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Abstract

This paper investigates the existence of positive solutions for a class of boundary value problems (BVP)
of fractional impulsive differential equations and presents a number of new results. First, by constructing
a novel transformation, the considered impulsive system is convert into a continuous system. Second,
using a specially constructed cone, the Krein-Rutman theorem, topological degree theory, and bifurcation
techniques, some sufficient conditions are obtained for the existence of positive solutions to the considered
BVP. Finally, an example is worked out to demonstrate the main result. c©2015 All rights reserved.
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1. Introduction

During the last decades, fractional calculus and fractional differential equations have been studied ex-
tensively. As a matter of fact, fractional derivatives provide a more excellent tool for the description of
memory and hereditary properties of various materials and processes than integer derivatives. Engineers
and scientists have developed new models that involve fractional differential equations. These models have
been applied successfully, e.g., in mechanics (theory of viscoelasticity and viscoplasticity), (bio-)chemistry
(modelling of polymers and proteins), electrical engineering (transmission of ultrasound waves), medicine
(modelling of human tissue under mechanical loads), etc. For details, see [5, 12, 13, 19, 20] and references
therein. As an important issue for the theory of fractional differential equations, the existence of solutions
to kinds of boundary value problems (BVPs) has attracted many scholars attention, and lots of excellent
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results have been obtained [1, 2, 3, 10, 11, 23] by means of fixed point theorems, upper and lower solutions
technique, and so forth.

For example, in [3], Bai and Lv investigated the following nonlinear fractional differential equation
Dirichlet-type BVP 

Dα
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1);

u(0) = u(1) = 0
(1.1)

where 1 < α ≤ 2, Dα
0+ is the standard Riemann-Liouville differentiation. The corresponding Green function

is deduced. By using fixed-point theorems on cone, the existence and multiplicity of positive solutions for
BVP (1.1) were obtained.

In [11], Jiang and Yuan further investigated BVP (1.1). Comparing with [3], they deduced some new
properties of the Green function, which extended the results of integer-order Dirichlet boundary value prob-
lems. Based on these new properties and Krasnoselskii fixed point theorem, the existence and multiplicity
of positive solutions for BVP (1.1) were considered.

In this paper, we consider the following boundary value problem of fractional impulsive differential
equation 

Dα
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1), t 6= tk;

u(t+k ) = u(t−k )− cku(t−k );

u(0) = u(1) = 0

(1.2)

where k = 1, 2, · · · ,m, 1 < α ≤ 2, Dα
0+ is is the standard Riemann-Liouville differentiation, ck ∈ (0,

1

2
),

and f : [0, 1]× R+ → R+ is a given continuous function satisfying some assumptions that will be specified
later.

Impulsive differential equations has received a lot of attention recently since such equations arise in many
mathematical models of real processes and phenomena studied in physics, chemical technology, population
dynamics, biotechnology, and economics (see for example [4, 6, 8, 14, 27] and references therein). Also there
are some papers concerned with boundary or initial value problems of fractional differential equations with
impulse (see, for instance, [2, 7, 24, 25] and references therein). It is remarkable that the method used in
these references are fixed point theorems. As we know, the bifurcation technique is widely used in solving
boundary value problems (see, for instance, [15, 16, 17, 26] and references therein). Unfortunately, there is
almost no paper except [16, 18] studying impulsive differential equations using bifurcation ideas. To the best
of our knowledge, there is no paper studying such fractional impulsive differential equations using bifurcation
techniques. The purpose of present paper is to fill this gap. The main features of this paper are as follows.
First, by constructing a novel transformation, the considered impulsive system is convert into a continuous
system. Second, using a specially constructed cone, the Krein-Rutman theorem, topological degree theory,
and bifurcation techniques, some sufficient conditions are obtained for the existence of positive solutions to
the considered BVP, which is firstly studied in this paper by using bifurcation techniques.

The paper is organized as follows. Section 2 contains background materials and preliminaries. In Section
3, some transformations are introduced to convert BVP (1.2) to solvable form. In Section 4, by using
bifurcation techniques, and topological degree theory, bifurcation results from infinity and trivial solution
are established. Then the main results of present paper are given and proved. Finally, in Section 5, an
example is worked out to demonstrate the main result.

2. Background materials and preliminaries

We first recall some well known results about Riemann-Liouville derivative. For details, please refer to
[20] and references therein.
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Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a function y : (0,∞)→ R is
given by

Iα0+y(t) =
1

Γ(α)

∫ t

0
(t− s)α−1y(s)ds,

provided the right side is pointwise defined on (0,∞).

Lemma 2.2. Let α > 0, then the differential equation

Dα
0+u(t) = 0.

has solutions u(t) = c1t
α−1+c2t

α−2+ · · ·+cnt
α−n, for some ci ∈ R, i = 0, 1, 2, . . . , n, where n is the smallest

integer greater than or equal to α.

Notice that Dα
0+I

αh(t) = h(t) for all h ∈ C(0, 1) ∩ L(0, 1). From Lemma 2.2, we deduce the following
result.

Lemma 2.3. Assume that u ∈ C(0, 1)∩L1[0, 1] with a derivative of order n that belongs to C(0, 1)∩L1[0, 1].
Then

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n.

for some ci ∈ R, i = 0, 1, 2, . . . , n, where n is the smallest integer greater than or equal to α.

Next, we list the following theorems on topological degree and bifurcation results of completely operators.

Lemma 2.4. (K. Schmitt, R. C. Thompson [22]). Let V be a real reflexive Banach space, G : R× V → V
be completely continuous such that G(λ, 0) = 0 for each λ ∈ R. Let a, b ∈ R(a < b) be such that u = 0 is an
isolated solution of the equation

u−G(λ, u) = 0, u ∈ V, (2.1)

for λ = a and λ = b, where (a, 0), (b, 0) are not bifurcation points of (2.1). Furthermore, assume that

deg(I −G(a, ·), Br(0), 0) 6= deg(I −G(b, ·), Br(0), 0),

where Br(0) is an isolating neighborhood of the trivial solution. Let

T = {(λ, u) : (λ, u) is a solution of (2.1) with u 6= 0} ∪ ([a, b]× 0).

Then there exists a connected component C of T containing [a, b]× 0 in R× V , and either
(i) C is unbounded in R× V , or
(ii) C ∩ [(R \ [a, b])× 0] 6= ∅.

Lemma 2.5. (K. Schmitt [21]). Let V be a real reflexive Banach space, G : R × V → V be completely
continuous. Let a, b ∈ R(a < b) be such that the solutions of (2.1) are, a priori, bounded in V for λ = a and
λ = b, i.e., there exists an R > 0 such that

G(a, u) 6= u 6= G(b, u)

for all u with ‖u‖ ≥ R. Furthermore, assume that

deg(I −G(a, ·), BR(0), 0) 6= deg(I −G(b, ·), BR(0), 0),

for R > 0 large. Then there exists a closed connected set C of solutions of (2.1) that is unbounded in
[a, b]× V , and either

(i) C is unbounded in λ direction, or
(ii) there exists an interval [c, d] such that (a, b) ∩ (c, d) = ∅ and C bifurcates from infinity in [c, d]× V .

Lemma 2.6. (D. Guo [9]). Let Ω be a bounded open set of real Banach space E, A : Ω̄→ E be completely
continuous. If there exists y0 ∈ E, y0 6= θ such that

x ∈ ∂Ω, τ ≥ 0⇒ x−Ax 6= τy0.

Then
deg(I −A,Ω, θ) = 0.
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3. Conversion of BVP(1.2)

The basic space used in this paper is E = C[0, 1]. Obviously, E is a Banach space with norm ‖u‖ =
maxt∈J |u(t)| (∀u ∈ E), where J = [0, 1].

Let
PC(J) = {u : u is a map from J into R such that u(t) is continuous at t 6= tk, and right continuous at

t = tk, and the left limit u(t−k ) exists for k = 1, 2, . . . ,m}.
Evidently, PC(J) is also a Banach space with the norm ‖x‖pc = sup

t∈J
|x(t)|. It is noted that PC(J) is

not the same as usual we used.
To convert BVP(1.2) into a continuous system, we first define an operator A : PC(J)→ PC(J) by

Au(t) =

∫ 1

0
G(t, s)f(s, u(s)))ds+ tα−1

∑
t<tk<1

ck
1− ck

t1−αk u(tk), ∀u ∈ PC(J). (3.1)

where

G(t, s) =
1

Γ(α)


[t(1− s)]α−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1;

[t(1− s)]α−1, 0 ≤ t ≤ s ≤ 1.

(3.2)

Lemma 3.1. If u ∈ PC(J) is a fixed point of the operator A defined by (3.1), then u is a solution of
BVP(1.2).

Proof. Suppose u ∈ PC(J) is a fixed point of the operator A. Then by (3.1), we know

u(t) =

∫ 1

0
G(t, s)f(s, u(s)))ds+ tα−1

∑
t<tk<1

ck
1− ck

t1−αk u(tk), t ∈ J.

From Lemma 2.2- 2.3 and a process similar to the proof of Lemma 2.3 in [3], it follows that u(t) satisfies
Dα

0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1), t 6= tk;

u(0) = u(1) = 0.

Now it remains to show u(t+k ) = u(t−k ) − cku(t−k ). In fact, by (3.1) and u ∈ PC(J), we know

u(t+k )− u(t−k ) =
−ck

1− ck
u(tk) =

−ck
1− ck

u(t+k ), which means u(t+k ) = (1− ck)u(t−k ). �

For u ∈ PC(J), let

v(t) = u(t)− tα−1
∑

t<tk<1

t1−αk

ck
1− ck

u(tk), t ∈ (0, 1).

Then
u(t) = v(t) + tα−1

∑
t<tk<1

t1−αk

ck
1− ck

u(tk),

that is,

u(t) =



v(t) + tα−1
m∑
k=1

ck
1−ck t

1−α
k u(tk), t ∈ (0, t1),

v(t) + tα−1
m∑
k=2

ck
1−ck t

1−α
k u(tk), t ∈ [t1, t2),

· · ·
v(t) + cm

1−cm t
1−α
m u(tm)tα−1, t ∈ [tm−1, tm),

v(t), t ∈ [tm, 1).

(3.3)
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From this one can define an operator T on Banach space E by

Tv(t) =



v(t) + tα−1
m∑
k=1

ck
1−ck t

1−α
k Tv(tk), t ∈ (0, t1),

v(t) + tα−1
m∑
k=2

ck
1−ck t

1−α
k Tv(tk), t ∈ [t1, t2),

· · ·
v(t) + cm

1−cm t
1−α
m Tv(tm)tα−1, t ∈ [tm−1, tm),

v(t), t ∈ [tm, 1),

(3.4)

for each v ∈ E. Therefore,

Tv(t) = v(t) + tα−1
∑

t<tk<1

ck
1− ck

t1−αk Tv(tk), ∀v ∈ E.

Then from (3.1), the operator equation u(t) = Au(t) is converted into

v(t) =

∫ 1

0
G(t, s)f(s, Tv(s))ds. (3.5)

Therefore, u = Tv satisfies u(t) = Au(t) if v is a solution of (3.5), which means that the BVP(1.2) is
transformed into the continuous one (3.5).

We also need the following lemmas and some further transformations.

Lemma 3.2. ( [11]) The function G(t, s) defined by (3.2) has the following properties:
(i) G(t, s) > 0, ∀ t, s ∈ (0, 1).
(ii) The function G∗(t, s) =: t2−αG(t, s) has the following properties:

α− 1

Γ(α)
t(1− t)s(1− s)α−1 ≤ G∗(t, s) ≤ 1

Γ(α)
s(1− s)α−1 for t, s ∈ [0, 1].

Let
Q := {y ∈ E : y(t) ≥ (α− 1)t(1− t)y(s) ≥ 0, ∀s, t ∈ (0, 1)}. (3.6)

It is easy to see Q is a cone of E. Moreover, from (3.6), we have for all y ∈ Q,

y(t) ≥ (α− 1)t(1− t)‖y‖, ∀t ∈ [0, 1]. (3.7)

For convenience, let

ȳ(t) =: tα−2y(t) and (Ly)(t) =: T ȳ(t), ∀y ∈ C(J), t ∈ (0, 1), (3.8)

where T defined by (3.4).

Lemma 3.3. The operator T defined by (3.4) is a linear operator from E to PC(J). In addition,

‖Tv‖pc ≤ 2m‖v‖, ∀v ∈ Q

Proof. First, it is not difficult to see T is a linear operator from E to PC(J). Next for each v ∈ Q,

from (3.4), we know Tv(t) = v(t) for t ∈ [tm, 1). From ck ∈ (0,
1

2
), it follows that

0 <
ck

1− ck
< 1, k = 1, 2, · · · , m.
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Then Tv(tm) = v(tm) and

Tv(t) ≤ v(t) +
cm

1− cm
v(tm) ≤ v(t) + v(tm), t ∈ [tm−1, tm).

So Tv(tm−1) ≤ v(tm−1) + cm
1−cm v(tm) ≤ v(tm−1) + v(tm) and

Tv(t) ≤ v(t) + cm−1Tv(tm−1) +
cm

1− cm
v(tm) ≤ v(t) + v(tm−1) + 2v(tm), t ∈ [tm−2, tm−1).

By induction, one can obtain that

Tv(ti+1) ≤ v(ti+1) + v(ti+2) + 2v(ti+3) + · · ·+ 2m−i−2v(tm)

and
Tv(t) ≤ v(t) + v(ti+1) + 2v(ti+2) + 4v(ti+3) + · · ·+ 2m−i−1v(tm), t ∈ [ti, ti+1).

Consequently,

Tv(t) ≤ v(t) + v(t1) + 2v(t2) + 4v(t3) + · · ·+ 2m−1v(tm), t ∈ (0, t1).

On the other hand, by induction it is easy to see that Tv(t) > 0 for t ∈ (0, 1).
From above, we know that

‖Tv‖pc ≤ 2m‖v‖, ∀v ∈ E,

which implies that T is a bounded operator from Q to PC(J). �

Lemma 3.4. The operator L defined by (3.8) is a linear operator from E to C(0, 1). In addition,

(Ly)(t) ≤ tα−2Ty(t), ∀y ∈ Q, t ∈ (0, 1).

Proof. Firstly, it is easy to see L is a linear operator from E to C(0, 1) since T is linear.
Secondly, for each y ∈ Q, from (3.4) and (3.8) we know

(Ly)(t) = T ȳ(t) = ȳ(t) = tα−2y(t) = tα−2Ty(t), t ∈ [tm, 1).

Then
T ȳ(tm) = ȳ(tm) = tα−2m y(tm) = tα−2m Ty(tm).

This together with tα−2m ≤ tα−2 for t ∈ [tm−1, tm) and 0 <
ck

1− ck
< 1 (k = 1, 2, · · · , m) guarantees that

(Ly)(t) = T ȳ(t) = ȳ(t) +
cm

1− cm
t1−αm T ȳ(tm)tα−1

= tα−2y(t) +
cm

1− cm
t1−αm tα−2m Ty(tm)tα−1

≤ tα−2Ty(t), t ∈ [tm−1, tm).

By induction, one can obtain that (Ly)(t) ≤ tα−2Ty(t) for t ∈ (0, 1). �

Now let’s list the following assumption satisfied throughout the paper.
(H1) There exist functions a0, a

0, b∞, a
0 ∈ C(J, R+) with a0(t), a

0(t), b∞(t), a0(t) 6≡ 0 in any
subinterval of [0, 1] such that

f(t, u) ∈
[
a0(t)

(
u− ξ1(t, u)

)
, a0(t)

(
u+ ξ2(t, u)

)]
∩
[
b∞(t)

(
u− ζ1(t, u)

)
, b∞(t)

(
u+ ζ2(t, u)

)]
,
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for ∀(t, u) ∈ J × R+, where ξi, ηi ∈ C(J × R+) with ξi(t, t
α−2u) = o(u) as u→ 0 uniformly with respect to

t ∈ (0, 1), (i = 1, 2), and ζi(t, t
α−2u) = o(u) as u→ +∞ uniformly with respect to t ∈ (0, 1), (i = 1, 2).

For the sake of using bifurcation technique to investigate BVP (1.2), we study the following fractional
boundary value problem with parameters:

≤ {

Dα
0+u(t) + λf(t, u(t)) = 0, t ∈ (0, 1), t 6= tk;

u(t+k ) = u(t−k )− cku(t−k );

u(0) = u(1) = 0

(3.9)

A function (λ, u) is said to be a solution of BVP(3.9) if (λ, u) satisfies (3.9). In addition, if λ > 0, u(t) > 0
for t ∈ (0, 1), then (λ, u) is said to be a positive solution of BVP(3.9).

Define

f̄(t, u) =


f(t, u), (t, u) ∈ J × R+;

f(t, 0), (t, u) ∈ J × (−∞, 0).

Then f̄(t, u) ≥ 0 on J × R. Now we define an operator Φλ on C[0, 1] as follows:

Φλy(t) =: λ

∫ 1

0
G∗(t, s)f̄(s, (Ly)(s))ds, ∀ y ∈ C[0, 1], (3.10)

where λ ∈ R is a parameter. By assumption (H1) and using a similar process of the proof of Lemma 4.1 in
[11], we know Φλ : C[0, 1]→ Q is completely continuous.

From (3.10), if y ∈ C[0, 1] is the the fixed point of operator Φλ, that is,

y(t) = λ

∫ 1

0
G∗(t, s)f̄(s, (Ly)(s))ds, (3.11)

then v(t) = tα−2y(t) is the solution of

v(t) = λ

∫ 1

0
G(t, s)f̄(s, Tv(s))ds. (3.12)

Let
Σ =: {(λ, y) ∈ R+ × C[0, 1] : y = Φλy, y 6= θ} (3.13)

where θ is the zero element of C[0, 1]. From Lemma 3.2, the definitions of f̄ , and the cone Q, it is easy to
see Σ ⊂ Q. Moreover, we have the following conclusion.

Lemma 3.5. For λ > 0, if y is a nontrivial fixed point of operator Φλ, then ȳ is a positive solution of the
operator equation (3.12). Furthermore, (λ, T ȳ) is a positive solution of BVP (3.9), where ȳ(t) = tα−2y(t)
for t ∈ (0, 1).

For a ∈ C(J, R+) with a(t) 6≡ 0 in any subinterval of J , define the linear operator La : C(J)→ C(J) by

Lay(t) =

∫ 1

0
G∗(t, s)a(s)(Ly)(s)ds, ∀y ∈ C(J), (3.14)

where G∗(t, s) is defined by Lemma 3.2 and the operator L is given by (3.8).
From (3.4), Lemma 3.2, and the well known Krein-Rutman Theorem, one can obtain the following

Lemma.

Lemma 3.6. The operator La : C(J)→ C(J) defined by (3.14) is completely continuous and has a unique
characteristic value λ1(a), which is positive, real, simple and the corresponding eigenfunction φ(t) is of one
sign in (0, 1), i.e., we have φ(t) = λ1(a)Laφ(t).
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Notice that the operator La can be regarded as La : L2[0, 1]→ L2[0, 1]. This together with Lemma 3.6
guarantees that λ1(a) is also the characteristic value of L ∗

a , where L ∗
a is the conjugate operator of La. Let

ϕ∗ denote the nonnegative eigenfunction of L ∗
a corresponding to λ1(a). Then we have

ϕ∗(t) = λ1(a)L ∗
a ϕ
∗(t), ∀t ∈ J.

4. Main Results

The main results of present paper are the following two theorems.

Theorem 4.1. Suppose either
(i) λ1(a0) < 1 < λ1(b

∞) or
(ii) λ1(b∞) < 1 < λ1(a

0).
Then BVP(1.2) has at least one positive solution.

Theorem 4.2. Suppose
(H2) There exist R > 0 and h ∈ L[0, 1] such that

f(t, u) ≤ h(t)u ∀(t, u) ∈ [0, 1)× (0, 2mtα−2R]

and
2m

Γ(α)

∫ 1

0
[s(1− s)]α−1h(s)ds < 1.

In addition, suppose

λ1(a0) < 1 and λ1(b∞) < 1.

Then BVP(1.2) has at least two positive solutions.

To prove Theorem 4.1 and Theorem 4.2, we first prove the following lemmas.

Lemma 4.3. For any [c, d] ⊂ R+ satisfying [λ1(a
0), λ1(a0)] ∩ [c, d] = ∅, there exists δ1 > 0 such that

y 6= Φλy, ∀λ ∈ [c, d], ∀y ∈ E with 0 < ‖y‖ ≤ δ1.

Proof. If this is false, then there exist {(µn, yn)} ⊂ [c, d]× C[0, 1] with ‖yn‖ → 0(n→ +∞) such that
yn = Φµnyn. No loss of generality, assume µn → µ ∈ [c, d]. Notice that yn ∈ Q. By Lemma 3.5 and (3.6), we

have yn(t) > 0 in (0, 1). Set wn =
yn
‖yn‖

. Then wn =
Φµnyn
‖yn‖

. From the definition of f̄(t, u), condition (H1),

and Ascoli-Arzela theorem, it is easy to see that {wn} is relatively compact in C[0, 1]. Taking a subsequence
and relabeling if necessary, suppose wn → w in C[0, 1]. Then ‖w‖ = 1 and w ∈ Q.

On the other hand, from (H1) we know

f(t, u) ∈
[
a0(t)

(
u− ξ1(t, u)

)
, a0(t)

(
u+ ξ2(t, u)

)]
, ∀(t, u) ∈ J × R+. (4.1)

Therefore, by virtue of (3.10), we know

wn(t) =
µn
‖yn‖

∫ 1

0
G∗(t, s)f̄(s, (Lyn)(s))ds

≤ µn

∫ 1

0
G∗(t, s)a0(s)

(
(Lwn)(s) +

ξ2(s, (Lyn)(s))

‖yn‖

)
ds

(4.2)
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and

wn(t) ≥ µn
∫ 1

0
G∗(t, s)a0(s)

(
(Lwn)(s)− ξ1(s, (Lyn)(s))

‖yn‖

)
ds. (4.3)

Let ψ∗ and ψ∗ be the positive eigenfunctions of L ∗
a0 , L ∗

a0 corresponding to λ1(a
0) and λ1(a0), respectively.

Then from (4.2) it follows that

〈wn, ψ∗〉 ≤ µn〈La0wn, ψ
∗〉+ µn

∫ 1

0
ψ∗(t)

∫ 1

0
G∗(t, s)a0(s)

ξ2(s, (Lyn)(s))

‖yn‖
dsdt. (4.4)

Notice that
ξ2(s, (Lyn)(s))

‖yn‖
=
ξ2(s, s

α−2s2−α(Lyn)(s))

s2−α(Lyn)(s))
· s

2−α(Lyn)(s))

‖yn‖
, s ∈ (0, 1).

Using condition (H1), Lemma 3.3, and Lemma 3.4, we have
ξ2(s, (Lyn)(s))

‖yn‖
→ 0 as n→ +∞ uniformly with

respect to s ∈ (0, 1).
Letting n→ +∞ in (4.4)

〈w, ψ∗〉 ≤ µ〈La0w, ψ
∗〉 = µ〈w, L ∗

a0ψ
∗〉 = µ〈w, ψ∗

λ1(a0)
〉,

which implies µ ≥ λ1(a0). Similarly, one can deduce from (4.3) that µ ≤ λ1(a0).
To sum up, λ1(a

0) ≤ µ ≤ λ1(a0), which contradicts with µ ∈ [c, d]. The conclusion of this Lemma
follows. �

Lemma 4.4. For µ ∈ (0, λ1(a
0)), there exists δ1 > 0 such that

deg(I − Φµ, Bδ, 0) = 1, ∀δ ∈ (0, δ1],

where Bδ = {u ∈ E : ‖u‖ < δ}.

Proof. Notice that [0, µ]∩ [λ1(a
0), λ1(a0)] = ∅. By virtue of Lemma 4.3, there exists δ1 > 0 such that

y 6= Φλy, ∀λ ∈ [0, µ], ∀y ∈ C[0, 1] with 0 < ‖y‖ ≤ δ1,

which means
y 6= τΦµy, ∀τ ∈ [0, 1], ∀y ∈ C[0, 1] with 0 < ‖y‖ ≤ δ1.

It follows from the homotopy invariance of topological degree that

deg(I − Φµ, Bδ, 0) = deg(I, Bδ, 0) = 1, ∀δ ∈ (0, δ1].

�

Lemma 4.5. For λ > λ1(a0), there exists δ2 > 0 such that

deg(I − Φλ, Bδ, 0) = 0, ∀δ ∈ (0, δ2].

Proof. Let ϕ0 be the positive eigenfunctions of La0 corresponding to λ1(a0). First we show that for
λ > λ1(a0), there exists δ2 > 0 such that

y − Φλy 6= τϕ0, ∀τ ≥ 0, ∀y ∈ C[0, 1] with 0 < ‖y‖ ≤ δ2. (4.5)
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Suppose, on the contrary, that there exist yn ∈ C[0, 1] with ‖yn‖ → 0 + (n→ +∞) and τn ≥ 0 such that

yn − Φλyn = τnϕ0.

Set wn =
yn
‖yn‖

. Then

wn =
Φλyn
‖yn‖

+
τn
‖yn‖

ϕ0. (4.6)

By virtue of Φλyn ∈ Q, we know wn ≥
τn
‖yn‖

ϕ0. As a result,
τn
‖yn‖

is bounded. On the other hand, from

(3.10), condition (H1), and Ascoli-Arzela theorem, it is easy to see
{Φλyn
‖yn‖

}
is relatively compact. This

together with (4.6) guarantees that {wn} is also relatively compact. No loss of generality, suppose wn → w
as n→ +∞.

Consequently, it follows from (3.10) and (4.6) that

wn(t) ≥ λ
∫ 1

0
G∗(t, s)a0(s)

(
(Lwn)(s)− ξ1(s, (Lyn)(s))

‖yn‖

)
ds. (4.7)

Also let ψ∗ be the positive eigenfunction of L ∗
a0 corresponding to λ1(a0). Then by (4.7), we know

〈wn, ψ∗〉 ≥ λ〈La0wn, ψ∗〉 − λ
∫ 1

0
ψ∗(t)

∫ 1

0
G∗(t, s)a0(s)

ξ1(s, (Lyn)(s))

‖yn‖
dsdt

= λ〈wn, L ∗
a0ψ∗〉 − λ

∫ 1

0
ψ∗(t)

∫ 1

0
G∗(t, s)a0(s)

ξ1(s, (Lyn)(s))

‖yn‖
dsdt.

(4.8)

Similar as in the proof of Lemma 4.3, we have
ξ1(s, (Lyn)(s))

‖yn‖
→ 0 as n → +∞ uniformly with respect

to s ∈ (0, 1). Letting n→∞ in (4.8), we obtain that

〈w, ψ∗〉 ≥ λ〈w, L ∗
a0ψ∗〉 = λ〈w, ψ∗

λ1(a0)
〉.

This means λ ≤ λ1(a0), which is a contradiction. Consequently, (4.5) holds. By virtue of Lemma 2.6, for
each λ > λ1(a0), there exists δ2 > 0 such that

deg(I − Φλ, Bδ, 0) = 0, ∀δ ∈ (0, δ2].

The conclusion of this Lemma follows. �

Theorem 4.6. [λ1(a
0), λ1(a0)] is a bifurcation interval of positive solutions from the trivial solution for

(3.11) , that is, there exists an unbounded component C0 of positive solutions of (3.11) , which meets
[λ1(a

0), λ1(a0)] × {0}. Moreover, there exists no bifurcation interval of positive solutions from the trivial
solution which is disjointed with [λ1(a

0), λ1(a0)].

Proof. For n ∈ N with λ1(a
0) − 1

n > 0, by Lemma 4.4-4.5, and their proof, there exists r > 0
such that the conditions of Lemma 2.4 are satisfied with G(λ, u) = Φλu, a = λ1(a

0) − 1
n , and b =

λ1(a0) + 1
n . By Lemma 3.5, there exists a closed connected set Cn of solutions of (3.11) containing

[λ1(a
0) − 1

n
, λ1(a0) +

1

n
] × 0 in R+ × C[0, 1]. From Lemma 4.3, the case (ii) of Lemma 2.4 can not

occur. Therefore, Cn bifurcates from [λ1(a
0) − 1

n
, λ1(a0) +

1

n
] × 0 and is unbounded in R+ × C[0, 1]. In
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addition, for any [c, d] ⊂ [λ1(a
0)− 1

n
, λ1(a0) +

1

n
] \ [λ1(a

0), λ1(a0)], it follows from Lemma 4.3 that δ1 > 0

such that the set {v ∈ C[0, 1] : (λ, v) ∈ Σ, 0 < ‖v‖ ≤ δ1, λ ∈ [c, d]} = ∅. Thus, Cn must be bifurcated
from [λ1(a

0), λ1(a0)]× {0}, which implies Cn can be regarded as C0. Furthermore, using Lemma 4.3 again,
there exists no bifurcation interval of positive solutions from the trivial solution which is disjointed with
[λ1(a

0), λ1(a0)]. �

From a process similar to the above, the following conclusions can be obtained.

Lemma 4.7. For any [c, d] ⊂ R+ satisfying [λ1(b
∞), λ1(b∞)] ∩ [c, d] = ∅, there exists R1 > 0 such that

u 6= Φλu, ∀λ ∈ [c, d], ∀u ∈ C[0, 1] with ‖u‖ ≥ R1.

Lemma 4.8. For µ ∈ (0, λ1(b
∞)), there exists R1 > 0 such that

deg(I − Φµ, BR, 0) = 1, ∀R ≥ R1.

Lemma 4.9. For λ > λ1(b∞), there exists R2 > 0 such that

deg(I − Φλ, BR, 0) = 0, ∀R ≥ R2.

Theorem 4.10. [λ1(b
∞), λ1(b∞)] is a bifurcation interval of positive solutions from infinity for (3.11), and

there exists no bifurcation interval of positive solutions from infinity which is disjoint with [λ1(b
∞), λ1(b∞)].

More precisely, there exists an unbounded component C∞ of solutions of (3.11) which meets [λ1(b
∞), λ1(b∞)]×

∞, and is unbounded in λ direction.

Now we are ready to prove Theorem 4.1 and Theorem 4.2.

Proof of Theorem 4.1. Obviously, the solution of the form (1, u) (u 6= θ) for BVP (3.9) is a positive
solution of BVP(1.2). By virtue of Lemma 3.5 it is sufficient to prove that there is a component C of Σ
crosses the hyperplane {1} × C[0, 1], where Σ ⊂ R+ × C[0, 1] is defined by (3.13).

Case (i). λ1(a0) < 1 < λ1(b
∞).

By Theorem 4.6, there exists an unbounded component C0 of positive solutions of (3.11), which meets
[λ1(a

0), λ1(a0)]× {θ}. From unboundedness of C0, there exists (µn, yn) ∈ C0 such that

µn + ‖yn‖ → +∞ as n→ +∞. (4.9)

If µn ≥ 1 for some n ∈ N, then the conclusion follows. On the contrary, suppose µn < 1 for all n ∈ N.
Since (0, θ) is the only solution of (3.11) with λ = 0. By Lemma 4.3 and 4.7, we know C0∩({0}×C[0, 1]) = ∅.
Therefore, µn ∈ (0, 1) for all n ∈ N. Taking a subsequence and relabeling if necessary, assume µn → µ∗ as
n→ +∞. Then µ∗ ∈ [0, 1]. This together with (4.9) guarantees that ‖yn‖ → +∞.

Letting [c, d] = [0, λ1(b
∞)− 1

m
] (m ∈ N) in Lemma 4.7, we have µ∗ > λ1(b

∞)− 1

m
for each m ∈ N, which

means µ∗ ≥ λ1(b∞) > 1. This is a contradiction.
Case (ii). λ1(b∞) < 1 < λ1(a

0).
From Theorem 4.10, it follows that there exists an unbounded component C∞ of solutions of (3.9) which

bifurcates from [λ1(b
∞), λ1(b∞)]×∞, and is unbounded in λ direction.

If C∞ ∩ (R+ × {0}) = ∅, by using the fact that C∞ ∩ ({0} × C[0, 1]) = ∅ and C∞ is unbounded in λ
direction, we know C∞ must crosses the hyperplane {1} × C[0, 1].

If C∞ ∩ (R+ × {0}) 6= ∅, from C∞ ∩ ({0} × C[0, 1]) = ∅ and Theorem 4.6, it follows C∞ ∩ (R+ × {0}) ∈
[λ1(a

0), λ1(a0)] × {0}. Therefore, C∞ joins [λ1(a
0), λ1(a0)] × {0} to [λ1(b

∞), λ1(b∞)] × ∞. Noticing
λ1(b∞) < 1 < λ1(a

0), we know that C∞ crosses the hyperplane {1} × C[0, 1]. �
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Proof of Theorem 4.2. First we show

Σ ∩ ([0, 1 + ε]× ∂BR) = ∅ (4.10)

for some ε > 0, where BR = {y ∈ C[0, 1] : ‖y‖ < R}, Σ ⊂ R+ × C[0, 1] is defined by (3.13).
In fact, from (H2) it follows that there exists ε > 0 such that

2m(1 + ε)

Γ(α)

∫ 1

0
[s(1− s)]α−1h(s)ds < 1.

If there is a solution (λ, y) of (3.11) such that 0 ≤ λ ≤ 1 + ε and ‖y‖ = R, then it follows from Lemma 3.3
and Lemma 3.4 that

0 ≤ (Ly)(t) ≤ tα−2Ty(t) ≤ tα−2‖Ty‖pc ≤ 2mtα−2‖y‖ for t ∈ (0, 1).

Using (3.10) and Lemma 3.2, we have

R = ‖y‖ = max
t∈J

λ

∫ 1

0
G∗(t, s)f̄(s, (Ly)(s))ds

≤ 2m(1 + ε)Rmax
t∈J

∫ 1

0
G∗(t, s)sα−2h(s)ds

≤ 2m(1 + ε)R

Γ(α)

∫ 1

0
[s(1− s)]α−1h(s)ds < R.

This is a contradiction. Thus, Σ ∩ ([0, 1 + ε]× ∂BR) = ∅.
Next, it follows from Theorem 4.6 that there exists an unbounded components C0 of solutions of (3.9),

which meet [λ1(a
0), λ1(a0)] × {0}. By virtue of (4.10) we know C0 ∩ ([0, 1 + ε] × ∂BR) = ∅. Notice the

fact that C0 is unbounded, λ1(a0) < 1, and C0 ∩ ({0} × C[0, 1]) = ∅, which guarantee that C0 crosses the
hyperplane {1} × C[0, 1]. Then (3.11) has a positive solution (1, y1) ∈ C0 with ‖y1‖ < R.

Very similarly, by Theorem 4.10 and (4.10), (3.11) has a positive solution (1, y2) ∈ C∞ with ‖y2‖ > R.
By Lemma 3.1, the conclusion follows. �

Immediately, from the proof of Theorem 4.2, we have the following result.

Corollary 4.11. Assume that (H2) holds. In addition, assume one of the following two conditions holds:
(i) λ1(a0) < 1;
(ii) λ1(b∞) < 1.
Then BVP(1.2) has at least one positive solution.

5. An Example

Let

(Ly)(t) =


tα−2y(t) +

2

3
tα−1y(

1

2
), t ∈ (0,

1

2
);

tα−2y(t), t ∈ [
1

2
, 1)

(5.1)

for each y ∈ C(J).
Let ρ be the unique characteristic value of La corresponding to positive eigenfunctions with a(t) ≡ t

and (Ly)(t) defined by (5.1) in (3.14). From Lemma 3.6, it follows that ρ exists. Now we are ready to give
the following example.
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Example 5.1. Consider the following boundary value problem of fractional impulsive differential equations

D1.8
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1), t 6= 1

2
;

u(
1

2
+ 0) = u(

1

2
− 0)− 1

4
u(

1

2
− 0);

u(0) = u(1) = 0

(5.2)

where

f(t, u) = ρtu[h(u) +
1

4
sin

1

u
+ t sin(tu)], (5.3)

h(u) =


1

2
, u ∈ (0,

1

2
];

u, u ∈ [
1

2
, 3);

3, u ∈ [3,+∞).

(5.4)

Then BVP(5.2) has at least one positive solution.

Proof. BVP(5.2) can be regarded as the form (1.2) with α = 1.8, where there is only one impulsive

point t1 =
1

2
with c1 =

1

4
. Let f(t, u) = 0 for u = 0, then f(t, u) is continuous.

From (5.2)-(5.4), choose a0(t) =
ρt

4
, a0(t) =

3

4
ρt, b∞(t) = 2ρt, b∞(t) = 4ρt,

ξ1(t, u) = −4tu sin(tu),

ξ2(t, u) =


4

3
tu sin(tu), (t, u) ∈ J × [0,

1

2
];

4

3
u(u− 1

2
) +

4

3
tu sin(tu), (t, u) ∈ J × (

1

2
, +∞),

ζ1(t, u) =


−u

2
(h(u)− 3)− u

8
sin

1

u
, (t, u) ∈ J × (0, 3];

−u
8

sin
1

u
, (t, u) ∈ J × (3, +∞),

ζ2(t, u) =


u

4
(h(u)− 3) +

u

16
sin

1

u
, (t, u) ∈ J × (0, 3];

u

16
sin

1

u
, (t, u) ∈ J × (3, +∞).

It is easy to see ξi(t, t
α−2u) = o(u) as u → 0 and ζi(t, t

α−2u) = o(u) as u → +∞ both uniformly with
respect to t ∈ (0, 1), (i = 1, 2).

Therefore, (H1) is satisfied.
By computation, it is easy to see (Ly)(t) = T ȳ(t), where L is defined by (5.1). Therefore, from the

definition of ρ, it is easy to see λ1(a
0) =

4

3
, λ1(b∞) =

1

2
.

As a result, by Theorem 4.1, BVP(5.2) has at least one positive solution. �
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