Rectangular b-metric space and contraction principles

R. Georgea,*, S. Radenovićb, K. P. Reshmac, S. Shuklad

aDepartment of Mathematics and Computer Science, St. Thomas College, Bhilai, Chhattisgarh, India.
bFaculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd, Serbia.
cDepartment of Mathematics, Government VYT PG Autonomous College, Durg, Chhattisgarh, India.
dDepartment of Applied Mathematics, S.V.I.T.S. Indore (M.P.), India.

Abstract

The concept of rectangular b-metric space is introduced as a generalization of metric space, rectangular metric space and b-metric space. An analogue of Banach contraction principle and Kannan’s fixed point theorem is proved in this space. Our result generalizes many known results in fixed point theory.

Keywords: Fixed points, b-metric space, rectangular metric space, rectangular b-metric space.

1. Introduction and Preliminaries

Since the introduction of Banach contraction principle in 1922, because of its wide applications, the study of existence and uniqueness of fixed points of a mapping and common fixed points of two or more mappings has become a subject of great interest. Many authors proved the Banach contraction Principle in various generalized metric spaces. In the sequel Branciari \cite{9} introduced the concept of rectangular metric space (RMS) by replacing the sum on the right hand side of the triangular inequality in the definition of a metric space by a three-term expression and proved an analogue of the Banach Contraction Principle in such space. Since then many fixed point theorems for various contractions on rectangular metric space appeared (see \cite{1,3,4,10,15,16,17,18,19,22,23,25,26}).

On the other hand, in \cite{5} Bakhtin introduced b-metric space as a generalization of metric space and proved analogue of Banach contraction principle in b-metric space. Since then, several papers have dealt

*Corresponding author

Email addresses: renygeorge02@yahoo.com (R. George), radens@beotel.net (S. Radenović), b4reshma@yahoo.com (K. P. Reshma), satishmathematics@yahoo.co.in (S. Shukla)

Received 2012-3-5
with fixed point theory or the variational principle for single-valued and multi-valued operators in b-metric spaces (see \[2\],\[6\],\[7\],\[8\],\[11\],\[12\],\[13\],\[14\],\[20\] and the references therein).

In this paper we have introduced the concept of rectangular b-metric space, which is not necessarily Hausdorff and which generalizes the concept of metric space, rectangular metric space and b-metric space. Note that spaces with non Hausdorff topology plays an important role in Tarskian approach to programming language semantics used in computer science (For some details see \[24\]). Analog of the Banach contraction principle as well as the Kannan type fixed point theorem in rectangular b-metric space are proved. Some examples are included which shows that our generalizations are genuine.

Definition 1.1 (\[9\]). Let \(X \) be a nonempty set and the mapping \(d: X \times X \to [0, \infty) \) satisfies:

(bM1) \(d(x, y) = 0 \) if and only if \(x = y \) for all \(x, y \in X \);

(bM2) \(d(x, y) = d(y, x) \) for all \(x, y \in X \);

(bM3) there exist a real number \(s \geq 1 \) such that \(d(x, y) \leq s[d(x, z) + d(z, y)] \) for all \(x, y, z \in X \).

Then \(d \) is called a b-metric on \(X \) and \((X, d)\) is called a b-metric space (in short bMS) with coefficient \(s \).

Definition 1.2 (\[9\]). Let \(X \) be a nonempty set and the mapping \(d: X \times X \to [0, \infty) \) satisfies:

(RM1) \(d(x, y) = 0 \) if and only if \(x = y \) for all \(x, y \in X \);

(RM2) \(d(x, y) = d(y, x) \) for all \(x, y \in X \);

(RM3) \(d(x, y) \leq d(x, u) + d(u, v) + d(v, y) \) for all \(x, y \in X \) and all distinct points \(u, v \in X \setminus \{x, y\} \).

Then \(d \) is called a rectangular metric on \(X \) and \((X, d)\) is called a rectangular metric space (in short RMS).

We define a rectangular b-metric space as follows:

Definition 1.3. Let \(X \) be a nonempty set and the mapping \(d: X \times X \to [0, \infty) \) satisfies:

(RbM1) \(d(x, y) = 0 \) if and only if \(x = y \);

(RbM2) \(d(x, y) = d(y, x) \) for all \(x, y \in X \);

(RbM3) there exists a real number \(s \geq 1 \) such that \(d(x, y) \leq s[d(x, u) + d(u, v) + d(v, y)] \) for all \(x, y \in X \) and all distinct points \(u, v \in X \setminus \{x, y\} \).

Then \(d \) is called a rectangular b-metric on \(X \) and \((X, d)\) is called a rectangular b-metric space (in short RbMS) with coefficient \(s \).

Note that every metric space is a rectangular metric space and every rectangular metric space is a rectangular b-metric space (with coefficient \(s = 1 \)). However the converse of the above implication is not necessarily true.

Example 1.4. Let \(X = \mathbb{N} \), define \(d: X \times X \to X \) by

\[
d(x, y) = \begin{cases}
0, & \text{if } x = y; \\
4\alpha, & \text{if } x, y \in \{1, 2\} \text{ and } x \neq y; \\
\alpha, & \text{if } x \text{ or } y \not\in \{1, 2\} \text{ and } x \neq y,
\end{cases}
\]

where \(\alpha > 0 \) is a constant. Then \((X, d)\) is a rectangular b-metric space with coefficient \(s = \frac{4}{3} > 1 \), but \((X, d)\) is not a rectangular metric space, as \(d(1, 2) = 4\alpha > 3\alpha = d(1, 3) + d(3, 4) + d(4, 2) \).

Example 1.5. Let \(X = \mathbb{N} \), define \(d: X \times X \to X \) such that \(d(x, y) = d(y, x) \) for all \(x, y \in X \) and

\[
d(x, y) = \begin{cases}
0, & \text{if } x = y; \\
10\alpha, & \text{if } x = 1, y = 2; \\
\alpha, & \text{if } x \in \{1, 2\} \text{ and } y \in \{3\}; \\
2\alpha, & \text{if } x \in \{1, 2, 3\} \text{ and } y \in \{4\}; \\
3\alpha, & \text{if } x \text{ or } y \not\in \{1, 2, 3, 4\} \text{ and } x \neq y,
\end{cases}
\]

where \(\alpha > 0 \) is a constant. Then \((X, d)\) is a rectangular b-metric space with coefficient \(s = 2 > 1 \), but \((X, d)\) is not a rectangular metric space, as \(d(1, 2) = 10\alpha > 5\alpha = d(1, 3) + d(3, 4) + d(4, 2) \).
Note that every b-metric space with coefficient s is a $RbMS$ with coefficient s^2 but the converse is not necessarily true. (See Example 1.7 below).

For any $x \in X$ we define the open ball with center x and radius $r > 0$ by

$$B_r(x) = \{ y \in X : d(x, y) < r \}$$

The open balls in $RbMS$ are not necessarily open (See Example 1.7 below). Let U be the collection of all subsets A of X satisfying the condition that for each $x \in A$ there exist $r > 0$ such that $B_r(x) \subseteq A$. Then U defines a topology for the $RbMS$ (X, d), which is not necessarily Hausdorff (See Example 1.7 below).

We define convergence and Cauchy sequence in rectangular b-metric space and completeness of rectangular b-metric space as follows:

Definition 1.6. Let (X, d) be a rectangular b-metric space, $\{x_n\}$ be a sequence in X and $x \in X$. Then

(a) The sequence $\{x_n\}$ is said to be convergent in (X, d) and converges to x, if for every $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $d(x_n, x) < \varepsilon$ for all $n > n_0$ and this fact is represented by $\lim_{n \to \infty} x_n = x$ or $x_n \to x$ as $n \to \infty$.

(b) The sequence $\{x_n\}$ is said to be Cauchy sequence in (X, d) if for every $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $d(x_n, x_{n+p}) < \varepsilon$ for all $n > n_0, p > 0$ or equivalently, if $\lim_{n \to \infty} d(x_n, x_{n+p}) = 0$ for all $p > 0$.

(c) (X, d) is said to be a complete rectangular b-metric space if every Cauchy sequence in X converges to some $x \in X$.

Note that, limit of a sequence in a $RbMS$ is not necessarily unique and also every convergent sequence in a $RbMS$ is not necessarily a Cauchy sequence. The following example illustrates this fact.

Example 1.7. Let $X = A \cup B$, where $A = \{ \frac{1}{n} : n \in \mathbb{N} \}$ and B is the set of all positive integers. Define $d: X \times X \to [0, \infty)$ such that $d(x, y) = d(y, x)$ for all $x, y \in X$ and

$$d(x, y) = \begin{cases}
0, & \text{if } x = y; \\
2\alpha, & \text{if } x, y \in A; \\
\frac{1}{2n}, & \text{if } x \in A \text{ and } y \in \{2, 3\}; \\
\alpha, & \text{otherwise,}
\end{cases}$$

where $\alpha > 0$ is a constant. Then (X, d) is a rectangular b-metric space with coefficient $s = 2 > 1$. However we have the following:

1) (X, d) is not a rectangular metric space, as $d(\frac{1}{2}, \frac{1}{3}) = 2\alpha > \frac{17}{12} = d(\frac{1}{2}, 4) + d(4, 3) + d(3, \frac{1}{3})$ and hence not a metric space.

2) There does not exist $s > 0$ satisfying $d(x, y) \leq s[d(x, z) + d(z, y)]$ for all $x, y, z \in X$, and so (X, d) is not a b-metric space.

3) $B_2(\frac{1}{2}) = \{2, 3, \frac{1}{2}\}$ and there does not exist any open ball with center 2 and contained in $B_2(\frac{1}{2})$. So $B_2(\frac{1}{2})$ is not an open set.

4) The sequence $\{\frac{n}{n}\}$ converges to 2 and 3 in $RbMS$ and so limit is not unique. Also $d(\frac{1}{n}, \frac{1}{n+p}) = 2\alpha \not\to 0$ as $n \to \infty$, therefore $\{\frac{1}{n}\}$ is not a Cauchy sequence in $RbMS$.

5) There does not exist any $r_1, r_2 > 0$ such that $B_{r_1}(2) \cap B_{r_2}(3) = \phi$ and so (X, d) is not Hausdorff.

2. Main results

Following theorem is the analogue of Banach contraction principle in rectangular b-metric space.

Theorem 2.1. Let (X, d) be a complete rectangular b-metric space with coefficient $s > 1$ and $T: X \to X$ be a mapping satisfying:

$$d(Tx, Ty) \leq \lambda d(x, y)$$

for all $x, y \in X$, where $\lambda \in [0, \frac{1}{s}]$. Then T has a unique fixed point.
Proof. Let \(x_0 \in X \) be arbitrary. Define the sequence \(\{x_n\} \) by \(x_{n+1} = Tx_n \) for all \(n \geq 0 \). We shall show that \(\{x_n\} \) is Cauchy sequence. If \(x_n = x_{n+1} \) then \(x_n \) is fixed point of \(T \). So, suppose that \(x_n \neq x_{n+1} \) for all \(n \geq 0 \). Setting \(d(x_n, x_{n+1}) = d_n \), it follows from (2.1) that

\[
 d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n) \leq \lambda d(x_{n-1}, x_n)
\]

Repeating this process we obtain

\[
 d_n \leq \lambda^n d_0.
\]

(2.2)

Also, we can assume that \(x_0 \) is not a periodic point of \(T \). Indeed, if \(x_0 = x_n \) then using (2.2), for any \(n \geq 2 \), we have

\[
 d(x_0, Tx_0) = d(x_0, TTx_0).
\]

\[
 d(x_0, x_1) = d(x_0, x_{n+1})
\]

\[
 d_0 = d_n
\]

\[
 d_0 \leq \lambda^n d_0,
\]

a contradiction. Therefore, we must have \(d_0 = 0 \), i.e., \(x_0 = x_1 \), and so \(x_0 \) is a fixed point of \(T \). Thus we assume that \(x_n \neq x_m \) for all distinct \(n, m \in \mathbb{N} \). Again setting \(d(x_n, x_{n+2}) = d_n^* \) and using (2.1) for any \(n \in \mathbb{N} \), we obtain

\[
 d(x_n, x_{n+2}) = d(Tx_{n-1}, Tx_{n+1}) \leq \lambda d(x_{n-1}, x_{n+1})
\]

Repeating this process we obtain

\[
 d(x_n, x_{n+2}) \leq \lambda^n d_0^*.
\]

(2.3)

For the sequence \(\{x_n\} \) we consider \(d(x_n, x_{n+p}) \) in two cases.

If \(p \) is odd say \(2m + 1 \) then using (2.2) we obtain

\[
 d(x_n, x_{n+2m+1}) \leq s[d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + d(x_{n+2}, x_{n+2m+1})]
\]

\[
 \leq s[d_n + d_{n+1}] + s^2[d(x_{n+2}, x_{n+3}) + d(x_{n+3}, x_{n+4}) + d(x_{n+4}, x_{n+2m+1})]
\]

\[
 \leq s[d_n + d_{n+1}] + s^2[d_{n+2} + d_{n+3} + d_{n+4} + d_{n+5}] + \cdots + s^{n}d_{n+2m}
\]

\[
 \leq s[\lambda^n d_0 + \lambda^{n+1} d_0] + s^2[\lambda^{n+2} d_0 + \lambda^{n+3} d_0] + s^3[\lambda^{n+4} d_0 + \lambda^{n+5} d_0] + \cdots + s^n\lambda^{n+2m} d_0
\]

\[
 \leq s\lambda^n [1 + s\lambda^2 + s^2\lambda^4 + \cdots] d_0 + s\lambda^{n+1} [1 + s\lambda^2 + s^2\lambda^4 + \cdots] d_0
\]

\[
 = \frac{1 + \lambda}{1 - s\lambda^2} \lambda^n d_0 \quad \text{(note that } s\lambda^2 < 1). \]

Therefore,

\[
 d(x_n, x_{n+2m+1}) \leq \frac{1 + \lambda}{1 - s\lambda^2} \lambda^n d_0.
\]

(2.4)

If \(p \) is even say \(2m \) then using (2.2) and (2.3) we obtain

\[
 d(x_n, x_{n+2m}) \leq s[d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + d(x_{n+2}, x_{n+2m})]
\]

\[
 \leq s[d_n + d_{n+1}] + s^2[d(x_{n+2}, x_{n+3}) + d(x_{n+3}, x_{n+4}) + d(x_{n+4}, x_{n+2m})]
\]

\[
 \leq s[d_n + d_{n+1}] + s^2[d_{n+2} + d_{n+3} + d_{n+4} + d_{n+5}] + \cdots + s^{n-1}[d_{2m-4} + d_{2m-3}] + s^{n-1}d(x_{n+2m-2}, x_{n+2m})
\]
Using (2.6) and (2.7) it follows from above inequality that
\[d(\lambda d_0 + \lambda^{n+1}d_0) + s^2[\lambda^{n+2}d_0 + \lambda^{n+3}d_0] + s^3[\lambda^{n+4}d_0 + \lambda^{n+5}d_0] + \cdots + s^{m-1}[\lambda^{2m-4}d_0 + \lambda^{2m-3}d_0] + s^{m-1}\lambda^{2m-2}d_0^* \]
\[\leq s\lambda^n[1 + \lambda^2 + s^2\lambda^4 + \cdots]d_0 + s\lambda^{n+1}[1 + \lambda^2 + s^2\lambda^4 + \cdots]d_0 + s^{m-1}\lambda^{2m-2}d_0^*, \]
i.e.
\[d(x_n, x_{n+2m}) \leq \frac{1 + \lambda}{1 - s\lambda^2}s\lambda^n d_0 + s^{m-1}\lambda^{2m-2}d_0^* \]
\[< \frac{1 + \lambda}{1 - s\lambda^2}s\lambda^n d_0 + (s\lambda)^{2m}\lambda^{n-2}d_0^* \quad \text{(as } 1 < s) \]
\[\leq \frac{1 + \lambda}{1 - s\lambda^2}s\lambda^n d_0 + \lambda^{n-2}d_0^* \quad \text{(as } \lambda \leq \frac{1}{s}). \]
Therefore
\[d(x_n, x_{n+2m}) \leq \frac{1 + \lambda}{1 - s\lambda^2}s\lambda^n d_0 + \lambda^{n-2}d_0^*. \tag{2.5} \]

It follows from (2.4) and (2.5) that
\[\lim_{n \to \infty} d(x_n, x_{n+p}) = 0 \quad \text{for all } p > 0. \tag{2.6} \]

Thus \(\{x_n\} \) is a Cauchy sequence in \(X \). By completeness of \((X, d) \) there exists \(u \in X \) such that
\[\lim_{n \to \infty} x_n = u. \tag{2.7} \]

We shall show that \(u \) is a fixed point of \(T \). Again, for any \(n \in \mathbb{N} \) we have
\[d(u, Tu) \leq s[d(u, x_n) + d(x_n, x_{n+1}) + d(x_{n+1}, Tu)] = s[d(u, x_n) + d_n + d(Tx_n, Tu)] \leq s[d(u, x_n) + d_n + \lambda d(x_n, u)]. \]

Using (2.6) and (2.7) it follows from above inequality that \(d(u, Tu) = 0 \), i.e., \(Tu = u \). Thus \(u \) is a fixed point of \(T \).

For uniqueness, let \(v \) be another fixed point of \(T \). Then it follows from (2.1) that \(d(u, v) = d(Tu, Tv) \leq \lambda d(u, v) < d(u, v) \), a contradiction. Therefore, we must have \(d(u, v) = 0 \), i.e., \(u = v \). Thus fixed point is unique. \(\square \)

Example 2.2. Let \(X = A \cup B \), where \(A = \{ \frac{1}{n} : n \in \{2, 3, 4, 5\} \} \) and \(B = [1, 2] \). Define \(d \colon X \times X \to [0, \infty) \) such that \(d(x, y) = d(y, x) \) for all \(x, y \in X \) and

\[
\begin{align*}
&d(\frac{1}{2}, \frac{1}{3}) = d(\frac{1}{3}, \frac{1}{2}) = 0.03 \\
&d(\frac{1}{7}, \frac{1}{5}) = d(\frac{1}{5}, \frac{1}{7}) = 0.02 \\
&d(\frac{1}{7}, \frac{1}{7}) = d(\frac{1}{7}, \frac{1}{7}) = 0.6 \\
&d(x, y) = |x - y|^2 \quad \text{otherwise}
\end{align*}
\]

Then \((X, d) \) is a rectangular b-metric space with coefficient \(s = 4 > 1 \). But \((X, d) \) is neither a metric space nor a rectangular metric space. Let \(T \colon X \to X \) be defined as:

\[T x = \begin{cases} \frac{1}{3} & \text{if } x \in A \\ \frac{1}{5} & \text{if } x \in B \end{cases} \]

Then \(T \) satisfies the condition of Theorem 2.1 and has a unique fixed point \(x = \frac{1}{7} \).
Theorem 2.4. Let $T : X \to X$ be a mapping satisfying:
\[d(Tx, Ty) \leq \lambda[d(x, Tx) + d(y, Ty)] \]
for all $x, y \in X$, where $\lambda \in \left[0, \frac{1}{s+1}\right]$. Then T has a unique fixed point.

Proof. Let $x_0 \in X$ be arbitrary. We define a sequence $\{x_n\}$ by $x_{n+1} = Tx_n$ for all $n \geq 0$. We shall show that $\{x_n\}$ is Cauchy sequence. If $x_n = x_{n+1}$ then x_n is fixed point of T. So, suppose that $x_n \neq x_{n+1}$ for all $n \geq 0$. Setting $d(x_n, x_{n+1}) = d_n$ it follows from (2.8) that
\[d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n) \leq \lambda[d(x_{n-1}, Tx_{n-1}) + d(x_n, Tx_n)] \]
\[d(x_n, x_{n+1}) = \lambda[d(x_{n-1}, x_n) + d(x_n, x_{n+1})] \]
\[d_n = \lambda[d_{n-1} + d_n] \]
\[d_n \leq \frac{\lambda}{1-\lambda} d_{n-1} = \beta d_{n-1}, \]
where $\beta = \frac{\lambda}{\lambda + 1} < \frac{1}{s}$ (as, $\lambda < \frac{1}{s+1}$). Repeating this process we obtain
\[d_n \leq \beta^n d_0. \]
(2.9)

Also, we can assume that x_0 is not a periodic point of T. Indeed, if $x_0 = x_n$ then using (2.9), for any $n \geq 2$, we have
\[d(x_n, Tx_0) = d(x_n, Tx_n) \]
\[d(x_0, x_1) = d(x_n, x_{n+1}) \]
\[d_0 = d_n \]
\[d_0 \leq \beta^n d_0, \]
a contradiction. Therefore, we must have $d_0 = 0$, i.e., $x_0 = x_1$, and so x_0 is a fixed point of T. Thus we assume that $x_n \neq x_m$ for all distinct $n, m \in \mathbb{N}$. Again using (2.8) and (2.9) for any $n \in \mathbb{N}$, we obtain
\[d(x_n, x_{n+2}) = d(Tx_{n-1}, Tx_{n+1}) \leq \lambda[d(x_{n-1}, Tx_{n-1}) + d(x_{n+1}, Tx_{n+1})] \]
\[= \lambda[d(x_{n-1}, x_n) + d(x_{n+1}, x_{n+2})] = \lambda[d_{n-1} + d_{n+1}] \]
\[\leq \lambda[\beta^n d_0 + \beta^{n+1} d_0] \]
\[= \lambda[1 + \beta^2] d_0 \]
\[= \gamma \beta^n d_0. \]
(2.10)

Therefore,
\[d(x_n, x_{n+2}) \leq \gamma \beta^n d_0, \]
where $\gamma = \lambda[1 + \beta^2] > 0$.

For the sequence $\{x_n\}$ we consider $d(x_n, x_{n+p})$ in two cases.

If p is odd say $2m + 1$ then using (2.9) we obtain
\[d(x_n, x_{n+2m+1}) \leq s[d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + d(x_{n+2}, x_{n+2m+1})] \]
\[\leq s[d_n + d_{n+1}] + s^2[d_{n+2} + d_{n+3}] + d_{n+4}\]
\[+ s^3[d_{n+2} + d_{n+3}] + s^5[d_{n+4} + d_{n+5}] + \cdots + s^{2m}d_{n+2m} \]
(2.11)
We shall show that
\[
\]
\[\lambda < \frac{1}{\beta}.\]
\[\therefore \quad d(x_n, x_{n+2m+1}) \leq \frac{1 + \beta}{1 - s\beta^2} s\beta^n d_0. \quad (2.11)\]

If \(p \) is even say \(2m \) then using (2.9) and (2.10) we obtain
\[
d(x_n, x_{n+2m}) \leq \begin{cases} \frac{1 + \beta}{1 - s\beta^2} s\beta^n d_0 + s^{m-1} \gamma \beta^{n+2m-3} d_0 \\ < \frac{1 + \beta}{1 - s\beta^2} s\beta^n d_0 + \gamma (s\beta)^{2m} \beta^{n-3} d_0 \quad \text{(as } 1 < s) \\ \leq \frac{1 + \beta}{1 - s\beta^2} s\beta^n d_0 + \gamma \beta^{n-3} d_0 \quad \text{as } \beta \leq \frac{1}{s}. \end{cases}
\]

Therefore
\[
d(x_n, x_{n+2m}) \leq \frac{1 + \beta}{1 - s\beta^2} s\beta^n d_0 + \gamma \beta^{n-3} d_0. \quad (2.12)
\]

It follows from (2.11) and (2.12) that
\[
\lim_{n \to \infty} d(x_n, x_{n+p}) = 0 \quad \text{for all } p > 0. \quad (2.13)
\]

Thus \(\{x_n\} \) is a Cauchy sequence in \(X \). By completeness of \((X, d) \) there exists \(u \in X \) such that
\[
\lim_{n \to \infty} x_n = u. \quad (2.14)
\]

We shall show that \(u \) is a fixed point of \(T \). Again, for any \(n \in \mathbb{N} \) we have
\[
d(u, Tu) \leq \begin{cases} \frac{1 + \beta}{1 - s\beta^2} s\beta^n d_0 + \gamma \beta^{n-3} d_0 \\ \leq \frac{1 + \beta}{1 - s\beta^2} s\beta^n d_0 + \lambda d(x_n, x_{n+1}) \quad (\lambda < \frac{1}{\beta}). \end{cases}
\]

Using (2.13) and (2.14) and the fact that \(\lambda < \frac{1}{\beta^2} \), it follows from above inequality that \(d(u, Tu) = 0 \), i.e., \(Tu = u \). Thus \(u \) is a fixed point of \(T \).
For uniqueness, let \(v \) be another fixed point of \(T \). Then it follows from (2.8) that
\[
d(u, v) = d(Tu, Tv) \leq \lambda [d(u, Tu) + d(v, Tv)] = \lambda [d(u, u) + d(v, v)] = 0.
\]
Therefore, we have \(d(u, v) = 0 \), i.e., \(u = v \). Thus fixed point is unique.

Remark 2.5. On the basis of discussion contained in this paper, we have the following:
1) The open ball defined in b-metric space, RMS and RbMS are not necessarily open set.
2) The collection of open balls in RbMS, RMS and b-metric space do not necessarily form a basis for a topology.
3) RbMS, RMS and b-metric space are not necessarily Hausdorff.

Open Problems:

1) In Theorem 2.1, can we extend the range of \(\lambda \) to the case \(\frac{1}{2} < \lambda < 1 \).

2) Prove analogue of Chatterjee contraction, Reich contraction, Ciric contraction and Hardy-Rogers contraction in RbMS.

Acknowledgements

The authors are thankful to the learned referees for the valuable suggestions provided, which helped them in bringing this paper in its present form.

References

