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Abstract

In this paper, we are devoted to exploring conditions of well-posedness for generalized hemivariational
inequalities with Clarke’s generalized directional derivative in reflexive Banach spaces. By using some
equivalent formulations of the generalized hemivariational inequality with Clarke’s generalized directional
derivative under different monotonicity assumptions, we establish two kinds of conditions under which the
strong α-well-posedness and the weak α-well-posedness for the generalized hemivariational inequality with
Clarke’s generalized directional derivative are equivalent to the existence and uniqueness of its solution,
respectively. c©2016 All rights reserved.
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1. Introduction

Let X be a real reflexive Banach space with its dual X∗. We denote the duality pairing between X and
X∗ by 〈·, ·〉, and the norm of Banach space X by ‖ · ‖. In this paper, we always suppose that F : X → 2X
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is a nonempty set-valued mapping from X to X∗, J◦(·, ·) stands for the Clarke’s directional derivative of
the locally Lipschitz functional J : X → R, and f ∈ X∗ is some given element in X∗. We consider the
following generalized hemivariational inequality with Clarke’s generalized directional derivative, associated
with (F, f, J):

GHVI(F, f, J) : Find x ∈ X such that for some u ∈ F (x),

〈u− f, y − x〉+ J◦(x, y − x) ≥ 0, ∀y ∈ X.
(1.1)

In particular, if F = A a single-valued mapping from X to X∗, then GHVI(F, f, J) reduces to
HVI(A, f, J) considered in Xiao, Yang and Huang [31].

As an important subject in the theorem of optimization problems and their related problems such that
variational inequalities, fixed point problems, equilibrium problems, etc., well-posedness has been drawing
more and more researchers’ attention. The classical concept of well-posedness for a global minimization
problem, which was first introduced by Tykhonov [28] and thus has been known as the Tykhonov well-
posedness, requires the existence and uniqueness of its solution and the convergence of every minimizing
sequence toward the unique solution. Obviously, the concept of well-posedness is inspired by numerical
methods producing optimizing sequences for optimization problems, which have been playing an increasingly
important role in the theorem of optimization problems. Thus, following the concept of Tykhonov well-
posedness, various kinds of well-posedness for optimization problems, such as extended well-posedness,
Levitin-Polyak well-posedness, are introduced and studied by many mathematicians in the optimization
research field. For more literature on well-posedness for optimization problems, we refer the readers to
[14, 18, 33, 34] and the references therein.

On the other hand, since a variational inequality is very closely related to an optimization problem
under some mild conditions, the concept of well-posedness has been captured by many researchers to study
variational inequalities. In terms of the recent literature on the research of well-posedness for variational
inequalities, most researchers mainly focused on the introduction of various kinds of well-posedness for
different variational inequalities, the establishment of metric characterizations for well-posed variational
inequalities, the necessary and sufficient conditions of well-posedness for variational inequalities, and the links
of well-posedness between variational inequalities and their related problems such as minimization problems,
fixed pointed problems and inclusion problems. For example, Lucchetti and Patrone [21] first introduced the
concept of well-posedness for a variational inequality and proved some related results by means of Ekeland’s
variational principle. Fang et al. [8, 9] generalized two kinds of well-posedness for a mixed variational
inequality problem in Banach space, respectively. They established some metric characterizations of the
two kinds of well-posedness for the mixed variational inequality, showed the equivalence of the two kinds of
well-posedness among the mixed variational inequality problem, its corresponding inclusion problem and its
corresponding fixed point problem, and gave some conditions under which the two kinds of well-posedness
for the mixed variational inequality are equivalent to the existence and uniqueness of its solution. We refer
the readers there to [13, 15, 17, 27] for a wealth of additional information on well-posedness for variational
inequalities.

As an important generalization of variational inequality, hemivariational inequality, which was intro-
duced by Panagiotopoulos [26] in 1983 to formulate variational principles involving nonconvex and nons-
mooth energy functions, has been studied widely by many researchers using the mathematical concepts of
the Clarke’s generalized directional derivative and the Clarke’s generalized gradient since it has been proved
very efficient to describe a variety of problems in mechanics and engineering, e.g., non-monotone semiper-
meability problems, unilateral contact problems in nonlinear elasticity; see e.g., [1, 2, 12, 19, 22, 23, 25].
It seems to be natural and easy to generalize the concept of well-posedness to hemivariational inequalities
and most results on well-posedness for variational inequalities should hold for hemivariational inequalities
under some similar conditions. However, it is not the truth. The Clarke’s generalized directional derivative
of a nonconvex and nonsmooth Lipschitz functional in hemivariational inequalities makes it much diffi-
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cult. Thus, the literature on well-posedness for hemivariational inequalities is limit. In 1995, Goeleven
and Mentagui [11] first introduced the well-posedness for a hemivariational inequality and presented some
basic results concerning the well-posed hemivariational inequality. Later, using the concept of approximat-
ing sequence, Xiao et al. [29, 30] defined a concept of well-posedness for a hemivariational inequality and a
variational-hemivariational inequality. They gave some metric characterizations for the well-posed hemivari-
ational inequality and the well-posed variational-hemivariational inequality, and proved the equivalence of
well-posedness between the hemivariational inequality and the corresponding inclusion problem. However,
for the conditions of well-posedness for the hemivariational inequality and the variational-hemivariational
inequality, Xiao et al. [29, 30] only gave a sufficient condition in Euclidean space Rn. For more recent
research on well-posedness for hemivariational inequalities, we refer to [5] and the references therein. Very
recently, Xiao, Yang and Huang [31] studied the conditions of well-posedness for the hemivariational inequal-
ity considered in [30]. By using some equivalent formulations of the hemivariational inequality considered
under different monotonicity assumptions, they established two kinds of conditions under which the strong
well-posedness and the weak well-posedness for the hemivariational inequality considered are equivalent to
the existence and uniqueness of its solution, respectively.

The present paper aims to explore some conditions of well-posedness for the generalized hemivariational
inequality with Clarke’s generalized directional derivative in reflexive Banach spaces. The paper is struc-
tured as follows. In Section 2, we recall briefly some preliminary material and introduce the definitions of
strong (resp. weak) α-well-posedness for the generalized hemivariational inequality with Clarke’s generalized
directional derivative. Section 3 recalls a definition of strongly relaxed monotonicity for a class of multival-
ued operators and presents some equivalent formulations of the generalized hemivariational inequality with
Clarke’s generalized directional derivative under the assumptions of strongly relaxed monotonicity and re-
laxed monotonicity for the nonconvex and nonsmooth operator involved, respectively. In Section 4, we give
some conditions under which the strong α-well-posedness and the weak α-well-posedness for the generalized
hemivariational inequality with Clarke’s generalized directional derivative are equivalent to the existence
and uniqueness of its solution, respectively. At last, some concluding remarks are provided in Section 5.

2. Preliminaries

In this section, we first recall briefly some useful notions and results in nonsmooth analysis and nonlinear
analysis (see e.g., [7, 22, 32]). Then, we present some definitions of well-posedness for the generalized
hemivariational inequality GHVI(F, f, J) with Clarke’s generalized directional derivative. Throughout this
paper, we assume that X is a real reflexive Banach space and the norms of X and its dual X∗ are denoted
by the same symbol ‖ · ‖.

Assume that J : X → R is a locally Lipschitz functional on Banach space X, x is a given point and y
is a vector in Banach space X. The Clarke’s generalized directional derivative of J at x in the direction y,
denoted by J◦(x, y), is defined by

J◦(x, y) = lim sup
z→x λ↓0

J(z + λy)− J(z)

λ
,

by means of which the Clarke’s generalized gradient of J at x, denoted by ∂J(x), is the subset of the dual
space X∗ defined by

∂J(x) = {u ∈ X∗ : J◦(x, y) ≥ 〈u, y〉, ∀y ∈ X}.

The next proposition provides some basic properties for the Clarke’s generalized directional derivative
and the Clarke’s generalized gradient; see e.g., [7, 22].

Proposition 2.1. Let X be a Banach space, x, y ∈ X and J : X → R a locally Lipschitz functional defined
on X. Then

(i) The function y 7→ J◦(x, y) is finite, positively homogeneous, subadditive and then convex on X;
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(ii) J◦(x, y) is upper semicontinuous on X × X as a function of (x, y), i.e., for all x, y ∈ X, {xn} ⊂
X, {yn} ⊂ X such that xn → x and yn → y in X, we have that

lim sup
n→∞

J◦(xn, yn) ≤ J◦(x, y);

(iii) J◦(x,−y) = (−J)◦(x, y);

(iv) for all x ∈ X, ∂J(x) is a nonempty, convex, bounded and weak∗-compact subset of X∗;

(v) for every y ∈ X, one has
J◦(x, y) = max{〈ξ, y〉 : ξ ∈ ∂J(x)};

(vi) the graph of the Clarke’s generalized gradient ∂J(x) is closed in X×(w∗-X∗) topology, where (w∗ -X∗)
denotes the space X∗ equipped with weak∗ topology, i.e., if {xn} ⊂ X and {x∗n} ⊂ X∗ are sequences
such that x∗n ∈ ∂J(xn), xn → x in X and x∗n → x∗ weakly∗ in X∗, then x∗ ∈ ∂J(x).

Definition 2.2. Let X be a Banach space with its dual X∗ and T a single-valued operator from X to its
dual space X∗. T is said to be

(i) monotone, if
〈Tx− Ty, x− y〉 ≥ 0, ∀x, y ∈ X;

(ii) strongly monotone with constant m > 0, if

〈Tx− Ty, x− y〉 ≥ m‖x− y‖2, ∀x, y ∈ X.

Definition 2.3. Let X be a Banach space with its dual X∗ and F : X → 2X
∗

a nonempty multi-valued
operator from X to X∗. F is said to be

(i) monotone, if
〈u− v, x− y〉 ≥ 0, ∀x, y ∈ X,u ∈ F (x), v ∈ F (y);

(ii) strongly monotone with constant k > 0, if

〈u− v, x− y〉 ≥ k‖x− y‖2, ∀x, y ∈ X,u ∈ F (x), v ∈ F (y);

(iii) relaxed monotone with constant c > 0, if

〈u− v, x− y〉 ≥ −c‖x− y‖2, ∀x, y ∈ X,u ∈ F (x), v ∈ F (y).

Let A1, A2 be nonempty subsets of a normed vector space (X, ‖·‖). The Hausdorff metric H(·, ·) between
A1 and A2 is defined by

H(A1, A2) = max{e(A1, A2), e(A2, A1)},

where e(A1, A2) = supa∈A1
d(a,A2) with d(a,A2) = infb∈A2 ‖a−b‖. Note that [24] if A1 and A2 are compact

subsets in X, then for each a ∈ A1 there exists b ∈ A2 such that

‖a− b‖ ≤ H(A1, A2).

Definition 2.4 ([6, 16]). Let H(·, ·) be the Hausdorff metric on the collection CB(X∗) of all nonempty,
closed and bounded subsets of X∗, which is defined by

H(A,B) = max{e(A,B), e(B,A)},

for A and B in CB(X∗). A nonempty set-valued mapping F : X → CB(X∗) is said to be

(i) H-hemicontinuous, if for any x, y ∈ X, the function t 7→ H(F (x + t(y − x)), F (x)) from [0, 1] into
R+ = [0,+∞) is continuous at 0+;
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(ii) H-uniformly continuous, if for any ε > 0, there exists δ > 0 such that for all x, y ∈ X with ‖x−y‖ < δ,
one has H(F (x), F (y)) < ε.

Lemma 2.5 ([10]). Let C ⊂ X be nonempty, closed and convex, C∗ ⊂ X∗ be nonempty, closed, convex and
bounded, φ : X → R be proper, convex and lower semicontinuous and y ∈ C be arbitrary. Assume that, for
each x ∈ C, there exists x∗(x) ∈ C∗ such that

〈x∗(x), x− y〉 ≥ φ(y)− φ(x).

Then, there exists y∗ ∈ C∗ such that

〈y∗, x− y〉 ≥ φ(y)− φ(x), ∀x ∈ C.

Based on some concepts of well-posedness in [3, 4, 6, 16, 30, 31], we now introduce some definitions of
well-posedness for the generalized hemivariational inequality GHVI(F, f, J). Let α : X → R+ = [0,+∞) be
a convex and continuous functional with α(tx) = tα(x) ∀t ≥ 0 and ∀x ∈ X.

Definition 2.6. A sequence {xn} ⊂ X is said to be an α-approximating sequence for the generalized
hemivariational inequality GHVI(F, f, J) if there exist un ∈ F (xn), n ∈ N and a nonnegative sequence {εn}
with εn → 0 as n→∞ such that

〈un − f, y − xn〉+ J◦(xn, y − xn) ≥ −εnα(y − xn), ∀y ∈ X, n ∈ N.

In particular, if α(·) = ‖ · ‖ the norm of X, then {xn} is said to be an approximating sequence for the
generalized hemivariational inequality GHVI(F, f, J).

Definition 2.7. The generalized hemivariational inequality GHVI(F, f, J) is said to be strongly (resp.
weakly) α-well-posed if it has a unique solution in X and every α-approximating sequence converges strongly
(resp. weakly) to the unique solution. In particular, if α(·) = ‖ · ‖ the norm of X, then the generalized
hemivariational inequality GHVI(F, f, J) is said to be strongly (resp. weakly) well-posed.

Remark 2.8. It is obvious that, for the generalized hemivariational inequality GHVI(F, f, J), the strong
α-well-posedness implies the weak α-well-posedness, but the converse is not true in general.

Definition 2.9. The generalized hemivariational inequality GHVI(F, f, J) is said to be strongly (resp.
weakly) α-well-posed in the generalized sense if it has a nonempty solution set S in X and every α-
approximating sequence has a subsequence which converges strongly (resp. weakly) to some point of solution
set S.

Remark 2.10. Obviously, for the generalized hemivariational inequality GHVI(F, f, J), the strong α-well-
posedness in the generalized sense implies the weak α-well-posedness in the generalized sense, but the
converse is not true in general.

3. Strongly Relaxed Monotonicity

In this section, after recalling a definition of strongly relaxed monotonicity for a class of nonempty multi-
valued mappings, we present some equivalent formulations of the generalized hemivariational inequality
GHVI(F, f, J) considered under the assumptions of strongly relaxed monotonicity and relaxed monotonicity
for the nonconvex and nonsmooth mapping involved, respectively.

We begin with the definition of strongly relaxed monotonicity for a class of multi-valued mappings before
we present the equivalent formulations of the generalized hemivariational inequality GHVI(F, f, J).

Definition 3.1 ([31]). Let X be a Banach space with its dual X∗ and F : X → 2X
∗

a nonempty multi-
valued mapping from X into X∗. F is said to satisfy the strongly relaxed monotonicity condition with
constant c > 0 if, for all x, y ∈ X and u ∈ F (x) (or v ∈ F (y)), there exists a v ∈ F (y) (or u ∈ F (x)) such
that

〈u− v, x− y〉 ≥ −c‖x− y‖2.
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Remark 3.2. It is obvious that the relaxed monotonicity condition with constant c > 0 implies the strongly
relaxed monotonicity condition with constant c > 0. But the converse is not true in general.

Without any assumption, the following equivalence result between the generalized hemivariational in-
equality GHVI(F, f, J) and an inclusion problem will be used widely in the proof of our main results on
generalized hemivariational inequalities. For completeness of our paper, a simple version of its proof is
provided.

Lemma 3.3. The following two statements are equivalent:

(i) x ∈ X is a solution to the generalized hemivariational inequality GHVI(F, f, J);

(ii) x is a solution to the following inclusion problem:

IP(F, f, J) : Find x ∈ X such that f ∈ F (x) + ∂J(x). (3.1)

Proof. The lemma is easily proven by the definition of the Clarke’s generalized gradient.
We first claim that (i) ⇒ (ii). Indeed, let x ∈ X be a solution to the generalized hemivariational

inequality GHVI(F, f, J), which means that for some u ∈ F (x),

〈u− f, y − x〉+ J◦(x, y − x) ≥ 0, ∀y ∈ X. (3.2)

For any w ∈ X, letting y = w + x ∈ X in the above inequality (3.2) yields

J◦(x,w) ≥ 〈f − u,w〉, ∀w ∈ X.

Thus, by the definition of the Clarke’s generalized gradient, f − u ∈ ∂J(x), which implies that

f ∈ u+ ∂J(x) ⊂ F (x) + ∂J(x);

that is, x is a solution to the inclusion problem IP(F, f, J).
We show that (ii) ⇒ (i). Indeed, let x ∈ X be a solution to the inclusion problem IP(F, f, J). Then,

there exist u ∈ F (x) and ξ ∈ ∂J(x) such that

f = u+ ξ. (3.3)

For any y ∈ X, multiplying the above Eq. (3.3) by y − x, we deduce from the definition of the Clarke’s
generalized gradient that

〈f, y − x〉 = 〈u, y − x〉+ 〈ξ, y − x〉
≤ 〈u, y − x〉+ J◦(x, y − x),

which implies that x is a solution to the generalized hemivariational inequality GHVI(F, f, J). This completes
the proof.

Now, we are in a position to present some equivalent formulations of the generalized hemivariational
inequality GHVI(F, f, J) under the assumptions of strongly relaxed monotonicity and relaxed monotonicity
for the nonconvex and nonsmooth mapping involved, respectively.

Lemma 3.4. Assume that a nonempty compact-valued mapping F : X → 2X
∗

is H-hemicontinuous and
strongly monotone with constant m on X and J : X → R is a locally Lipschitz functional on X such that
the Clarke’s generalized gradient ∂J(·) satisfies the strongly relaxed monotonicity condition with constant
c > 0. If m ≥ c, then the following three statements are equivalent:

(i) x is a solution to the generalized hemivariational inequality GHVI(F, f, J), that is, for some u ∈ F (x),

〈u− f, y − x〉+ J◦(x, y − x) ≥ 0, ∀y ∈ X;
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(ii) x is a solution to the following associated generalized hemivariational inequality AGHVI(F, f, J): Find
x ∈ X such that

〈v − f, y − x〉+ J◦(y, y − x) ≥ 0, ∀y ∈ X, v ∈ F (y);

(iii) x is a solution to the following generalized multi-valued variational inequality GMVI(F, f, J): Find
x ∈ X such that, for all y ∈ X, there exists an η ∈ ∂J(y) satisfying

〈v + η − f, y − x〉 ≥ 0, ∀y ∈ X, v ∈ F (y).

Proof. We first claim that (i)⇔ (ii). To this end, let x ∈ X be a solution to the generalized hemivariational
inequality GHVI(F, f, J), which means that for some u ∈ F (x),

〈u− f, y − x〉+ J◦(x, y − x) ≥ 0, ∀y ∈ X.

By Lemma 3.3, x be a solution to the inclusion problem IP(F, f, J). Moreover, in terms of the argument
of (i) ⇒ (ii) in the proof of Lemma 3.3, we know that there exists a ξ ∈ ∂J(x) such that

f = u+ ξ. (3.4)

For any y ∈ X, by the strongly relaxed monotonicity of ∂J(·) on X, there exists an η ∈ ∂J(y) such that

〈η − ξ, y − x〉 ≥ −c‖y − x‖2. (3.5)

Thus, it follows from the strong monotonicity of the mapping F , (3.4), (3.5) and the condition m ≥ c
that

〈v + η − f, y − x〉 = 〈v + η − (u+ ξ), y − x〉
= 〈v − u, y − x〉+ 〈η − ξ, y − x〉
≥ (m− c)‖y − x‖2

≥ 0,

which together with the definition of the Clarke’s generalized gradient and η ∈ ∂J(y), implies that

〈f − v, y − x〉 ≤ 〈η, y − x〉 ≤ J◦(y, y − x), ∀y ∈ X,

i.e., x is a solution to the associated generalized hemivariational inequality AGHVI(F, f, J).
Conversely, let x be a solution to the associated generalized hemivariational inequality AGHVI(F, f, J),

which means that
〈v − f, y − x〉+ J◦(y, y − x) ≥ 0, ∀y ∈ X, v ∈ F (y). (3.6)

Given any y ∈ X we define yt = x+ t(y − x) for all t ∈ (0, 1). Replacing y by yt in the left-hand side of
the above inequality (3.6), we deduce from the positively homogeneous property of the function y 7→ J◦(x, y)
that for each vt ∈ F (yt),

0 ≤ 〈vt − f, t(y − x)〉+ J◦(x+ t(y − x), t(y − x))

= t[〈vt − f, y − x〉+ J◦(x+ t(y − x), y − x)],

which hence implies that for each t ∈ (0, 1) and each vt ∈ F (yt),

〈vt − f, y − x〉+ J◦(x+ t(y − x), y − x) ≥ 0. (3.7)

Since F : X → 2X
∗

is a nonempty compact-valued mapping, F (yt) and F (x) are nonempty compact
sets. Hence, by Nadler’s result [24] we know that for each t ∈ (0, 1) and each fixed vt ∈ F (yt) there exists
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an ut ∈ F (x) such that ‖vt − ut‖ ≤ H(F (yt), F (x)). Since F (x) is compact, without loss of generality we
may assume that ut → u ∈ F (x) as t→ 0+. Since F is H-hemicontinuous, we obtain that

‖vt − ut‖ ≤ H(F (yt), F (x))→ 0 as t→ 0+,

which immediately leads to

‖vt − u‖ ≤ ‖vt − ut‖+ ‖ut − u‖ → 0 as t→ 0+. (3.8)

Furthermore, by Proposition 2.1 (i)-(ii), J◦(x, y) is positively homogeneous with respect to y and upper
semicontinuous with respect to (x, y). Thus, taking limsup at t → 0+ at both sides of inequality (3.7), we
conclude from (3.8) that

〈u− f, y − x〉+ J◦(x, y − x) ≥ lim sup
t→0+

{〈vt − f, y − x〉+ J◦(x+ t(y − x), y − x)}

≥ 0.

From the arbitrariness of y ∈ X, it follows that x is a solution to the generalized hemivariational
inequality GHVI(F, f, J).

Next we show that (i) ⇔ (iii). Indeed, let x be a solution to the generalized hemivariational inequality
GHVI(F, f, J). By the same argument as that of (i) ⇒ (ii), from the strong monotonicity of the mapping
F , the strongly relaxed monotonicity of the Clarke’s generalized gradient ∂J(·), and the condition m ≥ c,
we know that, for any y ∈ X there exists an η ∈ ∂J(y) such that

〈v + η − f, y − x〉 ≥ 0, (3.9)

which actually implies that x is a solution to the generalized multi-valued variational inequality
GMVI(F, f, J). Therefore, (i)⇒(iii) holds. For (iii)⇒(i), let x be a solution to the generalized multi-
valued variational inequality GMVI(F, f, J), which means that, for any y ∈ X, there exists an η ∈ ∂J(y)
satisfying (3.9). Given any y ∈ X we define yt = x + t(y − x) for all t ∈ (0, 1). Replacing y by yt in the
left-hand side of the above inequality (3.9), we deduce that there exists ηt ∈ ∂J(yt) such that for each fixed
vt ∈ F (yt),

〈vt + ηt − f, y − x〉 ≥ 0. (3.10)

Since F : X → 2X
∗

is a nonempty compact-valued mapping, F (yt) and F (x) are nonempty compact
sets. Hence, by Nadler’s result [24] we know that for each t ∈ (0, 1) and each fixed vt ∈ F (yt) there exists
an ut ∈ F (x) such that ‖vt − ut‖ ≤ H(F (yt), F (x)). Since F (x) is compact, without loss of generality we
may assume that ut → u ∈ F (x) as t→ 0+. Since F is H-hemicontinuous, we obtain that

‖vt − ut‖ ≤ H(F (yt), F (x))→ 0 as t→ 0+,

which immediately leads to

‖vt − u‖ ≤ ‖vt − ut‖+ ‖ut − u‖ → 0 as t→ 0+.

So, it follows that as t→ 0+

〈vt, y − x〉 → 〈u, y − x〉. (3.11)

On the other hand, it is clear that yt → x as t → 0+, which implies that {yt} is bounded in X.
Consequently, we have that ∂J(yt) is bounded in X∗ since the Clarke’s generalized gradient ∂J(·) is bounded
on X (due to Proposition 2.1 (iv)). Therefore, passing to a subsequence if necessary, we can get by the
reflexivity of Banach space X that there exists some η ∈ X∗ such that ηt ⇀ η. Moreover, by Proposition
2.1 (vi), the closedness of the graph of ∂J(·) with X × (w∗ −X∗) topology implies that

ηt ⇀ η ∈ ∂J(x). (3.12)



L.-C. Ceng, Y.-C. Liou, C.-F. Wen, J. Nonlinear Sci. Appl. 9 (2016), 2798–2812 2806

Now, taking limit as t→ 0+ at both sides of inequality (3.10), we can obtain from (3.11), (3.12) and the
definition of the Clarke’s generalized gradient that

〈f − u, y − x〉 ≤ 〈η, y − x〉 ≤ J◦(x, y − x),

which together with the arbitrariness of y ∈ X, implies that x is a solution to the generalized hemivariational
inequality GHVI(F, f, J). This completes the proof.

Remark 3.5. As put forth in Remark 3.2, in general, the relaxed monotonicity is stronger than the strongly
relaxed monotonicity. Specially, when the locally Lipschitz functional J is proper and convex on X, the
Clarke’s generalized gradient ∂J(·) coincides with the subgradient, denoted by ∂̂J(·), in the sense of convex
analysis, which is maximal monotone and thus monotone on X. Therefore, the Clarke’s generalized gradient
∂J(·) satisfies the relaxed monotonicity condition with constant c = 0. However, this does not hold for
a general nonconvex locally Lipschitz functional. A concrete functional J with its Clarke’s generalized
gradient ∂J(·) satisfying the strongly relaxed monotonicity rather than the relaxed monotonicity is specified
in Example 3.1 of [31].

If the stronger condition of relaxed monotonicity is imposed on the Clarke’s generalized gradient ∂J(·)
of the Lipschitz function J , we have the following corollary of Lemma 3.4.

Corollary 3.6. Assume that all assumptions in Lemma 3.4 hold except that the Clarke’s generalized gradient
∂J(·) of the Lipschitz function J satisfies the relaxed monotonicity condition with constant c > 0 rather than
the strongly relaxed monotonicity condition with constant c > 0. Then, the following three statements are
equivalent:

(i) x is a solution to the generalized hemivariational inequality GHVI(F, f, J), that is, for some u ∈ F (x),

〈u− f, y − x〉+ J◦(x, y − x) ≥ 0, ∀y ∈ X;

(ii) x is a solution to the following associated generalized hemivariational inequality AGHVI(F, f, J): Find
x ∈ X such that

〈v − f, y − x〉+ J◦(y, y − x) ≥ 0, ∀y ∈ X, v ∈ F (y);

(iii) x is a solution to the following generalized multi-valued variational inequality GMVI(F, f, J): Find
x ∈ X such that, for all y ∈ X, there exists an η ∈ ∂J(y) satisfying

〈v + η − f, y − x〉 ≥ 0, ∀y ∈ X, v ∈ F (y).

Proof. We can readily prove the corollary by using the similar argument process to that in the proof of
Lemma 3.4 with some minor changes. Thus, we omit it here.

Remark 3.7. Lemmas 3.3–3.4 and Corollary 3.6 improve, extend and develop Lemmas 3.1–3.2 and Corollary
3.1 in [31] to a great extent because the generalized hemivariational inequality considered in Lemmas 3.3–3.4
and Corollary 3.6 is more general than the hemivariational inequality considered in Lemmas 3.1–3.2 and
Corollary 3.1 in [31].

Remark 3.8. Note that, by the strong monotonicity of the nonempty set-valued mapping F and the strongly
relaxed monotonicity of the Clarke’s generalized gradient ∂J(·), we can easily obtain that F + ∂J(·) is
monotone on X when m = c and strongly monotone with constant m− c when m > c. In particular, when
F is single-valued with c = m, which is one of the assumptions made by Liu and Zou [20], Corollary 3.6
together with Lemma 3.3 improves, extends and develops Theorem 1 of Liu and Zou [20] to a great extent.
Thus, our results obtained in Lemmas 3.3–3.4 improve, extend and develop the results given by Liu and
Zou [20] to a great extent.
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4. Equivalence Results for Well-Posedness

In this section, with the concepts of well-posedness for the generalized hemivariational inequality
GHVI(F, f, J), we give some conditions under which the strong α-well-posedness and the weak α-well-
posedness for the generalized hemivariational inequality GHVI(F, f, J) are equivalent to the existence and
uniqueness of its solution, respectively.

Theorem 4.1. Let F : X → 2X
∗

be a nonempty set-valued mapping which is strongly monotone with
constant m > 0 and let J : X → R a locally Lipschitz functional such that the Clarke’s generalized gradient
∂J(·) : X → 2X

∗
satisfies the relaxed monotonicity condition with constant c > 0. If m > c, then the

generalized hemivariational inequality GHVI(F, f, J) is strongly α-well-posed if and only if it has a unique
solution in X.

Proof. Obviously, the necessity follows immediately from Definition 2.7 of the strong α-well-posedness for
the generalized hemivariational inequality GHVI(F, f, J). It remains to prove the sufficiency. Assume that
the generalized hemivariational inequality GHVI(F, f, J) has a unique solution x∗ ∈ X. We claim that
xn → x∗ in X for any α-approximating sequence {xn} ⊂ X for the generalized hemivariational inequality
GHVI(F, f, J). Since x∗ is the unique solution to the generalized hemivariational inequality GHVI(F, f, J),
we have that for some u∗ ∈ F (x∗)

〈u∗ − f, y − x∗〉+ J◦(x∗, y − x∗) ≥ 0, ∀y ∈ X.

By Lemma 3.3, x∗ is also a solution to the inclusion problem

f ∈ F (x) + ∂J(x),

and thus there exist u∗ ∈ F (x∗) and ξ ∈ ∂J(x∗) such that

f = u∗ + ξ, (4.1)

(see the argument process of (i) ⇒ (ii) in the proof of Lemma 3.3). Moreover, {xn} ⊂ X is an α-
approximating sequence for the generalized hemivariational inequality GHVI(F, f, J), which means that
there exist un ∈ F (xn), n ∈ N and a nonnegative sequence {εn} with εn → 0 as n→∞ such that

〈un − f, y − xn〉+ J◦(xn, y − xn) ≥ −εnα(y − xn), ∀y ∈ X, n ∈ N. (4.2)

From the fact that
J◦(xn, y − xn) = max{〈ρ, y − xn〉 : ρ ∈ ∂J(xn)}, (4.3)

we obtain by the inequality (4.2) that there exists a ρ(xn, y) ∈ ∂J(xn) such that

〈un − f, y − xn〉+ 〈ρ(xn, y), y − xn〉 ≥ −εnα(y − xn), ∀y ∈ X, n ∈ N. (4.4)

By virtue of Proposition 2.1 (iv), ∂J(xn) is a nonempty, convex and bounded subset in X∗, which implies
that the set {un − f + ρ : ρ ∈ ∂J(xn)} is also nonempty, convex and bounded in X∗. Thus, it follows from
Lemma 2.5 with ϕ(x) = εnα(x− xn) and (4.3) that there exists a ρn ∈ ∂J(xn), which is independent on y,
such that

〈un − f, y − xn〉+ 〈ρn, y − xn〉 ≥ −εnα(y − xn), ∀y ∈ X, n ∈ N. (4.5)

Specially, taking y = x∗ in the above inequality (4.4) yields

〈un + ρn − f, x∗ − xn〉 ≥ −εnα(x∗ − xn). (4.6)
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It follows from the strong monotonicity of the mapping F , the relaxed monotonicity of the Clarke’s
generalized gradient ∂J(·), and the Eqs. (4.1) and (4.5) that

−εnα(x∗ − xn) ≤ 〈un + ρn − f, x∗ − xn〉
= 〈un + ρn − (u∗ + ξ), x∗ − xn〉
= −〈u∗ − un + ξ − ρn, x∗ − xn〉
≤ −(m− c)‖x∗ − xn‖2.

(4.7)

Next we show that ‖x∗ − xn‖ → 0 as n →∞, that is, for any ε > 0 there exists an integer N ≥ 1 such
that ‖x∗− xn‖ < ε for all n ≥ N . Indeed, if ‖x∗− xn‖ 6→ 0 as n→∞, then there exists ε0 > 0 and for each
k ≥ 1 there exists xnk

such that
‖x∗ − xnk

‖ ≥ ε0.

This together with (4.6) and the property of the functional α, leads to

‖x∗ − xnk
‖ ≤ εnk

m− c
· α(x∗ − xnk

)

‖x∗ − xnk
‖

=
1

m− c
· α(εnk

· x∗ − xnk

‖x∗ − xnk
‖

),

where m > c. Since εnk
→ 0 as k →∞ and {(x∗ − xnk

)/‖x∗ − xnk
‖} is bounded, it is easy to see that

εnk
· x∗ − xnk

‖x∗ − xnk
‖
→ 0 as k →∞.

Note that the functional α : X → [0,+∞) is continuous. Hence it is readily found that

α(εnk
· x∗ − xnk

‖x∗ − xnk
‖

)→ α(0) = 0 as k →∞.

Consequently, we get

0 < ε0 ≤ ‖x∗ − xnk
‖ ≤ 1

m− c
· α(εnk

· x∗ − xnk

‖x∗ − xnk
‖

)→ 0 as k →∞,

which reaches a contradiction. Thus, xn → x∗ as n→∞. This completes the proof.

Remark 4.2. By the proof of Theorem 4.1, the condition m > c plays an important role in the proof of
the strong convergence of the α-approximating sequence {xn} for the generalized hemivariational inequality
GHVI(F, f, J). It is clear that we cannot obtain the conclusion in Theorem 4.1 when the conditionm > c fails
to hold. The following theorem gives the conditions under which the existence and uniqueness of solutions
to the generalized hemivariational inequality GHVI(F, f, J) is equivalent to its weak α-well-posedness when
m = c.

Theorem 4.3. Let F : X → 2X
∗

be a nonempty compact-valued mapping which is H-hemicontinuous and
strongly monotone with constant m > 0. Suppose further that J : X → R is a locally Lipschitz functional
such that the Clarke’s generalized gradient ∂J(·) : X → 2X

∗
satisfies the relaxed monotonicity condition

with constant c > 0. If m = c, then the generalized hemivariational inequality GHVI(F, f, J) is weakly
α-well-posed if and only if it has a unique solution in X.

Proof. By Definition 2.7 of weak α-well-posedness for the generalized hemivariational inequality
GHVI(F, f, J), the necessity is obvious. For the sufficiency, suppose that the generalized hemivariational
inequality GHVI(F, f, J) has a unique solution x∗ ∈ X. If the generalized hemivariational inequality
GHVI(F, f, J) is not weakly α-well-posed, then there exists at least an α-approximating sequence {xn} ⊂ X
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for the generalized hemivariational inequality GHVI(F, f, J) such that xn doesn’t converge weakly to x∗.
We claim that the α-approximating sequence {xn} is bounded in X. In fact, if xn is unbounded, we may
assume, without loss of generality, that ‖xn‖ → +∞. Let

tn =
1

‖xn − x∗‖
and zn = x∗ + tn(xn − x∗) = tnxn + (1− tn)x∗. (4.8)

Clearly, {zn} is a bounded sequence in X since ‖zn‖ ≤ ‖x∗‖ + 1. Thus, without loss of generality, we
may assume by the reflexivity of the Banach space X that {zn} converges weakly to some point z ∈ X,
which obviously is not equal to x∗ by (4.7). Also, since the α-approximating sequence {xn} is unbounded,
we can suppose that tn ∈ (0, 1] by (4.7). Now, for any y ∈ X and η ∈ ∂J(y), it follows that

〈v + η − f, y − z〉 = 〈v + η − f, y − x∗〉+ 〈v + η − f, x∗ − zn〉
+ 〈v + η − f, zn − z〉

= 〈v + η − f, y − x∗〉 − tn〈v + η − f, xn − x∗〉
+ 〈v + η − f, zn − z〉

= (1− tn)〈v + η − f, y − x∗〉+ tn〈v + η − f, y − xn〉
+ 〈v + η − f, zn − z〉.

(4.9)

Keep in mind that x∗ is the unique solution to the generalized hemivariational inequality GHVI(F, f, J).
By the same argument as in the proof of Theorem 4.1, there exist u∗ ∈ F (x∗) and ξ ∈ ∂J(x∗) such that

f = u∗ + ξ. (4.10)

Since the nonempty set-valued mapping F is strongly monotone with constant m and the Clarke’s gen-
eralized gradient ∂J(·) of the locally Lipschitz functional J satisfies the relaxed monotonicity with constant
c, the condition m = c implies that F + ∂J(·) is monotone on X. So, it follows from η ∈ ∂J(y), ξ ∈ ∂J(x∗)
and (4.9) that

〈v + η − f, y − x∗〉 = 〈v + η − (u∗ + ξ), y − x∗〉 ≥ 0. (4.11)

Moreover, since {xn} is an α-approximating sequence for the generalized hemivariational inequality
GHVI(F, f, J), there exist un ∈ F (xn), n ∈ N and a nonnegative sequence {εn} with εn → 0 such that

〈un − f, y − xn〉+ J◦(xn, y − xn) ≥ −εnα(y − xn), ∀y ∈ X, n ∈ N.

Also, by the same argument as in the proof of Theorem 4.1, there exists a ρn ∈ ∂J(xn), which is
independent of y, such that

〈un − f, y − xn〉+ 〈ρn, y − xn〉 ≥ −εnα(y − xn), ∀y ∈ X, n ∈ N,

which together with the strong monotonicity of F , the relaxed monotonicity of the Clarke’s generalized
gradient ∂J(·) and the condition m = c, implies that

〈v + η − f, y − xn〉 ≥ 〈un + ρn − f, y − xn〉 ≥ −εnα(y − xn). (4.12)

Therefore, it follows from (4.8), (4.10), (4.11), tn = 1/‖xn − x∗‖ and the property of the functional α that

〈v + η − f, y − z〉 ≥ −tnεnα(y − xn) + 〈v + η − f, zn − z〉
= −εnα(tn(y − xn)) + 〈v + η − f, zn − z〉
= −εnα(tn(y − x∗ + x∗ − xn)) + 〈v + η − f, zn − z〉

= −εnα(
y − x∗

‖xn − x∗‖
+

x∗ − xn
‖xn − x∗‖

) + 〈v + η − f, zn − z〉

= −α(εn(
y − x∗

‖xn − x∗‖
+

x∗ − xn
‖xn − x∗‖

)) + 〈v + η − f, zn − z〉.

(4.13)
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Taking into account that ‖xn‖ → +∞ and {(x∗ − xn)/‖xn − x∗‖} is bounded, we can easily see that
{(y − x∗)/‖xn − x∗‖} is bounded, and hence

εn(
y − x∗

‖xn − x∗‖
+

x∗ − xn
‖xn − x∗‖

)→ 0 as n→∞.

In terms of the continuity of the functional α, we get

α(εn(
y − x∗

‖xn − x∗‖
+

x∗ − xn
‖xn − x∗‖

))→ α(0) = 0 as n→∞.

Since zn ⇀ z and εn → 0 as n → ∞, we obtain by taking limit as n → ∞ at both sides of the above
inequality (4.12) that

〈v + η − f, y − z〉 ≥ 0.

By Corollary 3.6, the arbitrariness of y ∈ X and η ∈ ∂J(y) imply that z 6= x∗ is a solution to the
generalized hemivariational inequality GHVI(F, f, J), which is a contradiction to the uniqueness of solutions
to the generalized hemivariational inequality GHVI(F, f, J). Thus, our assertion that the α-approximating
sequence {xn} is bounded in X is valid.

We end our proof by showing that the α-approximating sequence {xn} converges weakly to the unique
solution x∗ to the generalized hemivariational inequality GHVI(F, f, J). Since {xn} is bounded in X and
Banach space X is reflexive, we let {xnk

} be any subsequence of the α-approximating sequence {xn} such
that xnk

⇀ x̂ as k →∞. Thus, it follows that

〈unk
− f, y − xnk

〉+ J◦(xnk
, y − xnk

) ≥ −εnk
α(y − xnk

), ∀y ∈ X. (4.14)

By the similar argument to that of (4.4) in the proof of Theorem 4.1, there exists a ρnk
∈ ∂J(xnk

) such
that

〈unk
+ ρnk

− f, y − xnk
〉 ≥ −εnk

α(y − xnk
), ∀y ∈ X,

which together with the strong monotonicity of F , the relaxed monotonicity of the Clarke’s generalized
gradient ∂J(·), the property of the functional α, m = c and xnk

⇀ x̂, implies that for any y ∈ X and
η ∈ ∂J(y),

〈v + η − f, y − x̂〉 = lim inf
k→∞

〈v + η − f, y − xnk
〉

≥ lim inf
k→∞

〈unk
+ ρnk

− f, y − xnk
〉

≥ lim inf
k→∞

[−εnk
α(y − xnk

)]

= lim inf
k→∞

[−α(εnk
(y − xnk

))]

= 0.

(4.15)

By Corollary 3.6, x̂ also solves the generalized hemivariational inequality GHVI(F, f, J) and so we have
x̂ = x∗ in terms of the uniqueness of solutions to the generalized hemivariational inequality GHVI(F, f, J).
Therefore, the whole α-approximating sequence {xn} converges weakly to x∗. This completes the proof.

Remark 4.4. Compared with Theorems 4.1 and 4.2 in [31], our Theorems 4.1 and 4.3 use the generalized
hemivariational inequality GHVI(F, f, J) in place of the hemivariational inequality HVI(A, f, J), and the
strong (resp. weak) α-well-posedness in place of the strong (resp. weak) well-posedness. Compared with
Theorem 3.3 of [30], which only gives a sufficient condition for the strong well-posedness in the generalized
sense for the hemivariational inequality HVI(A, f, J) in Euclidean space Rn, Theorems 4.1 and 4.2 in [31] give
the conditions under which the strong well-posedness and the weak well-posedness for the hemivariational
inequality HVI(A, f, J) are equivalent to the existence and uniqueness of its solutions in Banach space X,
respectively. All in all, our Theorems 4.1 and 4.3 improve, extend and develop Theorems 4.1 and 4.2 of [31]
and Theorem 3.3 of [30] to a great extent.
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5. Concluding Remarks

In this paper, we study the conditions of well-posedness for the generalized hemivariational inequality
with Clarke’s generalized directional derivative in reflexive Banach spaces. With several preparatory lemmas
which give some equivalent formulations of the generalized hemivariational inequality with Clarke’s gener-
alized directional derivative under different monotonicity assumptions for the nonconvex and nonsmooth
operator involved, we establish two kinds of conditions under which the strong α-well-posedness and the
weak α-well-posedness for the generalized hemivariational inequality with Clarke’s generalized directional
derivative are equivalent to the existence and uniqueness of its solution, respectively.

It is well known that a hemivariational inequality is refereed to as a variational hemivariational inequality
when a proper, convex and lower semicontinuous functional gets involved or the hemivariational inequality
is defined on a closed, bounded and convex subset rather than the whole Banach space. Based on this
observation, we say that a generalized hemivariational inequality is a generalized variational hemivariational
inequality when a proper, convex and lower semicontinuous functional gets involved or the generalized
hemivariational inequality is defined on a closed, bounded and convex subset rather than the whole Banach
space. Obviously, by the same method used in this paper, it is not difficult to get the conditions under which
the strong α-well-posedness and the weak α-well-posedness for the generalized variational hemivariational
inequality are equivalent to the existence and uniqueness of its solution, respectively. Without question, such
results improve, extend and develop the results on the strong well-posedness and the weak well-posedness
for the variational hemivariational inequality considered in [29] to a great extent.
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