Mazur-Ulam theorem for probabilistic 2-normed spaces

Wasfi Shatanawi, Mihai Postolache

Abstract

In this paper we prove the Mazur-Ulam theorem for probabilistic 2-normed spaces. Our study is a natural continuation of that of Cobzas [S. Cobzas, Aequationes Math., 77 (2009) 197–205]. ©2015 All rights reserved.

Keywords: Isometry map, Mazur-Ulam theorem, 2-normed space, linearly dependent.

2010 MSC: 46B20, 46S50, 54E70.

1. Introduction

A mapping \(T \) from a metric space \(X \) into a metric space \(Y \) is called an isometry map if \(T \) satisfies \(d_Y(T(x), T(y)) = d_X(x, y) \) for all \(x, y \in X \), where \(d_X(\cdot, \cdot) \) and \(d_Y(\cdot, \cdot) \) denote the metrics in the spaces \(X \) and \(Y \), respectively. The map \(T \) is called affine if \(T \) is linear up to translation.

Mazur and Ulam [11], proved that every isometry \(T \) from a real normed space \(X \) onto another real normed space \(Y \) is affine, while Baker [6] proved that an isometry map from a real normed linear space \(X \) into a strictly convex real normed linear space \(Y \) is affine.

For related works on this subject, we refer the reader to Aleksandrov [1], Cobzas [6], Chu et al. [7, 8, 9], and Rassias et al. [13, 17, 18].

Probabilistic metric spaces are spaces on which there is a distance function taking as values distribution functions, the distance between two points \(a \) and \(b \) is a distribution function in the sense of probability theory \(\nu(a, b) \), whose values \(\nu(p, q)(x) \) can be interpreted as the probability that the distance between \(a \) and \(b \) is less than \(x \). The notion of probabilistic metric space was introduced by Menger [12]. The idea of Menger’s was to use distribution functions instead of nonnegative real numbers as values of the metric.

Received 2015-05-14
Probabilistic normed spaces were introduced by Šerstnev in 1963 [19]. New definitions of probabilistic
normed spaces were studied by Alsina et al. [2, 3, 4]. It is remarkable that the probabilistic generalization
of metric spaces appears to be well adapted for the investigation of quantum particle physics, particularly
in connections with both string and \(\varepsilon^{\infty} \) theory, which where given and studied by El Naschie [14, 15].

The notion of the probabilistic \(n \)-normed space was introduced by A. Poumoslemi and M. Salimi [16],
while the notion of probabilistic 2-normed space was introduced by I. Golet [10]. In 2009, S. Cobzas studied
the Mazur-Ulam theorem for probabilistic normed spaces [6].

In this paper, we study the Mazur-Ulam theorem for probabilistic 2-normed spaces.

2. Basic Concepts

Denote by \(\triangle \) the set of distribution functions, meaning, nondecreasing, left continuous functions \(\nu: \mathbb{R} \to [0,1] \), with \(\nu(-\infty) = 0 \) and \(\nu(\infty) = 1 \). Let \(D \) be the subclass of \(\triangle \) formed by all functions \(\nu \in \triangle \) such that

\[
\lim_{x \to -\infty} \nu(x) = 0 \quad \text{and} \quad \lim_{x \to \infty} \nu(x) = 1.
\]

The set of distance functions are

\[
\triangle^+ = \{ \nu \in \triangle : \nu(0) = 0 \} \quad \text{and} \quad D^+ = D \cap \triangle^+.
\]

It follows that for \(\nu \in D^+ \), we have \(\nu(x) = 0 \) for all \(x \leq 0 \). Two important distance functions are

\[
\varepsilon_0(x) = \begin{cases} 0, & x \leq 0; \\ 1, & x > 1 \end{cases}
\]

and

\[
\varepsilon_\infty(x) = \begin{cases} 0, & x < \infty; \\ 1, & x = \infty \end{cases}
\]

A triangle function \(T \) is a binary operation on \(\triangle^+ \) that is commutative and associative, nondecreasing in
each place and has \(\varepsilon_0 \) as identity, that is \(T(\nu, \varepsilon_0) = \nu \). A \(t \)-norm is a continuous binary operation on \([0,1]\),
that is commutative, associative, nondecreasing in each variable and has 1 as identity. The triangle function \(\tau_T \) associated to a \(t \)-norm \(T \) is defined by

\[
\tau_T(F,G)(x) = \sup\{T(F(s),G(t)) : s + t = x\}.
\]

In this paper we are interested in the definition of probabilistic \(n \)-normed spaces, specially in the case
of \(n = 2 \).

Definition 2.1 ([10]). Let \(X \) be a real linear space with \(\text{dim } X \geq n \), let \(T \) be a triangle function, and let \(\nu \)
be a mapping from \(X \) into \(D^+ \). If the following conditions are satisfied:

1. \(\nu(x_1, \ldots, x_n) = \varepsilon_0 \) if \(x_1, \ldots, x_n \) are linearly dependent,
2. \(\nu(x_1, \ldots, x_n) \neq \varepsilon_0 \) if \(x_1, \ldots, x_n \) are linearly independent,
3. \(\nu(x_1, \ldots, x_n) = \nu(x_{j1}, \ldots, x_{jn}) \) for any permutation \((j1, j2, \ldots, jn) \) of \((1,2,\ldots,n)\)
4. \(\nu(\beta x_1, \ldots, x_n) = \nu(x_1, \ldots, x_n)\left(\frac{\beta}{\varepsilon_0}\right) \) for every \(s > 0 \), and \(\beta \neq 0 \),
5. \(\nu(x_1, \ldots, x_{n-1}, x_n + y) \geq T(\nu(x_1, \ldots, x_{n-1}, x_n), \nu(x_1, \ldots, x_{n-1}, y)) \)

for \(y, x_1, \ldots, x_n \in X \), then \(\nu \) is called a probabilistic 2-norm on \(X \) and the triple \((X, \nu, T)\) is called a
probabilistic 2-normed space.

Definition 2.2. Let \(X \) be a real linear space and \(x, y, z \) mutually disjoint elements of \(X \). Then \(x, y \) and \(z \)
are said to be 2-collinear if

\[
y - z = t(x - z),
\]

for some real number \(t \).
3. Main Results

We start our work by giving the definition of probabilistic 2-normed space.

Definition 3.1 ([10]). Let X be a real linear space with dim $X \geq 2$, let T be a triangle function, and let ν be a mapping from X into D^+. If the following conditions are satisfied:

1. $\nu(x_1, x_2) = \varepsilon_0$ if x_1 and x_2 are linearly dependent,
2. $\nu(x_1, x_2) \neq \varepsilon_0$ if x_1 and x_2 are linearly independent,
3. $\nu(x_1, x_2) = \nu(x_2, x_1)$,
4. $\nu(\beta x_1, x_2) = \nu(x_1, x_2) \left(\frac{s}{|s|}\right)$, for every $s > 0$, and $\beta \neq 0$,
5. $\nu(x_1 + x_2, y) \geq T(\nu(x_1, y), \nu(x_2, y))$

for $y, x_1, x_2 \in X$, then ν is called a probabilistic 2-norm on X and the triple (X, ν, T) is called a probabilistic 2-normed space.

From now on, unless otherwise stated, we let (X, ν, T) and (Y, ν, T) be probabilistic 2-normed spaces.

In our work, we assume that: If x and y are linearly independent elements in X or in Y, then $\nu(x, y)$ is strictly increasing.

The following lemma due to A. Pourmoslemi and M. Salimi [10] is crucial in proving our next result.

Lemma 3.2 ([10]). For $x_1, x_2 \in X$ and $\alpha \in \mathbb{R}$, we have

$$\nu(x_1, \alpha x_1 + x_2) = \nu(x_1, x_2).$$

The following result is essential for proving our main result.

Lemma 3.3. Let x_1 and x_2 be any two distinct elements in X, and let

$$u = \frac{x_1 + x_2}{2}.$$

Then u is the unique element in X satisfying for all $s > 0$ the following equalities:

$$\nu(x_1 - u, x_1 - c)(s) = \nu(x_2 - c, x_2 - u)(s) = \nu(x_1 - c, x_2 - c)(2s)$$

for $c \in X$ where $x_1 - c$ and $x_2 - c$ are linearly independent and x_1, x_2, u are 2-collinear.

Proof. Choose $c \in X$ with $x_1 - c, x_2 - c$ being linearly independent. For $s > 0$ we have

$$\nu(x_1 - u, x_1 - c)(s) = \nu \left(x_1 - \frac{x_1 + x_2}{2}, x_1 - c \right)(s)$$

$$= \nu \left(\frac{x_1 - x_2}{2}, x_1 - c \right)(s)$$

$$= \nu(x_1 - x_2, x_1 - c)(2s)$$

$$= \nu(x_1 - c + c - x_2, x_1 - c)(2s)$$

$$= \nu(x_2 - c, x_1 - c)(2s)$$

$$= \nu(x_1 - c, x_2 - c)(2s).$$

Similarly, we can show that

$$\nu(x_2 - c, x_2 - u)(s) = \nu(x_1 - c, x_2 - c)(2s).$$

To prove the uniqueness, assume that w is an element in X satisfying for all $s > 0$ the equalities:

$$\nu(x_1 - w, x_1 - c)(s) = \nu(x_2 - c, x_2 - w)(s) = \nu(x_1 - c, x_2 - c)(2s)$$

(3.1)
for $c \in X$ where $x_1 - c$ and $x_2 - c$ are linearly independent and x_1, x_2, w are 2-collinear. Since x_1, x_2, w are 2-collinear, there is a scalar t such that $w = (1-t)x_1 + tx_2$. Hence for $s > 0$, we have
\[
\nu(x_1 - w, x_1 - c)(s) = \nu(x_1 - (1-t)x_1 - tx_2), x_1 - c)(s) \\
= \nu(tx_1 - tx_2 - ct + ct), x_1 - c)(s) \\
= \nu(t(x_1 - c) - t(x_2 - c), x_1 - c)(s) \\
= \nu(-t(x_2 - c), x_1 - c)(s) \\
= \nu(x_1 - c, x_2 - c) \left(\frac{s}{|t|} \right)
\]
and
\[
\nu(x_2 - c, x_2 - w)(s) = \nu(x_2 - c, (1-t)x_2 - (1-t)x_1)(s) \\
= \nu(x_2 - c, (1-t)x_2 - (1-t)x_1 - (1-t)c + (1-t)c)(s) \\
= \nu(x_2 - c, (1-t)(x_2 - c) - (1-t)(x_1 - c))(s) \\
= \nu(x_2 - c, -(1-t)(x_1 - c))(s) \\
= \nu(x_2 - c, x_1 - c) \left(\frac{s}{|1-t|} \right) \\
= \nu(x_1 - c, x_2 - c) \left(\frac{s}{|1-t|} \right).
\]
Since w satisfies Equation (3.1) and $\nu(x_1 - c, x_2 - c)$ is strictly increasing, we get that
\[
2 = \frac{1}{|1-t|} = \frac{1}{|t|}.
\]
So we conclude that $t = \frac{1}{2}$, and hence $w = u$.

Using similar arguments as in the proof of Lemma 3.3, we can prove the following result.

Lemma 3.4. Let x_1 and x_2 be any two distinct elements in X. Let
\[
u = \frac{x_1 + x_2}{2}.
\]
Then u is the unique element in X satisfying for all $s > 0$ the following equalities:
\[
u(u - x_1, x_2 - c)(s) = \nu(x_1 - c, u - x_2)(s) = \nu(x_1 - c, x_2 - c)(2s),
\]
for $c \in X$ where $x_1 - c$ and $x_2 - c$ are linearly independent and x_1, x_2, u are 2-collinear.

To achieve our main result we introduce the following definition.

Definition 3.5. Let (X, ν, T) and (Y, ν, T) be probabilistic 2-normed spaces. We call the map $f: X \to Y$ probabilistic 2-isometry if
\[
\nu(f(x) - f(c), f(y) - f(c))(s) = \nu(x - c, y - c)(s)
\]
holds, for all $x, y, c \in X$ and all $s > 0$.

Lemma 3.6. Let $f: X \to Y$ be probabilistic 2-isometry from probabilistic 2-normed space (X, ν, T) into probabilistic 2-normed space (Y, ν, T). Define the map g from (X, ν, T) into (Y, ν, T) by the rule $g(x) = f(x) - f(0)$. Then f is probabilistic 2-isometry iff g is probabilistic 2-isometry.
Proof. Assume that f is probabilistic 2-isometry, then for $a, b, c \in X$ and $s > 0$ we have
\[
\nu(g(a) - g(c), g(b) - g(c))(s) = \nu(f(a) - f(0) - (f(c) - f(0)), f(b) - f(0) - (f(c) - f(0)))(s)
\]
\[
= \nu(f(a) - f(c), f(b) - f(c))(s)
\]
\[
= \nu(a - c, b - c)(s).
\]
So g is probabilistic 2-isometry.
Similarly we may show that if g is probabilistic 2-isometry, then f is probabilistic 2-isometry.

We have furnished all necessary background to introduce and prove our main result.

Theorem 3.7. Let $f : X \to Y$ be probabilistic 2-isometry from probabilistic 2-normed space (X, ν, T) into probabilistic 2-normed space (Y, ν, T) with the property that if $a, b,$ and c are 2-collinear in X, then $f(a), f(b),$ and $f(c)$ are 2-collinear in Y. Then f is affine.

Proof. By Lemma 3.6, we may assume that $f(0) = 0$. So it suffices to prove that f is linear. Let x and y be two distinct elements in X, and $u = \frac{x + y}{2}$. Since $\dim X \geq 2$, there is $c \in X$ such that $x - c$ and $y - c$ are linearly dependent. Now for $s > 0$, we have
\[
\nu(f(x) - f(u), f(x) - f(c))(s) = \nu(x - u, x - c)(s)
\]
\[
= \nu\left(x - \frac{x + y}{2}, x - c\right)
\]
\[
= \nu\left(-\frac{y}{2}, x - c\right)(s)
\]
\[
= \nu(x - c - (y - c), x - c)(2s)
\]
\[
= \nu(y - c, x - c)(2s)
\]
\[
= \nu(f(y) - f(c), f(x) - f(c))(2s)
\]
\[
= \nu(f(x) - f(c), f(y) - f(c))(2s).
\]

Similarly, we may prove that
\[
\nu(f(y) - f(u), f(y) - f(c))(s) = \nu(f(x) - f(c), f(y) - f(c))(2s).
\]

By Lemma 3.3, we conclude that
\[
f(u) = f\left(\frac{x + y}{2}\right) = \frac{f(x) + f(y)}{2}. \quad (3.2)
\]

For $x \in X$, $s > 0$, and $\alpha \in \mathbb{R}^+ \setminus \{0\}$, we have
\[
\varepsilon_0(s) = \nu(\alpha x, x)(s) = \nu(\alpha x - 0, x - 0)(s) = \nu(f(\alpha x) - f(0), f(x) - f(0))(s) = \nu(f(\alpha x), f(x))(s).
\]

So $f(\alpha x)$ and $f(x)$ are linearly independent. Hence there is $k \in \mathbb{R}$ such that $f(\alpha x) = kf(x)$. Choose $y \in X$ such that x and y are linearly independent. Then for $s > 0$, we have
\[
\nu(x, y)\left(\frac{s}{\alpha}\right) = \nu(\alpha x, y)(s) = \nu(f(\alpha x), f(y))(s)
\]
\[
= \nu(kf(x), f(y))(s) = \nu(f(x), f(y))\left(\frac{s}{|k|}\right)
\]
\[
= \nu(x, y)\left(\frac{s}{|k|}\right),
\]
and hence $\alpha = |k|$.

Claim: $k = \alpha$.
If $k = -\alpha$, then for $s > 0$, we have
\[
\nu(x, y) \left(\frac{s}{\alpha - 1} \right) = \nu((\alpha - 1)x, y)(s) = \nu(\alpha x - x, y - x)(s)
\]
\[
= \nu(f(\alpha x) - f(x), f(y) - f(x))(s) = \nu(-\alpha f(x) - f(x), f(y) - f(x))(s)
\]
\[
= \nu(f(x), f(y) - f(x)) \left(\frac{s}{\alpha + 1} \right) = \nu(f(x), f(y)) \left(\frac{s}{\alpha + 1} \right)
\]
\[
= \nu(x, y) \left(\frac{s}{\alpha + 1} \right).
\]
So $|\alpha - 1| = \alpha + 1$, and hence $\alpha = 0$ which is a contradiction. Therefore $k = \alpha$ and so that $f(\alpha x) = \alpha f(x)$, for all $\alpha \in \mathbb{R}^+ \setminus \{0\}$.
Similarly, we can show that $f(\alpha x) = \alpha f(x)$ for all $\alpha \in \mathbb{R}^- \setminus \{0\}$. Given two distinct elements x and y in X. Since
\[
f(x + y) = f \left(\frac{2x + 2y}{2} \right)
\]
by Equation (3.2), we get that
\[
f(x + y) = \frac{f(2x) + f(2y)}{2} = \frac{2f(x) + 2f(y)}{2} = f(x) + f(y).
\]
If $x = y$, then $f(x + y) = f(2x) = 2 f(x) = f(x) + f(x) = f(x) + f(y)$. So f is affine.

References