (1.4]).

Lemma 2.1. Let {zy}nen, be an arbitrary positive solution of (1.4)).
(1) If {zan}nen, is eventually increasing, then eventually

a—c<a-—c+2bxro, <a—c+ 2bro, + TonTopr1 < 0. (2.1)
(ii) If {zon}nen, is eventually decreasing, then eventually
a — ¢+ 2bxay, + TopTonr1 > 0. (2.2)
(iii) If {x2n+1tnen, is eventually increasing, then eventually
a—c<a—c+2brot1 < a—c+ 2broyi1 + Topr1Tonte < 0. (2.3)
(iv) If {z2n+1}nen, is eventually decreasing, then eventually
a — ¢+ 2bxon11 + Tont1Tont2 > 0. (2.4)

Proof. First suppose {xan fnen, is eventually increasing. Hence, we have eventually

CTon

Ton < XTopt2 =
" nt a+ 2()])2” + T2nT2n+1

and thus eventually
(@ — ¢+ 2bx2, + T2nT2041)T20 < 0
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so that (2.1)) follows. Next suppose {Z2y }nen, is eventually decreasing. Hence, we have eventually

Ton =2 Topt2
CT2n

a + 2bxay, + TonTont1

and thus eventually
(a —Cc+ 2bx2n + x2nx2n+1)x2n Z 0

so that (2.2) follows. Now suppose {Z2n+1}nen, is eventually increasing. Hence, we have eventually

Ton+1 < Top43
CTon+1

a + 2bropi1 + Tont1T2n42

and thus eventually
(@ — ¢+ 2bxopt1 + Tont1Ton42)Tant1 < 0

so that (2.3) follows. Finally suppose {Z2n+1}nen, is eventually decreasing. Hence, we have eventually

Toptl =2 T2n43
CTon+1

a + 2bx2n4+1 + Tont+1Ton+42

and thus eventually
(@ — ¢+ 2bx2n41 + Tont1T2n+2)T2n+1 > 0

so that (2.4) follows. O
Corollary 2.2. Let {zy}nen, be an arbitrary positive solution of (1.4]).

(1) If {xon}tnen, is eventually monotone, then it converges to a finite nonnegative limit.

(ii) If {zon+t1}tnen, is eventually monotone, then it converges to a finite nonnegative limit.
Proof. First suppose {xan fnen, is eventually increasing. By (2.1)), we have eventually

c—a
2b

Top <

so that {2, }nen, is bounded above and hence converges to a finite (nonnegative) limit.
If {z2n }nen, is eventually decreasing, then, being bounded below by zero, it also converges to a nonneg-
ative limit. Next suppose {Z2n+1}nen, is eventually increasing. By (2.3)), we have eventually

c—a

2b

Topt1 <

so that {z2n41}tnen, is bounded above and hence converges to a finite (nonnegative) limit. If {z2p41 }nen,
is eventually decreasing, then, being bounded below by zero, it also converges to a nonnegative limit. O

We now state and prove our main result, which confirms Conjecture

Theorem 2.3. Let a,b,c > 0. Let {x,}nen, be an arbitrary positive solution of (L.4). Then {zp}nen,
converges to a finite nonnegative limit; more precisely:

0 if c<a,
Vb2 +c—a—-b>0 if ¢>a.

lim z, =2 =
n—o0
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Proof. By Theorem both {z2,}nen, and {x2p+1}nen, are eventually monotone. By Corollary
{zan }nen, and {x2n+41}nen, both converge to finite nonnegative limits. Put

Te:= lim x9, and z,:= lim x9,y1 so that =z, z, € [0,00).
n—oo n—0o0
By (1.4), we have
(a4 2bxoy + TonTont1)Tony2 = CTop (2.5)
and
(@ + 2bT2n41 + T2p41T2042)T2n43 = CT2n11 (2.6)

for all n € Ng. By letting n — oo in and , we obtain
(a — c+2bxe + Teo)re =0 and (a — ¢+ 2bxo + ToTe)To = 0. (2.7)
From the first equation in , we must have o = 0 or
a— ¢+ 2bxe + xoxo = 0. (2.8)

First, if ze = 0, then, since in this case {zap, }nen, is eventually decreasing, a —c > 0 by taking limits in (2.2)).
But then, by the second equation in (2.7)), (a — ¢ + 2bz,)z, = 0 implies z, = 0 since a > ¢. In summary, if
Te = 0, then x, = 0, and then a > ¢ and z* = 0. Second, we assume x, > 0 so that holds. From the
second equation in , we must have x, = 0 or

a—c+2bx, + xoxe = 0. (2.9)

If 2, = 0, then, since in this case {x2,+1}nen, is eventually decreasing, a — ¢ > 0 by taking limits in ([2.4]).
But then, by (2.8]), a — ¢ + 2bxe = 0 implies z, = 0 since a > ¢, a contradiction. Hence, x, > 0 and thus
(2.9) holds. Now subtracting (2.9)) from (2.8)) yields 2b(ze — z,) = 0, i.e., 2* := x, = 2, > 0. By (12.9),

(%) +2bz* +a—c=0

and therefore 2* = v/b2 + ¢ — a — b. The proof is complete. O
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