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Abstract

In this paper, we prove some best proximity point theorems for multivalued mappings in the setting of
complete partially ordered metric spaces. As an application, we infer best proximity point and fixed point
results for single valued mappings in partially ordered metric spaces. The results presented generalize and
improve various known results from best proximity and fixed point theory. c©2016 All rights reserved.
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1. Introduction and preliminaries

Let A be a nonempty subset of a metric space (X, d). A mapping T : A → X is said to have a fixed
point in A, if the fixed point equation Tx = x has at least one solution. That is, x ∈ A is a fixed point of
T if d(x, Tx) = 0. Suppose the fixed point equation Tx = x does not have a solution, then d(x, Tx) > 0 for
all x ∈ A. In such a situation, it is our mission to find an element x ∈ A such that d(x, Tx) is minimum in
some sense. The best approximation theory and best proximity pair theorems are studied in this direction.
Here we state the best approximation theorem due to Ky Fan [8].
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Theorem 1.1 ([8]). Let A be a nonempty compact convex subset of a normed linear space X and T : A→ X
be a continuous function. Then there exists x ∈ A such that ‖x− Tx‖ = d(Tx,A) := inf{‖Tx−a‖ : a ∈ A}.

Such an element x ∈ A in Theorem 1.1 is called a best approximant of T in A. Note that if x ∈ A is a best
approximant, then ‖x− Tx‖ need not be the optimum. Best proximity point theorems have been explored
to find sufficient conditions so that the minimization problem minx∈A ‖x − Tx‖ has at least one solution.
Now, let us consider two nonempty subsets A,B of a metric space X and a mapping T : A → B. The
natural question is whether one can find an element x0 ∈ A such that d(x0, Tx0) = min{d(x, Tx) : x ∈ A}.
Since d(x, Tx) ≥ d(A,B), the optimal solution to the problem of minimizing the real valued function
x→ d(x, Tx) over the domain A of the mapping T will be the one for which the value d(A,B) is attained.
A point x0 ∈ A is called a best proximity point of T if d(x0, Tx0) = d(A,B). Note that if d(A,B) = 0, then
the best proximity point is nothing but a fixed point of T. The existence and convergence of best proximity
points is an interesting topic of optimization theory which recently attracted the attention of many authors
[4, 7, 11, 12, 16, 19, 20]. For the existence of best proximity point in the setting of partially order metric
space, one can go through to [1, 2, 13, 14, 15, 17, 18].

Let X be a non-empty set such that (X, d,�) is a partially ordered metric space. Consider A and B are
non-empty subsets of the metric space (X, d). We denote by CB(X) the class of all nonempty closed and
bounded subsets of X and B(X) the class of all nonempty bounded subsets of X. The following notions are
used subsequently:

D(x,B) = inf{d(x, y) : y ∈ B} for all x ∈ X,
δ(A,B) := sup{d(x, y) : x ∈ A and y ∈ B},
d(A,B) := inf{d(x, y) : x ∈ A and y ∈ B},

A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},
B0 = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

In [12], the authors discussed sufficient conditions which guarantee the non-emptiness of A0 and B0. Also,
in [19], the authors proved that A0 is contained in the boundary of A.

Suppose that T : A → 2B is a multivalued non-self-mappings. An element x0 ∈ A is said to be best
proximity point for T if x0 ∈ Tx0. On the other hand if A ∩B = ∅, the multifunction T has no fixed point.
Then D(x, Tx) > 0 for all x ∈ A. Analogously, one can investigate to find necessary conditions so that
minimization problem minx∈AD(x, Tx) has at least one solution. Since D(x, Tx) ≥ d(A,B) for all x ∈ A,
the optimal solution to the problem of minimizing the real valued function x→ D(x, Tx) over the domain
A of the mapping T will be the one for which the value d(A,B) is attained. A point x0 ∈ A is called a best
proximity point of a multivalued non-self-mapping T, if D(x0, Tx0) = d(A,B). Note that if d(A,B) = 0,
then the best proximity point is nothing but a fixed point of T.

For the existence and convergence of best proximity point for multivalued non-self mappings, we refer
the reader to [3, 9].

The following notion of an altering distance function was introduced by Khan et al. in [10].

Definition 1.2. A function ψ : [0,∞)→ [0,∞) is said to be an altering distance function if it satisfies the
following conditions.

(i) ψ is continuous and non-decreasing.

(ii) ψ(t) = 0 if and only if t = 0.

To define the multivalued nondecreasing map, in [5], Beg and Butt presented the following relations
between two subsets of X.

Definition 1.3 ([5]). Let A and B be two nonempty subsets of a partially ordered set (X,�). The relation
between A and B is denoted and defined as follows: A ≺1 B, if for every a ∈ A there exists b ∈ B such that
a � b.
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In [6], Choudhury and Metiya proved the existence of fixed point for multivalued self mappings in
partially ordered metric spaces.

Theorem 1.4. Let (X,�, d) be a partially ordered complete metric space. Let A be a non-empty closed
subset X and T : A→ B(A) is a multivalued mapping such that the following conditions are satisfied:

(i) there exists x0 ∈ A such that {x0} ≺1 Tx0 ,

(ii) T satisfies ψ(δ(Tx, Ty)) ≤ kψ(M(x, y)) for all x � y in A, where k ∈ (0, 1),

M(x, y) = max{d(x, y), D(x, Tx), D(y, Ty),
D(x, Ty) +D(y, Tx)

2
} and ψ is altering distance function,

(iii) for x, y ∈ A, x � y implies Tx ≺1 Ty,

(iv) if {xn} is a nondecreasing sequence in A such that xn → x, then xn � x for all n.

Then T has a fixed point.

In this article, we attempt to give a partial generalization of Theorem 1.4 by considering a non-self
multivalued map T.

The notion of P -property was introduced by Sankar Raj as follows.

Definition 1.5 ([16]). Let (A,B) be a pair of non-empty subsets of a metric space X with A0 6= ∅. Then
the pair (A,B) is said to have the P -property if and only if

d(x1, y1) = d(A,B)

d(x2, y2) = d(A,B)

}
=⇒ d(x1, x2) = d(y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

Example 1.6. Let A,B be two non-empty closed convex subsets of a Hilbert space X. Then (A,B) satisfies
the P -property.

Example 1.7. Let A, B be two non-empty subsets of a metric space (X, d) such that A0 6= ∅ and d(A,B) =
0. Thus (A,B) has the P -property.

Definition 1.8 ([17]). A mapping T : A→ B is said to be proximally increasing if it satisfies the condition
that

y1 ≤ y2
d(x1, T y1) = d(A,B)

d(x2, T y2) = d(A,B)

 =⇒ x1 ≤ x2,

where x1, x2, y1, y2 ∈ A.

One can see that, for a self-mapping, the notion of proximally increasing mapping reduces to that of
increasing mapping.

Here we defined the notion of proximal relation between two subsets of X.

Definition 1.9. Let A and B be two nonempty subsets of a partially ordered metric space (X, d,�) such
that A0 6= ∅. Let B1 and B2 be two non-empty subsets of B0. The proximal relation between B1 and B2

is denoted and defined as follows: B1 ≺(1) B2, if for every b1 ∈ B1 with d(a1, b1) = d(A,B) there exists
b2 ∈ B2 with d(a2, b2) = d(A,B) such that a1 � a2.

One can see that, when A = B, B1 ≺(1) B2 reduces to B1 ≺1 B2.

Example 1.10. Let X = R2 and consider the order (x, y) � (z, t) ⇔ x ≤ z and y ≤ t, where ≤ is usual
order in R. Thus, (X,�) is a partially ordered set. Besides, (X, d) is a complete metric space where d is
usual metric. Let A = {(0, x) : x ∈ [0,∞)} and B = {(1, x) : x ∈ [0,∞)} be a closed subset of X. Note
that, d(A,B) = 1, A = A0 and B = B0. Take B1 = {(1, x) : x ∈ [0, 1]} and B2 = {(1, x) : x ∈ [2, 3]}. Then
B1 ≺(1) B2, that is, for every b1 ∈ B1 with d(a1, b1) = d(A,B) there exists b2 ∈ B2 with d(a2, b2) = d(A,B)
such that a1 � a2.
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2. Main Results

Now, let us state our main result.

Theorem 2.1. Let (X,�, d) be a partially ordered complete metric space. Let A and B be non-empty closed
subsets of the metric space (X, d) such that A0 6= ∅ and (A,B) satisfies the P -property. Let T : A→ CB(B)
be a multivalued mapping such that the following conditions are satisfied:

(i) there exist two elements x0, x1 in A0 and y0 ∈ Tx0 such that

d(x1, y0) = d(A,B) and x0 � x1,

(ii) Tx0 is included in B0 for all x0 ∈ A0 and

ψ(δ(Tx, Ty)) ≤ kψ(M(x, y))− kψ(d(A,B)) for all x � y in A, (2.1)

where k ∈ (0, 1), M(x, y) = max{d(x, y), D(x, Tx), D(y, Ty),
D(x, Ty) +D(y, Tx)

2
} and ψ is altering

distance function also it satisfies ψ(s+ t) ≤ ψ(s) + ψ(t), for all s, t ∈ [0,∞),

(iii) for x, y ∈ A0, x � y implies Tx ≺(1) Ty,

(iv) if {xn} is a nondecreasing sequence in A such that xn → x, then xn � x for all n.

Then, there exists an element x in A such that

D(x, Tx) = d(A,B).

Proof. By the assumption (i), there exist two elements x0, x1 in A0 and y0 ∈ Tx0 such that d(x1, y0) =
d(A,B) and x0 � x1. By the assumption (iii), Tx0 ≺(1) Tx1, there exists y1 ∈ Tx1 with d(x2, y1) = d(A,B)
such that x1 � x2. In general, for each n ∈ N, there exists xn+1 ∈ A0 and yn ∈ Txn such that d(xn+1, yn) =
d(A,B). Hence, we obtain

d(xn+1, yn) = D(xn+1, Txn) = d(A,B) for all n ∈ N (2.2)

with x0 � x1 � x2 � · · ·xn � xn+1 · · · .

If there exists n0 such that xn0 = xn0+1, then D(xn0+1, Txn0) = D(xn0 , Txn0) = d(A,B). This means that
xn0 is a best proximity point of T and the proof is finished. Thus, we can suppose that xn 6= xn+1 for all n.
Since d(xn+1, yn) = d(A,B) and d(xn, yn−1) = d(A,B) and (A,B) has the P -property,

d(xn, xn+1) = d(yn−1, yn) for all n ∈ N. (2.3)

Since xn−1 ≺ xn, by inequality

ψ(d(xn, xn+1)) = ψ(d(yn−1, yn)) ≤ ψ(δ(Txn−1, Txn)) ≤ kψ(M(xn−1, xn))− kψ(d(A,B)). (2.4)

Now from the triangle inequality for d, we have

M(xn−1, xn) = max{d(xn−1, xn), D(xn−1, Txn−1), D(xn, Txn),
D(xn−1, Txn) +D(xn, Txn−1)

2
}

≤ max{d(xn−1, xn), d(xn−1, yn−1), d(xn, yn),
d(xn−1, yn) + d(xn, yn−1)

2
}

≤ max{d(xn−1, xn), d(xn−1, yn−2) + d(yn−2, yn−1), d(xn, yn−1) + d(yn−1, yn),

d(xn−1, yn−2) + d(yn−2, yn−1) + d(yn−1, yn) + d(xn, yn−1)

2
}

≤ max{d(xn−1, xn), d(A,B) + d(xn−1, xn), d(A,B) + d(xn, xn+1),



V. Pragadeeswarar, M. Marudai, P. Kumam, J. Nonlinear Sci. Appl. 9 (2016), 1911–1921 1915

d(A,B) + d(xn−1, xn) + d(xn, xn+1) + d(A,B)

2
}

= max{d(A,B) + d(xn−1, xn), d(A,B) + d(xn, xn+1)}.

From (2.4) and above inequality, we get

ψ(d(xn, xn+1)) ≤ kψ(max{d(A,B) + d(xn−1, xn), d(A,B) + d(xn, xn+1)})− kψ(d(A,B)). (2.5)

If d(xn, xn+1) > d(xn−1, xn). From (2.5), we obtain

ψ(d(xn, xn+1)) ≤ kψ(d(A,B) + d(xn, xn+1))− kψ(d(A,B))

≤ k[ψ(d(A,B) + ψ(d(xn, xn+1))]− kψ(d(A,B))

= kψ(d(xn, xn+1)) < ψ(d(xn, xn+1)),

which is a contradiction. So, we have

d(xn, xn+1) ≤ d(xn−1, xn). (2.6)

Hence, the sequence {d(xn, xn+1)} is monotone non-increasing and bounded below. Thus, there exists r ≥ 0
such that

lim
n→∞

d(xn, xn+1) = r ≥ 0. (2.7)

Suppose that limn→∞ d(xn, xn+1)) = r > 0. Using (2.6) then the inequality (2.5) becomes

ψ(d(xn, xn+1)) ≤ kψ(d(A,B) + d(xn−1, xn))− kψ(d(A,B))

≤ k[ψ(d(A,B)) + ψ(d(xn−1, xn))]− kψ(d(A,B))

= kψ(d(xn−1, xn)),

implies that ψ(r) ≤ kψ(r), which is a contradiction unless r = 0. Hence,

lim
n→∞

d(xn, xn+1) = 0. (2.8)

Now to prove that {xn} is a Cauchy sequence. In contrary case, suppose that {xn} is not a Cauchy sequence.
Then there exists ε > 0 for which we can find subsequences {xm(k)} and {xn(k)} of {xn} such that n(k) is
smallest index for which n(k) > m(k) > k, d(xm(k), xn(k)) ≥ ε. This means that

d(xm(k), xn(k)−1) < ε. (2.9)

and

ε ≤ d(xm(k), xn(k))

≤ d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k))

< ε+ d(xn(k)−1, xn(k)).

Letting k →∞ and using (2.8) we can conclude that

lim
k→∞

d(xm(k), xn(k)) = ε. (2.10)

Again,
d(xm(k), xn(k)−1) ≤ d(xm(k), xn(k)) + d(xn(k), xn(k)−1)

and
d(xm(k), xn(k)) ≤ d(xm(k), xn(k)−1) + d(xn(k), xn(k)−1).
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Therefore,
|d(xm(k), xn(k)−1)− d(xm(k), xn(k))| ≤ d(xn(k), xn(k)−1).

Taking k →∞ and using (2.10) and (2.8) it follows that

lim
k→∞

d(xm(k), xn(k)−1) = ε. (2.11)

Similarly, we can prove that

lim
k→∞

d(xm(k)−1, xn(k)) = lim
k→∞

d(xm(k)−1, xn(k)−1) = lim
k→∞

d(xm(k)+1, xn(k))

= lim
k→∞

d(xm(k), xn(k)+1) = ε. (2.12)

Since m(k) < n(k), xm(k)−1 � xn(k)−1, from (2.3) and (2.1), we have

ψ(d(xm(k), xn(k))) ≤ ψ(δ(Txm(k)−1, Txn(k)−1))

≤ kψ(M(xm(k)−1, xn(k)−1))− kψ(d(A,B)), (2.13)

where

M(xm(k)−1, xn(k)−1)

= max{d(xm(k)−1, xn(k)−1), D(xm(k)−1, Txm(k)−1), D(xn(k)−1, Txn(k)−1),

D(xm(k)−1, Txn(k)−1) +D(xn(k)−1, Txm(k)−1)

2
}

≤ max{d(xm(k)−1, xn(k)−1), d(xm(k)−1, ym(k)−1), d(xn(k)−1, yn(k)−1),

d(xm(k)−1, yn(k)−1) + d(xn(k)−1, ym(k)−1)

2
}

≤ max{d(xm(k)−1, xn(k)−1), d(xm(k)−1, ym(k)−2) + d(ym(k)−2, ym(k)−1),

d(xn(k)−1, yn(k)−2) + d(yn(k)−2, yn(k)−1),

d(xm(k)−1, xn(k)−1) + d(xn(k)−1, yn(k)−1) + d(xn(k)−1, xm(k)−1) + d(xm(k)−1, ym(k)−1)

2
}.

Using (2.3) and d(xn+1, yn) = d(A,B) in the above inequality, we get

M(xm(k)−1, xn(k)−1)

≤ max{d(xm(k)−1, xn(k)−1), d(A,B) + d(xm(k)−1, xm(k)), d(A,B) + d(xn(k)−1, xn(k)),

2d(xm(k)−1, xn(k)−1) + d(xn(k)−1, xn(k)) + d(xm(k)−1, xm(k)) + 2d(A,B)

2
}.

(2.14)

Using (2.14) in (2.13) and taking k →∞, from (2.8),(2.10) and (2.12), we get

ψ(ε) ≤ kψ(max{ε, d(A,B), d(A,B), ε+ d(A,B)})− kψ(d(A,B)) (2.15)

≤ kψ(ε) + kψ(d(A,B))− kψ(d(A,B)) = kψ(ε), (2.16)

which is a contradiction to the property of ψ. Thus, {xn} is a Cauchy sequence in A and hence converges
to some element x in A. Since d(xn, xn+1) = d(yn−1, yn), the sequence {yn} in B is Cauchy and then
is convergent. Suppose that yn → y. By the relation d(xn+1, yn) = d(A,B) for all n, we conclude that
d(x, y) = d(A,B). We now claim that y ∈ Tx.

Since {xn} is a increasing sequence in A and xn → x, by the hypothesis (iii), xn � x ∀n.
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ψ(D(yn, Tx)) ≤ ψ(δ(Txn, Tx))

≤ kψ(max{d(xn, x), D(xn, Txn), D(x, Tx),
D(xn, Tx) +D(x, Txn)

2
})− kψ(d(A,B))

≤ kψ(max{d(xn, x), d(xn, yn), D(x, Tx),
D(xn, Tx) + d(x, yn)

2
})− kψ(d(A,B)).

Taking n→∞ in the above inequality, using xn → x, yn → y and d(x, y) = d(A,B), we get

ψ(D(y, Tx)) ≤ kψ(max{0, d(A,B), D(x, Tx),
D(x, Tx) + d(A,B)

2
})− kψ(d(A,B))

≤ kψ(D(x, Tx))− kψ(d(A,B))

≤ kψ(d(x, y) +D(y, Tx))− kψ(d(A,B))

≤ kψ(d(x, y)) + kψ(D(y, Tx))− kψ(d(A,B))

≤ kψ(d(A,B)) + kψ(D(y, Tx))− kψ(d(A,B))

≤ kψ(D(y, Tx)),

which is contradiction unless D(y, Tx) = 0.
This implies that y ∈ Tx and hence D(x, Tx) = d(A,B). That is x is a best proximity point of the

mapping T.

Let us illustrate the Theorem 2.1 with the following example.

Example 2.2. Let X = R2 and consider the order (x, y) � (z, t)⇔ x ≤ z and y ≤ t, where ≤ is usual order
in R.

Thus, (X,�) is a partially ordered set. Besides, (X, d1) is a complete metric space where the met-
ric is defined as d1((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|. Let A = {(−6, 0), (0,−6), (0, 5)} and B =
{(−1, 0), (0,−1), (0, 0), (−1, 1), (1, 1)} be a closed subset of X. Then, d(A,B) = 5, A = A0 and B = B0. Let
T : A→ CB(B) be defined as

T (x, y) =


{(0,−1), (0, 0)} if (x, y) = (−6, 0),
{(−1, 1), (0, 0), (−1, 0)} if (x, y) = (0,−6),
{(1, 1), (−1, 1)} if (x, y) = (0, 5).

It can be seen that condition (i) is true. Since there exist two elements (−6, 0), (0, 5) in A0 and (0, 0) ∈
T (−6, 0) such that

d((0, 5), (0, 0)) = d(A,B) = 5 and (−6, 0) � (0, 5).

Now, we have to prove the condition (ii). It is easy to prove that Tx0 is included in B0 for all x0 ∈ A0.
Note that the only comparable elements in A are (−6, 0) � (0, 5) and (0,−6) � (0, 5). In both cases,

δ(Tx, Ty) = 3, M(x, y) = 11 and d(A,B) = 5.
For ψ(t) = 2t, we get, ψ(δ(Tx, Ty)) = 6 and ψ(M(x, y)) − ψ(d(A,B)) = 12. Hence T satisfies the

condition (ii) when k ∈ [12 , 1), that is

ψ(δ(Tx, Ty)) ≤ kψ(M(x, y))− kψ(d(A,B)) for all x � y in A. (2.17)

Also, it can be easily prove the conditions (iii) and (iv). Hence all the hypotheses of the Theorem 2.1
are satisfied. Also, it can be observed that (0, 5) is the best proximity point of the mapping T. That is ,
D((0, 5), T (0, 5)) = d(A,B) = 5.
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3. Applications

As an application of our results, we infer new best proximity point and fixed point results for multivalued
and single valued mappings in the set up of partially ordered metric spaces.

If we take ψ an identity function in Theorem 2.1, then we have the following result.

Corollary 3.1. Let (X,�, d) be a partially ordered complete metric space. Let A and B be non-empty closed
subsets of the metric space (X, d) such that A0 6= ∅ and (A,B) satisfies the P -property. Let T : A→ CB(B)
be a multivalued mapping such that the following conditions are satisfied:

(i) there exist two elements x0, x1 in A0 and y0 ∈ Tx0 such that

d(x1, y0) = d(A,B) and x0 � x1,

(ii) Tx0 is included in B0 for all x0 ∈ A0 and

δ(Tx, Ty) ≤ k[M(x, y)− d(A,B)] for all x � y in A, (3.1)

where k ∈ (0, 1) and M(x, y) = max{d(x, y), D(x, Tx), D(y, Ty),
D(x, Ty) +D(y, Tx)

2
},

(iii) for x, y ∈ A0, x � y implies Tx ≺(1) Ty,

(iv) if {xn} is a nondecreasing sequence in A such that xn → x, then xn � x for all n.

Then, there exists an element x in A such that

D(x, Tx) = d(A,B).

That is x is a best proximity point of the mapping T.

Theorem 3.2. Let (X,�, d) be a partially ordered complete metric space. Let A and B be non-empty closed
subsets of the metric space (X, d) such that A0 6= ∅ and (A,B) satisfies the P -property. Let T : A→ CB(B)
be a multivalued mapping such that the following conditions are satisfied:

(i) there exist elements x0, x1 in A0 and y0 ∈ Tx0 such that

d(x1, y0) = d(A,B) and x0 � x1,

(ii) Tx0 is included in B0 for all x0 ∈ A0 and

ψ(δ(Tx, Ty)) ≤ kψ(M(x, y)) for all x � y in A, (3.2)

where k ∈ (0, 1), ψ is altering distance function and

M(x, y) = max{d(x, y), D(x, Tx)− d(A,B), D(y, Ty)− d(A,B),
D(x, Ty) +D(y, Tx)

2
− d(A,B)},

(iii) for x, y ∈ A0, x � y implies Tx ≺(1) Ty,

(iv) if {xn} is a nondecreasing sequence in A such that xn → x, then xn � x for all n.

Then, there exists an element x in A such that

D(x, Tx) = d(A,B).

Proof. The proof is similar to Theorem 2.1.

As a consequence of Theorem 3.2, by taking T is single valued map, we derive the following result.
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Corollary 3.3. Let (X,�, d) be a partially ordered complete metric space. Let A and B be non-empty closed
subsets of the metric space (X, d) such that A0 6= ∅ and (A,B) satisfies the P -property. Let T : A → B be
a single valued mapping such that the following conditions are satisfied:

(i) there exist elements x0, x1 in A0 such that

d(x1, Tx0) = d(A,B) and x0 � x1,

(ii) T (A0) ⊆ B0 and
ψ(d(Tx, Ty)) ≤ kψ(M(x, y)) for all x � y in A, (3.3)

where k ∈ (0, 1), ψ is altering distance function and

M(x, y) = max{d(x, y), d(x, Tx)− d(A,B), d(y, Ty)− d(A,B),
d(x, Ty) + d(y, Tx)

2
− d(A,B)},

(iii) for x, y ∈ A0, x � y implies {Tx} ≺(1) {Ty},
(iv) if {xn} is a nondecreasing sequence in A such that xn → x, then xn � x for all n.

Then, there exists an element x in A such that

d(x, Tx) = d(A,B).

If we take A = B in Theorem 2.1 and Theorem 3.2, then we conclude to the following result.

Corollary 3.4. Let (X,�, d) be a partially ordered complete metric space. Let A be a non-empty closed
subset X and T : A→ CB(A) is a multivalued mapping such that the following conditions are satisfied:

(i) there exist two elements x0, x1 in A and y0 ∈ Tx0 such that

d(x1, y0) = 0 and x0 � x1 = y0,

(ii) T satisfies
ψ(δ(Tx, Ty)) ≤ kψ(M(x, y)) for all x � y in A, (3.4)

where k ∈ (0, 1), M(x, y) = max{d(x, y), D(x, Tx), D(y, Ty),
D(x, Ty) +D(y, Tx)

2
} and ψ is altering

distance function,

(iii) for x, y ∈ A, x � y implies Tx ≺1 Ty,

(iv) if {xn} is a nondecreasing sequence in A such that xn → x, then xn � x for all n.

Then, there exists an element x in A such that

D(x, Tx) = 0.

That is x is a fixed point of the mapping T.

The following corollary is a special case of Theorem 2.1 when T is a single valued self mapping.

Corollary 3.5. Let (X,�, d) be a partially ordered complete metric space. Let A be non-empty closed subset
of the metric space (X, d). Let T : A→ A be a single valued mapping such that the following conditions are
satisfied:

(i) there exist elements x0 and x1 in A such that

d(x1, Tx0) = 0 and x0 � x1,
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(ii) T satisfies
ψ(d(Tx, Ty)) ≤ kψ(M(x, y)) for all x � y in A, (3.5)

where k ∈ (0, 1), M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2
} and ψ is altering

distance function,

(iii) for x, y ∈ A, x � y implies {Tx} ≺1 {Ty},
(iv) if {xn} is a nondecreasing sequence in A such that xn → x, then xn � x for all n.

Then, there exists an element x in A such that

d(x, Tx) = 0.

That is x is a fixed point of the mapping T.

Furthermore, if we take T is single valued self mapping and ψ is identity function in Theorem 2.1,then
we deduce the following result.

Corollary 3.6. Let (X,�, d) be a partially ordered complete metric space. Let A be non-empty closed subset
of the metric space (X, d). Let T : A→ A be a single valued mapping such that the following conditions are
satisfied:

(i) there exist elements x0 and x1 in A such that

d(x1, Tx0) = 0 and x0 � x1,

(ii) T satisfies
d(Tx, Ty) ≤ kM(x, y) for all x � y in A, (3.6)

where k ∈ (0, 1) and M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2
}.

(iii) for x, y ∈ A, x � y implies {Tx} ≺1 {Ty},
(iv) if {xn} is a nondecreasing sequence in A such that xn → x, then xn � x for all n.

Then, there exists an element x in A such that

d(x, Tx) = 0.

That is x is a fixed point of the mapping T.
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