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Abstract

We consider a two-dimensional autonomous system of rational difference equations with three positive
parameters. It was conjectured by Ladas that every positive solution of this system converges to a finite
limit. Here we confirm this conjecture. c©2014 All rights reserved.
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1. Introduction and Preliminaries

Rational systems of first order difference equations in the plane have been studied for a long time.
Recently, in [3, 4, 5] (see the references therein), efforts have been made for a more systematic approach. In
particular, the rational system

xn+1 =
α1 + yn
xn

, yn+1 =
α2 + β2xn + γ2yn
A2 +B2xn + C2yn

(1.1)

with nonnegative coefficients and initial conditions was studied in [5]. Along with the results published in
[5], there were also posed several conjectures about some nontrivial cases. Our goal here is to confirm one
of them, namely for the case when α1 = α2 = β2 = 0.
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Conjecture 1.0. (see [5, Conjecture 2.4, page 1223]) Let a, b, c > 0. Then every positive solution of the
system

xn+1 =
yn
xn
, yn+1 =

cyn
a+ 2bxn + yn

, n ∈ N0, (1.2)

converges to a finite limit.

By utilizing the relation
yn = xnxn+1, n ∈ N0, (1.3)

it is easy to see that the x-component of any solution {(xn, yn)}n∈N0 of (1.2) must satisfy the difference
equation

xn+2 =
cxn

a+ 2bxn + xnxn+1
= f(xn+1, xn), n ∈ N0, (1.4)

where the function f is decreasing in the first variable and increasing in the second variable. We will need
the following theorem, proved in [1] (see also [2, page 11]).

Theorem 1.1. (see [1]) Let I ⊂ R and suppose F : I×I → I is decreasing in the first variable and increasing
in the second variable. Then, for every solution {xn}n∈N0 of the difference equation

xn+2 = F (xn+1, xn), n ∈ N0,

each of the subsequences {x2n}n∈N0 and {x2n+1}n∈N0 is eventually monotone.

In the next section, we will prove that every positive solution {xn}n∈N0 of (1.4) converges to a finite
limit x∗. Then, every positive solution of (1.2) must converge to (x∗, (x∗)2), since {xn}n∈N0 must satisfy
(1.4) and (1.3).

2. Main Results

In light of Theorem 1.1, we start with the following auxiliary result about eventually monotone positive
solutions of (1.4).

Lemma 2.1. Let {xn}n∈N0 be an arbitrary positive solution of (1.4).

(i) If {x2n}n∈N0 is eventually increasing, then eventually

a− c ≤ a− c+ 2bx2n ≤ a− c+ 2bx2n + x2nx2n+1 ≤ 0. (2.1)

(ii) If {x2n}n∈N0 is eventually decreasing, then eventually

a− c+ 2bx2n + x2nx2n+1 ≥ 0. (2.2)

(iii) If {x2n+1}n∈N0 is eventually increasing, then eventually

a− c ≤ a− c+ 2bx2n+1 ≤ a− c+ 2bx2n+1 + x2n+1x2n+2 ≤ 0. (2.3)

(iv) If {x2n+1}n∈N0 is eventually decreasing, then eventually

a− c+ 2bx2n+1 + x2n+1x2n+2 ≥ 0. (2.4)

Proof. First suppose {x2n}n∈N0 is eventually increasing. Hence, we have eventually

x2n ≤ x2n+2 =
cx2n

a+ 2bx2n + x2nx2n+1

and thus eventually
(a− c+ 2bx2n + x2nx2n+1)x2n ≤ 0
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so that (2.1) follows. Next suppose {x2n}n∈N0 is eventually decreasing. Hence, we have eventually

x2n ≥ x2n+2

=
cx2n

a+ 2bx2n + x2nx2n+1

and thus eventually
(a− c+ 2bx2n + x2nx2n+1)x2n ≥ 0

so that (2.2) follows. Now suppose {x2n+1}n∈N0 is eventually increasing. Hence, we have eventually

x2n+1 ≤ x2n+3

=
cx2n+1

a+ 2bx2n+1 + x2n+1x2n+2

and thus eventually
(a− c+ 2bx2n+1 + x2n+1x2n+2)x2n+1 ≤ 0

so that (2.3) follows. Finally suppose {x2n+1}n∈N0 is eventually decreasing. Hence, we have eventually

x2n+1 ≥ x2n+3

=
cx2n+1

a+ 2bx2n+1 + x2n+1x2n+2

and thus eventually
(a− c+ 2bx2n+1 + x2n+1x2n+2)x2n+1 ≥ 0

so that (2.4) follows.

Corollary 2.2. Let {xn}n∈N0 be an arbitrary positive solution of (1.4).

(i) If {x2n}n∈N0 is eventually monotone, then it converges to a finite nonnegative limit.

(ii) If {x2n+1}n∈N0 is eventually monotone, then it converges to a finite nonnegative limit.

Proof. First suppose {x2n}n∈N0 is eventually increasing. By (2.1), we have eventually

x2n ≤
c− a

2b

so that {x2n}n∈N0 is bounded above and hence converges to a finite (nonnegative) limit.
If {x2n}n∈N0 is eventually decreasing, then, being bounded below by zero, it also converges to a nonneg-

ative limit. Next suppose {x2n+1}n∈N0 is eventually increasing. By (2.3), we have eventually

x2n+1 ≤
c− a

2b

so that {x2n+1}n∈N0 is bounded above and hence converges to a finite (nonnegative) limit. If {x2n+1}n∈N0

is eventually decreasing, then, being bounded below by zero, it also converges to a nonnegative limit.

We now state and prove our main result, which confirms Conjecture 1.0.

Theorem 2.3. Let a, b, c > 0. Let {xn}n∈N0 be an arbitrary positive solution of (1.4). Then {xn}n∈N0

converges to a finite nonnegative limit; more precisely:

lim
n→∞

xn = x∗ :=

{
0 if c ≤ a,√
b2 + c− a− b > 0 if c > a.
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Proof. By Theorem 1.1, both {x2n}n∈N0 and {x2n+1}n∈N0 are eventually monotone. By Corollary 2.2,
{x2n}n∈N0 and {x2n+1}n∈N0 both converge to finite nonnegative limits. Put

xe := lim
n→∞

x2n and xo := lim
n→∞

x2n+1 so that xe, xo ∈ [0,∞).

By (1.4), we have
(a+ 2bx2n + x2nx2n+1)x2n+2 = cx2n (2.5)

and
(a+ 2bx2n+1 + x2n+1x2n+2)x2n+3 = cx2n+1 (2.6)

for all n ∈ N0. By letting n→∞ in (2.5) and (2.6), we obtain

(a− c+ 2bxe + xexo)xe = 0 and (a− c+ 2bxo + xoxe)xo = 0. (2.7)

From the first equation in (2.7), we must have xe = 0 or

a− c+ 2bxe + xexo = 0. (2.8)

First, if xe = 0, then, since in this case {x2n}n∈N0 is eventually decreasing, a−c ≥ 0 by taking limits in (2.2).
But then, by the second equation in (2.7), (a− c+ 2bxo)xo = 0 implies xo = 0 since a ≥ c. In summary, if
xe = 0, then xo = 0, and then a ≥ c and x∗ = 0. Second, we assume xe > 0 so that (2.8) holds. From the
second equation in (2.7), we must have xo = 0 or

a− c+ 2bxo + xoxe = 0. (2.9)

If xo = 0, then, since in this case {x2n+1}n∈N0 is eventually decreasing, a− c ≥ 0 by taking limits in (2.4).
But then, by (2.8), a − c + 2bxe = 0 implies xe = 0 since a ≥ c, a contradiction. Hence, xo > 0 and thus
(2.9) holds. Now subtracting (2.9) from (2.8) yields 2b(xe − xo) = 0, i.e., x∗ := xe = xo > 0. By (2.9),

(x∗)2 + 2bx∗ + a− c = 0

and therefore x∗ =
√
b2 + c− a− b. The proof is complete.

References

[1] E. Camouzis, G. Ladas, When does local asymptotic stability imply global attractivity in rational equations?, J.
Difference Equ. Appl., 12 (2006), no. 8, 863–885. 1, 1.1

[2] E. Camouzis, G. Ladas, Dynamics of third-order rational difference equations with open problems and conjectures,
Advances in Discrete Mathematics and Applications, 5. Chapman & Hall CRC, Boca Raton, FL, (2008). 1
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