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Abstract

The purpose of this paper is to define new concepts, such as T-orbitally w-completeness, orbitally w-
continuity and almost weakly w-contractive mapping in the modular metric spaces. We prove some fixed
point theorems for these related concepts and mappings in this space. Further, we give an application using
the technique in [Lj. B. Ćirić, B. Samet, H. Aydi, C. Vetro, Appl. Math. Comput., 218 (2011), 2398–2406]
and show that our results can be applied to homotopy. c©2015 All rights reserved.

Keywords: Modular metric space, T-orbitally w-completeness, orbitally w-continuity, fixed point.
2010 MSC: 46A80, 47H10, 54E35.

1. Introduction

Fixed point theory is an active field of research with wide range of applications in a variety of areas such
as nonlinear analysis, functional analysis, differential equations, operator theory, engineering, game theory,
etc. It is a very powerful and significant tool in solving existence and uniqueness problems.

Fixed point theorems are concerned with the results which state that under certain conditions a self
map f on a set X allow one or more fixed point. Fixed point theory started after the classical analysis began
rapidly. Afterwards, it was used mainly to prove existence theorems for differential equations.

The Polish mathematician Banach [5] formulated and proved a theorem which related to under suitable
conditions the existence and uniqueness of a fixed point in a complete metric space. This result is well-known
as Banach’s fixed point theorem or the Banach contraction principle. Since it has a useful structure, many
mathematicians have drawn attention to the contraction principle. One of them is Ćirić [14] and gave a
well-known generalization of it.
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Nakano is the first researcher who introduced modular spaces [22]. Then Chistyakov presented the
modular metric space [8] and got some results in [9, 10]. Mongkolkeha et al. [21] gave some theorems
of fixed points for contraction mappings in modular metric spaces. Dehghan et al. [16] gave an example
related to results in [21]. Azadifar et. al., [4] proved the existence and uniqueness of a common fixed
point of compatible mappings of integral type in this space. Kilinc and Alaca [19] defined (ε, k)-uniformly
locally contractive mappings and η-chainable concept and proved a fixed point theorem for these concepts
in a complete modular metric spaces. Further, different fixed point results in this space were proved in
[2, 3, 7, 15, 17, 18] and [20].

In the present paper, as a new perspective in modular metric spaces we introduce T-orbitally
w-completeness, orbitally w-continuity and almost weakly w-contractive mapping in the modular metric
spaces. We prove some fixed point theorems for these related concepts and mappings satisfying the condi-
tion

ωλ(Tx, Ty) ≤ φ[ω3λ(x, y)]

where φ : R+ → R+ is a real function, upper semicontinuous from the right such that φ(t) < t for t > 0.
Our results are the modular metric version of Ćirić [12, 13] and Boyd and Wong [6]. An application for our
main result to homotopy is given at the end of the paper.

2. Preliminaries

Definition 2.1 ([23]). A modular on a real linear space X is a functional ρ : X −→ [0,∞] satisfying the
followings:

(A1) ρ(0) = 0;

(A2) If x ∈ X and ρ(αx) = 0 for all numbers α > 0, then x = 0;

(A3) ρ(−x) = ρ(x) for all x ∈ X;

(A4) ρ(αx+ βy) ≤ ρ(x) + ρ(y) for all α, β ≥ 0 with α+ β = 1 and x, y ∈ X.

Let X be a non-empty set and λ ∈ (0,∞). We remark that the function ω : (0,∞)×X ×X −→ [0,∞]
is denoted by ωλ(x, y) = ω(λ, x, y) for all λ > 0 and x, y ∈ X.

Definition 2.2 ([9]). Let X be a non-empty set, a function

ω : (0,∞)×X ×X −→ [0,∞]

is said to be a metric modular on X if satisfying, for all x, y, z ∈ X the following conditions hold:

(i) ωλ(x, y) = 0 for all λ > 0 ⇔ x = y;

(ii) ωλ(x, y) = ωλ(y, x) for all λ > 0;

(iii) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y) for all λ, µ > 0.

The function 0 < λ 7→ ωλ(x, y) ∈ [0,∞) is [9] non-increasing on (0,∞). If 0 < µ < λ, then (i)-(iii) imply

ωλ(x, y) ≤ ωλ−µ(x, x) + ωµ(x, y) ≤ ωµ(x, y).

Let’s recall that definitions of two sets Xω and X∗ω [9]:

Xω ≡ Xω(x0) = {x ∈ X : ωλ(x, x0)→ 0 as λ→∞}

and
X∗ω ≡ X∗ω(x0) = {x ∈ X : ∃λ = λ(x) > 0 such that ωλ(x, x0) <∞}.

Definition 2.3 ([21]). Let (X,ω) be a modular metric space.

• A sequence (xn)n∈N in X∗ω is called ω-convergent to x ∈ X∗ω if ωλ(xn, x)→ 0, as n→∞ for all λ > 0.
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• A sequence (xn)n∈N ⊂ X∗ω is said to be ω-Cauchy if and only if for all ε > 0 there exists n(ε) ∈ N such
that for each n,m ≥ n(ε) and λ > 0 we have ωλ(xn, xm) < ε.

• A subset C of X∗ω is said to be ω-closed if the limit of ω-convergent sequence of C always belong to C.

• A subset C of X∗ω is said to be ω-complete if any ω-Cauchy in C is ω-convergent sequence and its limit
is in C.

Definition 2.4 ([11]). Let (X,ω) be a modular metric space and T be a self-mapping of X∗ω. An orbit of
T at the point x ∈ X∗ω is the set

O(x, T ) := {x, Tx, · · · , Tnx, · · · }.

Definition 2.5 ([1]). Let Xω be a modular metric space. For r > 0 and x ∈ Xω, we define the open sphere
Bω(x, r) and the closed sphere Bω[x, r] with center x and radius r as follows:

Bω(x, r) ={y ∈ Xω : ωλ(x, y) < r}
Bω[x, r] ={y ∈ Xω : ωλ(x, y) ≤ r}.

3. Main Results

In this section, we first give some definitions about our study.

Definition 3.1. A subset U of X∗ω is said to be ω-open if for each x ∈ U there exists r > 0 such that
Bω(x, r) ⊆ U .

Definition 3.2. Let (X,ω) be a modular metric space.

• (X,ω) is called T -orbitally w-complete if T is a self-mapping of X∗ω and if any w-Cauchy subsequence
{Tnix} in orbit O(x, T ) for x ∈ X∗ω converges in X∗ω.

• An operator T : X∗ω → X∗ω on X∗ω is called orbitally ω-continuous if

Tnix→ x0 ⇒ T (Tnix)→ Tx0 as i→∞.

• A self-mapping T of a modular metric space X∗ω is said to be a w-contraction type mapping if for
every x, y ∈ X∗ω there exist numbers α(x, y), 0 ≤ α(x, y) < 1 and δ(x, y) > 0 such that

ωλ(Tnx, Tny) ≤ [α(x, y)]nδ(x, y); n = 1, 2, · · ·

Let’s prove the first theorem.

Theorem 3.3. Let X∗ω be a T -orbitally w-complete and T : X∗ω → X∗ω be w-contraction type mapping and
orbitally ω-continuous. Assume that there exists an element x = x(λ) ∈ X∗ω such that ωλ(x, Tx) <∞. Then
we have the following statements:

(i) T has a unique fixed point u ∈ X∗ω,

(ii) xn = Tnx0 → u for every x0 ∈ X∗ω,

(iii) There is an inequality

ωλ(Tnx0, u) ≤ [α(x0, Tx0)]
n

1− α(x0, Tx0)
δ(x0, Tx0)

where 0 ≤ α(x0, Tx0) < 1, δ(x0, Tx0) > 0.

Proof. (ii) We establish a sequence (xn) ⊂ X∗ω such that xi = T ix0 with x0 ∈ X∗ω. Now, we must show that
it is a ω-Cauchy.

ωλ(Tnx0, T
n+rx0) =ωλ(Tnx0, T

n+r−1Tx0)

≤ωλ
r
(Tnx0, T

nTx0) + ωλ
r
(Tn+1x0, T

n+1Tx0) + · · ·+ ωλ
r
(Tn+r−1x0, T

n+r−1Tx0).
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Since T is w-contraction type mapping, we obtain

ωλ(Tnx0, T
n+rx0) ≤ [α(x0, Tx0)]

nδ(x0, Tx0) + · · ·+ [α(x0, Tx0)]
n+r−1δ(x0, Tx0)

and so

ωλ(Tnx0, T
n+rx0) ≤

( n+r−1∑
k=n

[α(x0, Tx0)]
k

)
δ(x0, Tx0). (3.1)

We have lim
n→∞

ωλ(Tnx0, T
n+rx0) = 0 because α(x0, Tx0) < 1. Thus (xn) = (Tnx0) is a ω-Cauchy and by the

T -orbitally w-completeness of X∗ω, there exists a point u ∈ X∗ω such that

u = lim
n→∞

xn = lim
n→∞

Tnx0.

(i) Orbitally ω-continuity of T gives rise to

Tu = T ( lim
n→∞

xn) = lim
n→∞

Txn = lim
n→∞

xn+1 = u.

As a result, u is a fixed point of T .
We indicate that u is the unique fixed point of T . Suppose that u

′
is another fixed point of T . Then

ωλ(u, u
′
) = ωλ(Tnu, Tnu

′
) ≤ [α(u, u

′
)]nδ(u, u

′
).

Since lim
n→∞

[α(u, u
′
)]n = 0, we conclude that ωλ(u, u

′
) = 0. Therefore u = u

′
.

(iii) Taking the limit as r →∞ in (3.1), we have the following:

lim
r→∞

ωλ(Tnx0, T
n+rx0) ≤ lim

r→∞

( n+r−1∑
k=n

[α(x0, Tx0)]
k

)
δ(x0, Tx0)

= lim
r→∞

[α(x0, Tx0)]
n
(
1 + α(x0, Tx0) + · · ·+ [α(x0, Tx0)]

r−1)δ(x0, Tx0)
= lim
r→∞

[α(x0, Tx0)]
n 1− [α(x0, Tx0)]

r

1− α(x0, Tx0)
δ(x0, Tx0)

=
[α(x0, Tx0)]

n

1− α(x0, Tx0)
δ(x0, Tx0).

As a consequence,

ωλ(Tnx0, u) ≤ [α(x0, Tx0)]
n

1− α(x0, Tx0)
δ(x0, Tx0).

Definition 3.4. A mapping T : X∗ω → X∗ω is called almost weakly ω-contractive if for each x, y ∈ X∗ω there
exists a positive integer m(x, y) such that for all j, k ≥ m(x, y)

ωλ(T (T jx), T (T ky)) ≤ α(ωλ(T jx, T ky))ωλ(T jx, T ky), (3.2)

where α : (0,∞)→ [0, 1) is a real function satisfying sup{α(r) : p ≤ r ≤ q} < 1 for any 0 < p < q < +∞.

Theorem 3.5. Let T : X∗ω → X∗ω be a self-mapping of a T -orbitally ω-complete X∗ω. Suppose that there
exists an element x = x(λ) ∈ X∗ω such that ωλ(x, Tx) <∞. If T is an almost weakly ω-contractive, then

(1) T has a unique fixed point u ∈ X∗ω,

(2) lim
n→∞

Tnx = u,

(3) ωλ(Tnx, u) ≤ ε when ωλ(Tn−1x, Tnx) ≤ [1− α(ε)]ε, n ≥ m(x, Tx) + 1 for every x ∈ X∗ω, where

α(ε) = sup{α(r) : 0 < ε ≤ r ≤ 2ε}.
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Proof. (2) Let x and y be any two points in X∗ω. For n ≥ m(x, y), we have

ωλ(Tn+1x, Tn+1y) ≤ α[ωλ(Tnx, Tny)]ωλ(Tnx, Tny) < ωλ(Tnx, Tny)

and thus (ωλ(Tnx, Tny)) is a non-increasing sequence. Assume that lim
n→∞

ωλ(Tnx, Tny) = t and t > 0.

Define α(t) = sup{α(r) : 0 < t ≤ r ≤ 2t}. Then there is an integer s > m(x, y) such that

t ≤ ωλ(T sx, T sy) < t+ [1− α(t)]t = [2− α(t)]t.

Therefore
ωλ(T s+1x, T s+1y) ≤α[ωλ(T sx, T sy)]ωλ(T sx, T sy)

<α(t)[2− α(t)]t

=
(
1− [1− α(t)]2

)
t

<t

but it couldn’t be true, as ωλ(Tnx, Tny) ≥ t for each n ≥ m(x, y). As a result, we obtain

lim
n→∞

ωλ(Tnx, Tny) = 0 (3.3)

for each x, y ∈ X∗ω. Let x be a point of X∗ω. Now we should show that the sequence (Tnx) at x is a ω-Cauchy.
Let α(ε) = sup{α(r) : ε ≤ r ≤ 2ε} be defined for arbitrary ε > 0. By (3.3), there exists an integer

n0 ≥ m(x, Tx) + 1 such that for every k ≥ n0,

ωλ(T k−1x, T kx) < [1− α(ε)]ε. (3.4)

From induction on r, we must show that

ωλ(T kx, T k+rx) < ε. (3.5)

For the case r = 1, it is clear that (3.5) holds by (3.4). Assume that (3.5) holds for some r ≥ 1. (3.4) and
the induction hypothesis give the following:

ωλ(T k−1x, T k+rx) ≤ ωλ
2
(T k−1x, T kx) + ωλ

2
(T kx, T k+rx) < [1− α(ε)]ε+ ε = [2− α(ε)]ε. (3.6)

If ωλ(T k−1x, T k+rx) < ε and k − 1 ≥ m(x, Tx), then we have

ωλ(T kx, T k+r+1x) < ε

from the hypothesis for T . Assuming ε ≤ ωλ(T k−1x, T k+rx), we find

ωλ(T kx, T k+r+1x) ≤α[ωλ(T k−1x, T k+rx)]ωλ(T k−1x, T k+rx)

≤α(ε)ωλ(T k−1x, T k+rx)

<α(ε)[2− α(ε)]ε

=(1− (1− α(ε))2)ε

<ε

by (3.2) and (3.6). As a result, we conclude that (3.5) holds for each r ∈ N by induction. Thus, (Tnx) is a
ω-Cauchy and by T -orbitally ω-completeness of X∗ω, there is an element u ∈ X∗ω such that lim

n→∞
Tnx = u.

(1) By orbitally ω-continuity of T , we get Tu = u. We shall show that u is the unique fixed point of T .
Suppose that u

′
is another fixed point such that Tu

′
= u

′
. Then

ωλ(u, u
′
) =ωλ(Tn+1u, Tn+1u

′
)

≤α[ωλ(Tnu, Tnu
′
)]ωλ(Tnu, Tnu

′
)

=α[ωλ(Tnu, Tnu
′
)]ωλ(u, u

′
)
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⇒
(
1− α[ωλ(Tnu, Tnu

′
)]
)
ωλ(u, u

′
) ≤ 0.

Since α[ωλ(Tnu, Tnu
′
)] < 1, we have ωλ(u, u

′
) = 0. Therefore u = u

′
.

Taking the limit as r approaches infinity in (3.5), we obtain (3).

Theorem 3.6. Let X∗ω be ω-complete metric space and T : X∗ω → X∗ω be a map such that

ωλ(Tx, Ty) ≤ φ[ω3λ(x, y)] (3.7)

where φ : R+ → R+ is a real function, upper semicontinuous from the right and satisfying

φ(t) < t for t > 0. (3.8)

Suppose that there exists an element x = x(λ) ∈ X∗ω such that ωλ(x, Tx) < ∞. Then T has a unique fixed
point y ∈ X∗ω and Tnx→ y as n→∞ for each x ∈ X∗ω.

Proof. Set αn = ωλ(Tn−1x, Tnx) for arbitrary x ∈ X∗ω. Then we have

αn+1 =ωλ(Tnx, Tn+1x)

=ωλ(TTn−1x, TTnx)

≤φ[ω3λ(Tn−1x, Tnx)]

<ω3λ(Tn−1x, Tnx)

<ωλ(Tn−1x, Tnx)

=αn.

Therefore we conclude that {αn} is a decreasing sequence and so it has a limit a. Assume that a > 0. From
αn+1 ≤ φ(αn) and upper semicontinuity from the right of φ, we obtain

a ≤ lim
αn→a+

supφ(αn) ≤ φ(a).

But the last statement is in contradiction in (3.8). Thus, we get

lim
n→∞

ωλ(Tn−1x, Tnx) = 0.

We now show that {Tnx} is ω-Cauchy. If we suppose that {Tnx} is not ω-Cauchy, then there exists an
ε > 0 such that for every n ∈ N there is m = m(n) > n such that

ωλ(Tnx, Tmx) ≥ ε. (3.9)

We can assume that m(n) is the smallest integer for which (3.9) holds. It means

ωλ(Tnx, Tm−1x) < ε.

Using the triangle inequality, we have

ε ≤ ωλ(Tnx, Tmx) ≤ωλ
2
(Tnx, Tm−1x) + ωλ

2
(Tm−1x, Tmx)

≤ ε
2

+ ωλ
2
(Tm−1x, Tmx)

<ε+ ωλ
2
(Tm−1x, Tmx).

As lim
m→∞

ωλ
2
(Tm−1x, Tmx) = 0, we obtain

γn = ωλ(Tn, Tmx)→ ε+ as m→∞.
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From the fact that m > n implies ωλ(Tmx, Tm+1x) ≤ ωλ(Tnx, Tn+1x), we have

ε ≤ γn = ωλ(Tnx, Tmx) ≤ωλ
3
(Tnx, Tn+1x) + ωλ

3
(TTnx, TTmx) + ωλ

3
(Tmx, Tm+1x)

≤2ωλ
3
(Tnx, Tn+1x) + φ[ωλ(Tnx, Tmx)]

=2ωλ
3
(Tnx, Tn+1x) + φ(γn).

By the continuity of φ, we conclude

ε ≤ lim
n→∞

2ωλ
3
(Tnx, Tn+1x) + lim

n→∞
supφ(γn) < φ(ε)

which contradicts with (3.8). As a result, {Tnx} is ω-Cauchy and as X∗ω is ω-complete, {Tnx} ω-converges
to x0 in X∗ω. From (3.7) and (3.8), as T is ω-continuous, we get

Tx0 = T ( lim
n→∞

Tnx) = lim
n→∞

T (Tnx) = lim
n→∞

Tn+1x = x0.

Thus, the limit point x0 of {Tnx} is a fixed point of T .
Now we prove the uniqueness. For this purpose, let u be another fixed point of T . Then

ωλ(u− x0) =ωλ(Tu, Tx0)

≤φ[ω3λ(u, x0)]

<ω3λ(u, x0)

<ωλ(u, x0).

Since this is contradiction, u = x0. Thus T has a unique fixed point.

4. An Application to Homotopy

Theorem 4.1. Let X∗ω be ω-complete metric space, U, V be an open and a closed subsets of X∗ω with U ⊂ V ,
respectively. Let the operator H : V × [0, 1]→ X∗ω be satisfied the following conditions:

(a) x 6= H(x, t) for every x ∈ V \ U and every t ∈ [0, 1],

(b) there exists φ : R+ → R+ is continuous non-decreasing function satisfying φ(t) < t such that for each
t ∈ [0, 1] and each x, y ∈ V we have

ωλ(H(x, t), H(y, t)) ≤ φ[ω3λ(x, y)],

(c) there is a continuous function α : [0, 1]→ R such that

ωλ(H(x, t), H(x, s)) ≤ |α(t)− α(s)|

for all t, s ∈ [0, 1] and every x ∈ V ,

(d) ψ : [0,+∞)→ [0,+∞) is strictly non-decreasing mapping where ψ(x) = x− φ(x).

Then H(., 0) has a fixed point if and only if H(., 1) has a fixed point.

Proof. Define the following set:

G := {t ∈ [0, 1] | x = H(x, t) for some x ∈ U}.

(⇒) Assume that H(., 0) has a fixed point. Since (a) holds, we have 0 ∈ G and hence G is a non-empty set.
We would like to show that G is both closed and open in [0, 1]. From the connectedness of [0, 1], we have
the required result because G = [0, 1].
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We begin with proving that G is open in [0, 1]. Let t0 ∈ G and x0 ∈ U with x0 = H(x0, t0). There exists
r > 0 such that Bω(x0, r) ⊆ U as U is open in X∗ω. Considering ε = ψ(r + ωλ(x, x0)) > 0, then there exists
β(ε) > 0 such that |α(t)− α(t0)| < ε for all t ∈ (t0 − β(ε), t0 + β(ε)) because α is continuous on t0.

Let t ∈ (t0 − β(ε), t0 + β(ε)), for x ∈ Bω(x0, r) = {x ∈ X∗ω|ωλ(x, x0) ≤ r}, we obtain

ωλ(H(x, t), x0) =ωλ(H(x, t), H(x0, t0))

≤ωλ
2
(H(x, t), H(x, t0)) + ωλ

2
(H(x, t0), H(x0, t0))

≤|α(t)− α(t0)|+ φ[ω 3λ
2

(x, x0)]

≤ε+ ω 3λ
2

(x, x0)

≤ε+ ωλ(x, x0)

=ψ(r + ωλ(x, x0)) + ωλ(x, x0)

=r + ωλ(x, x0)− φ(r + ωλ(x, x0)) + ωλ(x, x0)

≤r + 2ωλ(x, x0)− r − ωλ(x, x0)

=ωλ(x, x0)

≤r

and H(x, t) ∈ Bω(x0, r). Therefore,

H(., t) : Bω(x0, r)→ Bω(x0, r)

for every fixed t ∈ (t0 − β(ε), t0 + β(ε)). Since all hypotheses of Theorem 3.6 hold, H(., t) has a fixed point
in V , but it must be in U as (a) holds. So (t0 − β(ε), t0 + β(ε)) ⊆ G and thus we conclude that G is open
in [0, 1].

We now show thatG is closed in [0, 1]. Let {tn}n∈N∗ be a sequence inG where tn → t∗ ∈ [0, 1] as n→ +∞.
Our aim is to show that t∗ ∈ G. From the definition of G, there exists xn ∈ U with xn = H(xn, tn) for all
n ∈ N∗. Moreover we have

ωλ(xn, xm) =ωλ(H(xn, tn), H(xm, tm))

≤ωλ
2
(H(xn, tn, H(xn, tm)) + ωλ

2
(H(xn, tm), H(xm, tm))

≤|α(tn)− α(tm)|+ φ[ω 3λ
2

(xn, xm)]

≤|α(tn)− α(tm)|+ φ[ωλ(xn, xm)]

for m,n ∈ N∗. Last statement gives rise to

ψ(ωλ(xn, xm)) ≤ |α(tn)− α(tm)|,

and so we obtain
ωλ(xn, xm) ≤ ψ−1(|α(tn)− α(tm)|)

by (d). If we use continuity of ψ−1 and α, convergence of {tn}n∈N∗ with n,m→ +∞ in the last inequality, we
obtain lim

n,m→+∞
ωλ(xn, xm) = 0. It means that {xn}n∈N∗ is ω-Cauchy sequence in X∗ω. As X∗ω is ω-complete,

there exists x∗ ∈ V such that
lim

n→+∞
ωλ(x∗, xn) = 0.

Letting n→ +∞ in the following inequality,

ωλ(xn, H(x∗, t∗)) =ωλ(H(xn, tn), H(x∗, t∗))

≤ωλ
2
(H(xn, tn, H(xn, t

∗)) + ωλ
2
(H(xn, t

∗), H(x∗, t∗))

≤|α(tn)− α(t∗)|+ φ[ω 3λ
2

(xn, x
∗)],
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we find lim
n→+∞

ωλ(xn, H(x∗, t∗)) = 0 and hence

ωλ(x∗, H(x∗, t∗)) = lim
n→+∞

ωλ(xn, H(x∗, t∗)) = 0.

It implies that x∗ = H(x∗, t∗). Since (a) holds, we have x∗ ∈ U . Thus t∗ ∈ G and G is closed in [0, 1].
(⇐) It can be shown similarly same argument in above.
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[13] L. B. Ćirić, Fixed and periodic points of almost contractive operators, Math. Balkanica, 3 (1973), 33–44.1
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