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Abstract

The concept of rectangular b-metric space is introduced as a generalization of metric space, rectangular
metric space and b-metric space. An analogue of Banach contraction principle and Kannan’s fixed point
theorem is proved in this space. Our result generalizes many known results in fixed point theory.
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1. Introduction and Preliminaries

Since the introduction of Banach contraction principle in 1922, because of its wide applications, the
study of existence and uniqueness of fixed points of a mapping and common fixed points of two or more
mappings has become a subject of great interest. Many authors proved the Banach contraction Principle in
various generalized metric spaces. In the sequel Branciari [9] introduced the concept of rectangular metric
space (RMS) by replacing the sum on the right hand side of the triangular inequality in the definition of a
metric space by a three-term expression and proved an analogue of the Banach Contraction Principle in such
space. Since then many fixed point theorems for various contractions on rectangular metric space appeared
(see [1],[3],[4],[10],[15],[16],[17],[18],[19],[22],[23],[25],[26]).

On the other hand, in [5] Bakhtin introduced b-metric space as a generalization of metric space and
proved analogue of Banach contraction principle in b-metric space. Since then, several papers have dealt
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Reshma), satishmathematics@yahoo.co.in (S. Shukla)

Received 2012-3-5
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with fixed point theory or the variational principle for single-valued and multi-valued operators in b-metric
spaces (see [2],[6],[7],[8],[11],[12],[13],[14],[20] and the references therein).

In this paper we have introduced the concept of rectangular b-metric space, which is not necessarily
Hausdorff and which generalizes the concept of metric space, rectangular metric space and b-metric space.
Note that spaces with non Hausdorff topology plays an important role in Tarskian approach to programming
language semantics used in computer science (For some details see [24]). Analog of the Banach contraction
principle as well as the Kannan type fixed point theorem in rectangular b-metric space are proved. Some
examples are included which shows that our generalizations are genuine.

Definition 1.1 ([5]). Let X be a nonempty set and the mapping d : X ×X → [0,∞) satisfies:

(bM1) d(x, y) = 0 if and only if x = y for all x, y ∈ X;

(bM2) d(x, y) = d(y, x) for all x, y ∈ X;

(bM3) there exist a real number s ≥ 1 such that d(x, y) ≤ s[d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a b-metric on X and (X, d) is called a b-metric space (in short bMS) with coefficient s.

Definition 1.2 ([9]). Let X be a nonempty set and the mapping d : X ×X → [0,∞) satisfies:

(RM1) d(x, y) = 0 if and only if x = y for all x, y ∈ X;

(RM2) d(x, y) = d(y, x) for all x, y ∈ X;

(RM3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all x, y ∈ X and all distinct points u, v ∈ X \ {x, y}.

Then d is called a rectangular metric on X and (X, d) is called a rectangular metric space (in short RMS).

We define a rectangular b-metric space as follows :

Definition 1.3. Let X be a nonempty set and the mapping d : X ×X → [0,∞) satisfies:

(RbM1) d(x, y) = 0 if and only if x = y;

(RbM2) d(x, y) = d(y, x) for all x, y ∈ X;

(RbM3) there exists a real number s ≥ 1 such that d(x, y) ≤ s[d(x, u) + d(u, v) + d(v, y)] for all x, y ∈ X
and all distinct points u, v ∈ X \ {x, y}.

Then d is called a rectangular b-metric on X and (X, d) is called a rectangular b-metric space (in short
RbMS) with coefficient s.

Note that every metric space is a rectangular metric space and every rectangular metric space is a
rectangular b-metric space (with coefficient s = 1). However the converse of the above implication is not
necessarily true.

Example 1.4. Let X = N, define d : X ×X → X by

d(x, y) =


0, if x = y;
4α, if x, y ∈ {1, 2} and x 6= y;
α, if x or y 6∈ {1, 2} and x 6= y,

where α > 0 is a constant. Then (X, d) is a rectangular b-metric space with coefficient s = 4
3 > 1, but (X, d)

is not a rectangular metric space, as d(1, 2) = 4α > 3α = d(1, 3) + d(3, 4) + d(4, 2).

Example 1.5. Let X = N, define d : X ×X → X such that d(x, y) = d(y, x) for all x, y ∈ X and

d(x, y) =


0, if x = y;
10α, if x = 1, y = 2;
α, if x ∈ {1, 2} and y ∈ {3};
2α, if x ∈ {1, 2, 3} and y ∈ {4};
3α, if x or y 6∈ {1, 2, 3, 4} and x 6= y,

where α > 0 is a constant. Then (X, d) is a rectangular b-metric space with coefficient s = 2 > 1, but (X, d)
is not a rectangular metric space, as d(1, 2) = 10α > 5α = d(1, 3) + d(3, 4) + d(4, 2).
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Note that every b-metric space with coefficient s is a RbMS with coefficient s2 but the converse is not
necessarily true. (See Example 1.7 below).

For any x ∈ X we define the open ball with center x and radius r > 0 by

Br(x) = {y ∈ X : d(x, y) < r}

The open balls in RbMS are not necessarily open(See Example 1.7 below). Let U be the collection of all
subsets A of X satisfying the condition that for each x ∈ A there exist r > 0 such that Br(x) ⊆ A. Then
U defines a topology for the RbMS (X, d), which is not necessarily Hausdorff(See Example 1.7 below).

We define convergence and Cauchy sequence in rectangular b-metric space and completeness of rectan-
gular b-metric space as follows :

Definition 1.6. Let (X, d) be a rectangular b-metric space, {xn} be a sequence in X and x ∈ X. Then

(a) The sequence {xn} is said to be convergent in (X, d) and converges to x, if for every ε > 0 there exists
n0 ∈ N such that d(xn, x) < ε for all n > n0 and this fact is represented by lim

n→∞
xn = x or xn → x as

n→∞.
(b) The sequence {xn} is said to be Cauchy sequence in (X, d) if for every ε > 0 there exists n0 ∈ N such

that d(xn, xn+p) < ε for all n > n0, p > 0 or equivalently, if lim
n→∞

d(xn, xn+p) = 0 for all p > 0.

(c) (X, d) is said to be a complete rectangular b-metric space if every Cauchy sequence in X converges to
some x ∈ X.

Note that, limit of a sequence in a RbMS is not necessarily unique and also every convergent sequence
in a RbMS is not necessarily a Cauchy sequence. The following example illustrates this fact.

Example 1.7. Let X = A ∪ B, where A = { 1n : n ∈ N} and B is the set of all positive integers. Define
d : X ×X → [0,∞) such that d(x, y) = d(y, x) for all x, y ∈ X and

d(x, y) =


0, if x = y;
2α, if x, y ∈ A;
α
2n , if x ∈ A and y ∈ {2, 3};
α, otherwise,

where α > 0 is a constant. Then (X, d) is a rectangular b-metric space with coefficient s = 2 > 1. However
we have the following :
1) (X, d) is not a rectangular metric space, as d(12 ,

1
3) = 2α > 17

12 = d(12 , 4) + d(4, 3) + d(3, 13) and hence not
a metric space.
2) There does not exist s > 0 satisfying d(x, y) ≤ s[d(x, z) + d(z, y)] for all x, y, z ∈ X, and so (X, d) is not
a b-metric space.
3) Bα

2
(12) = {2, 3, 12} and there does not exist any open ball with center 2 and contained in Bα

2
(12). So

Bα
2
(12) is not an open set.

4) The sequence { 1n} converges to 2 and 3 in RbMS and so limit is not unique. Also d( 1
n ,

1
n+p) = 2α 6→ 0

as n→∞, therefore { 1n} is not a Cauchy sequence in RbMS.
5) There does not exist any r1, r2 > 0 such that Br1(2)

⋂
Br2(3) = φ and so (X, d) is not Hausdorff.

2. Main results

Following theorem is the analogue of Banach contraction principle in rectangular b-metric space.

Theorem 2.1. Let (X, d) be a complete rectangular b-metric space with coefficient s > 1 and T : X → X
be a mapping satisfying:

d(Tx, Ty) ≤ λd(x, y) (2.1)

for all x, y ∈ X, where λ ∈ [0, 1s ]. Then T has a unique fixed point.
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Proof. Let x0 ∈ X be arbitrary. Define the sequence {xn} by xn+1 = Txn for all n ≥ 0. We shall show that
{xn} is Cauchy sequence. If xn = xn+1 then xn is fixed point of T. So, suppose that xn 6= xn+1 for all n ≥ 0.
Setting d(xn, xn+1) = dn, it follows from (2.1) that

d(xn, xn+1) = d(Txn−1, Txn) ≤ λd(xn−1, xn)

dn ≤ λdn−1.

Repeating this process we obtain
dn ≤ λnd0. (2.2)

Also, we can assume that x0 is not a periodic point of T. Indeed, if x0 = xn then using (2.2), for any n ≥ 2,
we have

d(x0, Tx0) = d(xn, Txn)

d(x0, x1) = d(xn, xn+1)

d0 = dn

d0 ≤ λnd0,

a contradiction. Therefore, we must have d0 = 0, i.e., x0 = x1, and so x0 is a fixed point of T. Thus we
assume that xn 6= xm for all distinct n,m ∈ N. Again setting d(xn, xn+2) = d∗n and using (2.1) for any
n ∈ N, we obtain

d(xn, xn+2) = d(Txn−1, Txn+1) ≤ λd(xn−1, xn+1)

d∗n ≤ λd∗n−1

Repeating this process we obtain
d(xn, xn+2) ≤ λnd∗0. (2.3)

For the sequence {xn} we consider d(xn, xn+p) in two cases.
If p is odd say 2m+ 1 then using (2.2) we obtain

d(xn, xn+2m+1) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m+1)]

≤ s[dn + dn+1] + s2[d(xn+2, xn+3) + d(xn+3, xn+4)

+d(xn+4, xn+2m+1)]

≤ s[dn + dn+1] + s2[dn+2 + dn+3] + s3[dn+4 + dn+5]

+ · · ·+ smdn+2m

≤ s[λnd0 + λn+1d0] + s2[λn+2d0 + λn+3d0] + s3[λn+4d0 + λn+5d0]

+ · · ·+ smλn+2md0

≤ sλn[1 + sλ2 + s2λ4 + · · · ]d0 + sλn+1[1 + sλ2 + s2λ4 + · · · ]d0

=
1 + λ

1− sλ2
sλnd0 (note that sλ2 < 1).

Therefore,

d(xn, xn+2m+1) ≤
1 + λ

1− sλ2
sλnd0. (2.4)

If p is even say 2m then using (2.2) and (2.3) we obtain

d(xn, xn+2m) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m)]

≤ s[dn + dn+1] + s2[d(xn+2, xn+3) + d(xn+3, xn+4)

+d(xn+4, xn+2m)]

≤ s[dn + dn+1] + s2[dn+2 + dn+3] + s3[dn+4 + dn+5]

+ · · ·+ sm−1[d2m−4 + d2m−3] + sm−1d(xn+2m−2, xn+2m)
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≤ s[λnd0 + λn+1d0] + s2[λn+2d0 + λn+3d0] + s3[λn+4d0 + λn+5d0]

+ · · ·+ sm−1[λ2m−4d0 + λ2m−3d0] + sm−1λn+2m−2d∗0

≤ sλn[1 + sλ2 + s2λ4 + · · · ]d0 + sλn+1[1 + sλ2 + s2λ4 + · · · ]d0
+sm−1λn+2m−2d∗0,

i.e.

d(xn, xn+2m) ≤ 1 + λ

1− sλ2
sλnd0 + sm−1λn+2m−2d∗0

<
1 + λ

1− sλ2
sλnd0 + (sλ)2mλn−2d∗0 (as 1 < s)

≤ 1 + λ

1− sλ2
sλnd0 + λn−2d∗0 (as λ ≤ 1

s ).

Therefore

d(xn, xn+2m) ≤ 1 + λ

1− sλ2
sλnd0 + λn−2d∗0. (2.5)

It follows from (2.4) and (2.5) that

lim
n→∞

d(xn, xn+p) = 0 for all p > 0. (2.6)

Thus {xn} is a Cauchy sequence in X. By completeness of (X, d) there exists u ∈ X such that

lim
n→∞

xn = u. (2.7)

We shall show that u is a fixed point of T. Again, for any n ∈ N we have

d(u, Tu) ≤ s[d(u, xn) + d(xn, xn+1) + d(xn+1, Tu)]

= s[d(u, xn) + dn + d(Txn, Tu)]

≤ s[d(u, xn) + dn + λd(xn, u)].

Using (2.6) and (2.7) it follows from above inequality that d(u, Tu) = 0, i.e., Tu = u. Thus u is a fixed point
of T.
For uniqueness, let v be another fixed point of T. Then it follows from (2.1) that d(u, v) = d(Tu, Tv) ≤
λd(u, v) < d(u, v), a contradiction. Therefore, we must have d(u, v) = 0, i.e., u = v. Thus fixed point is
unique.

Example 2.2. Let X = A ∪B, where A = { 1n : n ∈ {2, 3, 4, 5}} and B = [1, 2]. Define d : X ×X → [0,∞)
such that d(x, y) = d(y, x) for all x, y ∈ X and

d(12 ,
1
3) = d(14 ,

1
5) = 0.03

d(12 ,
1
5) = d(13 ,

1
4) = 0.02

d(12 ,
1
4) = d(15 ,

1
3) = 0.6

d(x, y) = |x− y|2 otherwise

Then (X, d) is a rectangular b-metric space with coefficient s = 4 > 1. But (X, d) is neither a metric space
nor a rectangular metric space. Let T : X → X be defined as :

Tx =

{
1
4 if x ∈ A
1
5 if x ∈ B

Then T satisfies the condition of Theorem 2.1 and has a unique fixed point x = 1
4 .
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Remark 2.3. We say that T : X → X has property P if F (T ) = F (Tn) (see [21]) where F (T ) = {x ∈ X :
Tx = x}. It is an easy exercise to see that under the assumptions of Theorem 2.1, T has property P .

Following theorem is the analogue of Kannan type contraction in rectangular b-metric space.

Theorem 2.4. Let (X, d) be a complete rectangular b-metric space with coefficient s > 1 and T : X → X
be a mapping satisfying:

d(Tx, Ty) ≤ λ[d(x, Tx) + d(y, Ty)] (2.8)

for all x, y ∈ X, where λ ∈ [0, 1
s+1 ]. Then T has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary. We define a sequence {xn} by xn+1 = Txn for all n ≥ 0. We shall show
that {xn} is Cauchy sequence. If xn = xn+1 then xn is fixed point of T. So, suppose that xn 6= xn+1 for all
n ≥ 0. Setting d(xn, xn+1) = dn, it follows from (2.8) that

d(xn, xn+1) = d(Txn−1, Txn) ≤ λ[d(xn−1, Txn−1) + d(xn, Txn)]

d(xn, xn+1) = λ[d(xn−1, xn) + d(xn, xn+1)]

dn = λ[dn−1 + dn]

dn ≤ λ

1− λ
dn−1 = βdn−1,

where β = λ
1−λ <

1
s (as, λ < 1

s+1). Repeating this process we obtain

dn ≤ βnd0. (2.9)

Also, we can assume that x0 is not a periodic point of T. Indeed, if x0 = xn then using (2.9), for any n ≥ 2,
we have

d(x0, Tx0) = d(xn, Txn)

d(x0, x1) = d(xn, xn+1)

d0 = dn

d0 ≤ βnd0,

a contradiction. Therefore, we must have d0 = 0, i.e., x0 = x1, and so x0 is a fixed point of T. Thus we
assume that xn 6= xm for all distinct n,m ∈ N. Again using (2.8) and (2.9) for any n ∈ N, we obtain

d(xn, xn+2) = d(Txn−1, Txn+1) ≤ λ[d(xn−1, Txn−1) + d(xn+1, Txn+1)]

= λ[d(xn−1, xn) + d(xn+1, xn+2)] = λ[dn−1 + dn+1]

≤ λ[βn−1d0 + βn+1d0]

= λβn−1[1 + β2]d0

= γβn−1d0.

Therefore,
d(xn, xn+2) ≤ γβn−1d0, (2.10)

where γ = λ[1 + β2] > 0.
For the sequence {xn} we consider d(xn, xn+p) in two cases.
If p is odd say 2m+ 1 then using (2.9) we obtain

d(xn, xn+2m+1) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m+1)]

≤ s[dn + dn+1] + s2[d(xn+2, xn+3) + d(xn+3, xn+4)

+d(xn+4, xn+2m+1)]

≤ s[dn + dn+1] + s2[dn+2 + dn+3] + s3[dn+4 + dn+5]

+ · · ·+ smdn+2m
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≤ s[βnd0 + βn+1d0] + s2[βn+2d0 + βn+3d0] + s3[βn+4d0 + βn+5d0]

+ · · ·+ smβn+2md0

≤ sβn[1 + sβ2 + s2β4 + · · · ]d0 + sβn+1[1 + sβ2 + s2β4 + · · · ]d0

=
1 + β

1− sβ2
sβnd0 (note that sβ2 < 1).

Therefore,

d(xn, xn+2m+1) ≤
1 + β

1− sβ2
sβnd0. (2.11)

If p is even say 2m then using (2.9) and (2.10) we obtain

d(xn, xn+2m) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m)]

≤ s[dn + dn+1] + s2[d(xn+2, xn+3) + d(xn+3, xn+4)

+d(xn+4, xn+2m)]

≤ s[dn + dn+1] + s2[dn+2 + dn+3] + s3[dn+4 + dn+5]

+ · · ·+ sm−1[d2m−4 + d2m−3] + sm−1d(xn+2m−2, xn+2m)

≤ s[βnd0 + βn+1d0] + s2[βn+2d0 + βn+3d0] + s3[βn+4d0 + βn+5d0]

+ · · ·+ sm−1[β2m−4d0 + β2m−3d0] + sm−1γβn+2m−3d0

≤ sβn[1 + sβ2 + s2β4 + · · · ]d0 + sβn+1[1 + sβ2 + s2β4 + · · · ]d0
+sm−1γβn+2m−3d0,

i.e.

d(xn, xn+2m) ≤ 1 + β

1− sβ2
sβnd0 + sm−1γβn+2m−3d0

<
1 + β

1− sβ2
sβnd0 + γ(sβ)2mβn−3d0 (as 1 < s)

≤ 1 + β

1− sβ2
sβnd0 + γβn−3d0 (as β ≤ 1

s ).

Therefore

d(xn, xn+2m) ≤ 1 + β

1− sβ2
sβnd0 + γβn−3d0. (2.12)

It follows from (2.11) and (2.12) that

lim
n→∞

d(xn, xn+p) = 0 for all p > 0. (2.13)

Thus {xn} is a Cauchy sequence in X. By completeness of (X, d) there exists u ∈ X such that

lim
n→∞

xn = u. (2.14)

We shall show that u is a fixed point of T. Again, for any n ∈ N we have

d(u, Tu) ≤ s[d(u, xn) + d(xn, xn+1) + d(xn+1, Tu)]

= s[d(u, xn) + dn + d(Txn, Tu)]

≤ s[d(u, xn) + dn + λ{d(xn, Txn) + d(u, Tu)}]
= s[d(u, xn) + dn + λ{d(xn, xn+1) + d(u, Tu)}]

(1− sλ)d(u, Tu) ≤ s[d(u, xn) + βnd0 + λd(xn, xn+1)]

Using (2.13) and (2.14) and the fact that λ < 1
s+1 , it follows from above inequality that d(u, Tu) = 0, i.e.,

Tu = u. Thus u is a fixed point of T.
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For uniqueness, let v be another fixed point of T. Then it follows from (2.8) that d(u, v) = d(Tu, Tv) ≤
λ[d(u, Tu) + d(v, Tv)] = λ[d(u, u) + d(v, v)] = 0. Therefore, we have d(u, v) = 0, i.e., u = v. Thus fixed point
is unique.

Remark 2.5. On the basis of discussion contained in this paper, we have the following:
1) The open ball defined in b-metric space, RMS and RbMS are not necessarily open set.
2) The collection of open balls in RbMS, RMS and b-metric space do not necessarily form a basis for a
topology.
3) RbMS, RMS and b-metric space are not necessarily Hausdorff.

OpenProblems :

1) In Theorem 2.1, can we extent the range of λ to the case 1
s < λ < 1.

2) Prove analogue of Chatterjee contraction, Reich contraction, Ciric contraction and Hardy-Rogers
contraction in RbMS.
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