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Abstract
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1. Introduction

This paper is concerned with the following nonlinear Volterra integro-differential equations

u′(t) = f(t, u(t)) +

∫ t

0
k(t, s, u(s))ds, t ∈ I := [0, T ], (1.1)

with initial condition u(0) = α, where f(t, u) is continuous function with respect to variables t and u on I×R,
k(t, s, u) is continuous with respect to t, s and u on I × I × R and α is a given constant. Volterra integro-
differential equations arise widely in the mathematical modeling of physical and biological phenomena.

In 1940, S. M. Ulam posed the following problem: ”Under what conditions does there exists an additive
mapping near an approximately additive mapping?” [14]. In the following year, Hyers [8] gave an answer
to the problem of Ulam for additive functions defined on Banach spaces. In 1978, Rassias [13] provided a
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generalization of the result of Hyers by proving the existence of unique linear mappings near approximate
additive mappings.

S. M. Jung [9] applied the fixed point method to the investigation of the Volterra integral equation
adhering to the notion of Cadariu and Radu [2]. He proved that if a continuous function u : I → C satisfies
the perturbed Volterra integral equation of second kind∣∣∣∣u(t)−

∫ t

c
F (τ, u(τ))dτ

∣∣∣∣ ≤ ϕ(t)

for all t ∈ I, then under some additional conditions, there exist a unique continuous function u0 : I → C
and a constant C > 0 such that

u0(t) =

∫ t

c
F (τ, u0(τ))dτ and |u(t)− u0(t)| ≤ Cϕ(t)

for all t ∈ I. Recently in [11] the authors jointly with S.-M. Jung proved that if p : I → R, q : I → R,
K : I × I → R and ϕ : I → [0,∞) are sufficiently smooth functions and if a continuously differentiable
function u : I → R satisfies the perturbed Volterra integro-differential equation∣∣∣∣u′(t) + p(t)u(t) + q(t) +

∫ t

c
K(t, τ)u(τ)dτ

∣∣∣∣ ≤ ϕ(t)

for all t ∈ I, then there exists a unique solution u0 : I → R of the Volterra integro-differential equation

u′(t) + p(t)u(t) + q(t) +

∫ t

c
K(t, τ)u(τ)dτ = 0,

such that

|u(t)− u0(t)| ≤ exp

{
−
∫ t

c
p(τ)dτ

}∫ b

t
ϕ(ξ) exp

{∫ ξ

c
p(τ)dτ

}
dξ

for all t ∈ I. In the past recent years, several authors proved the Hyers-Ulam stability of Volterra equations
of other type (we refer to [1, 3, 4, 6, 7, 12]).

Definition 1.1. If for each continuously differentiable function u(t) satisfying∣∣∣∣u′(t)− f(t, u(t))−
∫ t

0
k(t, s, u(s))ds

∣∣∣∣ ≤ ψ(t),

where ψ(t) ≥ 0 for all t, there exists a solution u0(t) of the Volterra integro-differential equations (1.1) and
a constant C > 0 with

|u(t)− u0(t)| ≤ Cψ(t)

for all t, where C is independent of u(t) and u0(t), then we say that the equation (1.1) has the Hyers-Ulam-
Rassias stability. If ψ(t) is a constant function in the above inequalities, we say that equation (1.1) has the
Hyers-Ulam stability.

For a nonempty set X, we introduce the definition of the generalized metric on X.

Definition 1.2. A function d : X ×X → [0,∞] is called a generalized metric on X if and only if d satisfies
(M1) d(x, y) = 0 if and only if x = y;
(M2) d(x, y) = d(y, x) for all x, y ∈ X;
(M3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We now introduce one of the fundamental results of fixed point theory that will play an important role
in proving our main theorems.
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Theorem 1.3 ([5]). Let (X, d) be a generalized complete metric space. Assume that Λ : X → X a strictly
contractive operator with the Lipschitz constant L < 1. If there exists a nonnegative integer k such that
d(Λk+1x,Λkx) <∞ for some x ∈ X, then the followings are true:

(a) the sequence {Λnx} converges to a fixed point x∗ of Λ;
(b) x∗ is the unique fixed point of Λ in

X∗ =
{
y ∈ X

∣∣∣ d(Λkx, y) <∞
}

; (1.2)

(c)If y ∈ X∗, then

d(y, x∗) ≤ 1

1− L
d(Λy, y). (1.3)

The present paper is motivated by the desire to investigate the Hyers-Ulam-Rassias stability and Hyers-
Ulam stability for the nonlinear Volterra integro-differential equation (1.1).

2. Hyers-Ulam-Rassias Stability

In this section, we will prove the Hyers-Ulam-Rassias stability of the nonlinear Volterra integro-differential
equation (1.1).

Theorem 2.1. Let I := [0, T ] be a given closed and bounded interval, with T > 0, and M , Lf and Lk be
positive constants with 0 < MLf +M2Lk < 1. Suppose that f : I × R→ R is a continuous function which
satisfies a Lipschitz condition

|f(t, u1)− f(t, u2)| ≤ Lf |u1 − u2| , ∀t ∈ I, ∀u1, u2 ∈ R (2.1)

and k : I × I × R→ R is a continuous function which satisfies a Lipschitz condition

|k(t, s, u1)− k(t, s, u2)| ≤ Lk |u1 − u2| , ∀t, s ∈ I, ∀u1, u2 ∈ R. (2.2)

If a continuously differentiable function u : I→ R satisfies∣∣∣∣u′(t)− f(t, u(t))−
∫ t

0
k(t, s, u(s))ds

∣∣∣∣ ≤ ψ(t), ∀t ∈ I, (2.3)

where ψ : I → (0,∞) is a continuous function with∫ t

0
ψ(ξ)dξ ≤Mψ(t) (2.4)

for each t ∈ I, then there exists a unique continuous function u0 : I→ R such that

u0(t) = α+

∫ t

0
f(ξ, u0(ξ))dξ +

∫ t

0

∫ s

0
k(t, ξ, u0(ξ))dξds (2.5)

and

|u(t)− u0(t)| ≤
M

1− (MLf +M2Lk)
ψ(t), ∀t ∈ I. (2.6)

Proof. Let X denote the set of all real-valued continuous functions on I. For v, w ∈ X, we set

d(v, w) = inf {C ∈ [0,∞] | |v(t)− w(t)| ≤ Cψ(t), ∀t ∈ I } . (2.7)

It is easy to see that (X, d) is a complete generalized metric space (see [10]).
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Now, consider the operator Λ : X → X defined by

(Λv)(t) = α+

∫ t

0
f(ξ, v(ξ))dξ +

∫ t

0

∫ s

0
k(t, ξ, v(ξ))dξds, ∀t ∈ I (2.8)

for all v ∈ X.
We check that Λ is strictly contractive on X. Let Cvw ∈ [0,∞] be an discretionary constant with

d(v, w) ≤ Cvw for any v, w ∈ X, that is, by (2.7), we have

|v(t)− w(t)| ≤ Cvwψ(t), ∀t ∈ I. (2.9)

It then follows from (2.1), (2.2), (2.4), (2.8) and (2.9) that

|(Λv)(t)− (Λw)(t)| =
∣∣∣∣∫ t

0
{f(ξ, v(ξ))− f(ξ, w(ξ))} dξ

+

∫ t

0

∫ s

0
{k(t, ξ, v(ξ))−k(t, ξ, w(ξ))} dξds

∣∣∣∣
≤
∫ t

0
|f(ξ, v(ξ))− f(ξ, w(ξ))| dξ

+

∫ t

0

∫ s

0
|k(t, ξ, v(ξ))−k(t, ξ, w(ξ))| dξds

≤ Lf
∫ t

0
|v(ξ)− w(ξ)| dξ + Lk

∫ t

0

∫ s

0
|v(ξ)− w(ξ)| dξds

≤ LfCvw
∫ t

0
ψ(ξ)dξ + LkCvw

∫ t

0

∫ s

0
ψ(ξ)dξds

≤ Cvwψ(t)(MLf +M2Lk), ∀t ∈ I,

that is, d(Λv,Λw) ≤ Cvwψ(t)(MLf+M2Lk).Hence, we can conclude that d(Λv,Λw) ≤ (MLf+M2Lk)d(v, w)
for any v, w ∈ X, where we note that 0 < MLf +M2Lk < 1.

It follows from (2.8) that for arbitrary w0 ∈ X, there exists a constant 0 < C <∞ with

|(Λw0)(t)− w0(t)| =
∣∣∣∣α+

∫ t

0
f(ξ, w0(ξ))dξ +

∫ t

0

∫ s

0
k(t, ξ, u0(ξ))dξds−w0(t)

∣∣∣∣
≤ Cψ(t), ∀t ∈ I,

since f(ξ, w0(ξ)), k(t, ξ, u0(ξ)) and w0(t) are bounded on their domain and min
t∈I

ψ(t) > 0. Thus, (2.7) implies

that
d(Λw0, w0) <∞.

Therefore, according to Theorem 1.3 (a), there exists a continuous function u0 : I → R such that
Λnw0 → u0 in (X, d) and Λu0 = u0, that is, u0 satisfies equation (2.5) for every t ∈ I.

Since w and w0 are bounded on I for any w ∈ X and min
t∈I

ψ(t) > 0, there exists a constant 0 < Cw <∞
such that

|w0(t)− w(t)| ≤ Cwψ(t)

for any t ∈ I. We have d(w0, w) <∞ for any w ∈ X. Therefore, we obtained that {w ∈ X | d(w0, w) <∞}
is equal to X. From Theorem 1.3 (b), we deduce that u0, given by (2.5), is the unique continuous function.

From (2.3), we have

− ψ(t) ≤ u′(t)− f(t, u(t))−
∫ t

0
k(t, s, u(s))ds ≤ ψ(t), ∀t ∈ I. (2.10)
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If each term of the inequality (2.10) is integrated from 0 to t, then∣∣∣∣u(t)− α−
∫ t

0
f(ξ, u(ξ))dξ −

∫ t

0

∫ s

0
k(t, ξ, u(ξ))dξds

∣∣∣∣ ≤ ∫ t

0
ψ(ξ)dξ, ∀t ∈ I.

Thus, by (2.4) and (2.8), we get

|u(t)− (Λu)(t)| ≤
∫ t

0
ψ(ξ)dξ ≤Mψ(t), ∀t ∈ I,

which implies that
d(u,Λu) ≤M. (2.11)

By using Theorem 1.3 (c) and (2.11), we conclude that

d(u, u0) ≤
1

1− (MLf +M2Lk)
d(Λu, u) ≤ M

1− (MLf +M2Lk)
.

Consequently, this yields the inequality (2.6) for all t ∈ I.

In Theorem 2.1, we have examined the Hyers-Ulam-Rassias stability of the Volterra integro-differential
equation (1.1) defined on a bounded and closed interval. We will now show that Theorem 2.1 is also valid
for the case unbounded intervals.

Theorem 2.2. For given nonnegative real numbers T , let I denote either (−∞, T ] or R or [0,∞). Let M ,
Lf and Lk be positive constants with 0 < MLf + M2Lk < 1. Suppose that f : I × R→ R is a continuous
function which satisfies a Lipschitz condition (2.1) for all t ∈ I and all u1, u2 ∈ R. If a continuously
differentiable function u : I→ R satisfies the differential inequality (2.3) for all t ∈ I, where ψ : I → (0,∞)
is a continuous function satisfying the condition (2.4) for each t ∈ I, then there exists a unique continuous
function u0 : I→ R which satisfies (2.5) and (2.6) for all t ∈ I.

Proof. Let I = R. We first show that u0 is a continuous function. For any n ∈ N, we define In = [−n, n].
In accordance with Theorem 2.1, there exists a unique continuous function un : In→ R such that

un(t) = α+

∫ t

0
f(ξ, un(ξ))dξ +

∫ t

0

∫ s

0
k(t, ξ, un(ξ))dξds (2.12)

and

|u(t)− un(t)| ≤ M

1− (MLf +M2Lk)
ψ(t) (2.13)

for all t ∈ I. The uniqueness of un implies that if t ∈ In, then

un(t) = un+1(t) = un+2(t) = · · · . (2.14)

For any t ∈ R, we define n(t) ∈ N as

n(t) = min {n ∈ N | t ∈ In } .

Moreover, let us define a function u0 : R→ R by

u0(t) = un(t)(t), (2.15)

and we claim that u0 is continuous. We take the integer n1 = n(t1) for an arbitrary t1 ∈ R. Then, t1 belongs
to the interior of In1+1 and there exists an ε > 0 such that u0(t) = un1+1(t) for all t with t1− ε < t < t1 + ε.
Since un1+1 is continuous at t1, u0 is continuous at t1 for any t1 ∈ R.



S. Şevgin, H. Şevli, J. Nonlinear Sci. Appl. 9 (2016), 200–207 205

Now, we will prove that u0 satisfies (2.5) and (2.7) for all t ∈ R. Let n(t) be an integer for an arbitrary
t ∈ R. Then, from (2.12) and (2.15), we have t ∈ In(t) and

u0(t) = un(t)(t) = α+

∫ t

0
f(ξ, un(t)(ξ))dξ +

∫ t

0

∫ s

0
k(t, ξ, un(t)(ξ))dξds

= α+

∫ t

0
f(ξ, u0(ξ))dξ +

∫ t

0

∫ s

0
k(t, ξ, u0(ξ))dξds.

Since n(ξ) ≤ n(t) for any ξ ∈ In(t), the last equality be correct and we have

un(t)(ξ) = un(ξ)(ξ) = u0(ξ),

by virtue (2.14) and (2.15).
Since t ∈ In(t) for every t ∈ R, by (2.13) and (2.15), we have

|u(t)− u0(t)| ≤
∣∣u(t)− un(t)(t)

∣∣ ≤ M

1− (MLf +M2Lk)
ψ(t)

for any t ∈ R.
Lastly, we prove that u0 is unique. Assume that v0 : R → R be another continuous function which

satisfies (2.5) and (2.7), with v0 in place of u0, for all t ∈ R. Let t ∈ R be an discretionary number.
Since the restrictions u0|In(t)

and v0|In(t)
both satisfy (2.5) and (2.7) for all t ∈ In(t), the uniqueness of

un(t) = u0|In(t)
suggest that

u0(t) = u0|In(t)
(t) = v0|In(t)

(t) = v0(t).

The proof can be done similarly for the cases I = (−∞, T ] and I = [0,∞).

3. Hyers-Ulam Stability

In this section, we will prove the Hyers-Ulam stability of the nonlinear Volterra integro-differential
equation (1.1).

Theorem 3.1. Let Lf and Lk be positive constants with 0 < TLf + T 2

2 Lk < 1 and I := [0, T ] denote a
given closed and bounded interval, with T > 0. Suppose that f : I × R→ R is a continuous function which
satisfies a Lipschitz condition (2.1) and k : I×I×R→ R is a continuous function which satisfies a Lipschitz
condition (2.2). If for ε ≥ 0 için a continuously differentiable function u : I→ R satisfies∣∣∣∣u′(t)− f(t, u(t))−

∫ t

0
k(t, s, u(s))ds

∣∣∣∣ ≤ ε, ∀t ∈ I, (3.1)

then there exists a unique continuous function u0 : I→ R satisfying equation (2.5) and

|u(t)− u0(t)| ≤
T

1− (TLf + T 2

2 Lk)
ε, ∀t ∈ I. (3.2)

Proof. Initially, let X denote the set of all real-valued continuous functions on I. Furthermore, we define a
generalized metric on X by

d(v, w) = inf {C ∈ [0,∞] | |v(t)− w(t)| ≤ C, ∀t ∈ I } . (3.3)

It is easy to see that (X, d) is a complete generalized metric space (see Jung [10]).
Now, we define the operator Λ : X → X by

(Λv)(t) = α+

∫ t

0
f(ξ, v(ξ))dξ +

∫ t

0

∫ s

0
k(t, ξ, v(ξ))dξds, ∀t ∈ I (3.4)



S. Şevgin, H. Şevli, J. Nonlinear Sci. Appl. 9 (2016), 200–207 206

for all v ∈ X.
We now prove that Λ is strictly contractive on the generalized metric space X. For any v, w ∈ X, let

Cvw ∈ [0,∞] be an arbitrary constant with d(h, g) ≤ Cgh, that is, let us suppose that

|v(t)− w(t)| ≤ Cvw, ∀t ∈ I. (3.5)

By using (2.1), (2.2), (3.4) and (3.5), we deduce

|(Λv)(t)− (Λw)(t)| =
∣∣∣∣∫ t

0
{f(ξ, v(ξ))− f(ξ, w(ξ))} dξ

+

∫ t

0

∫ s

0
{k(t, ξ, v(ξ))−k(t, ξ, w(ξ))} dξds

∣∣∣∣
≤
∫ t

0
|f(ξ, v(ξ))− f(ξ, w(ξ))| dξ

+

∫ t

0

∫ s

0
|k(t, ξ, v(ξ))−k(t, ξ, w(ξ))| dξds

≤ Lf
∫ t

0
|v(ξ)− w(ξ)| dξ + Lk

∫ t

0

∫ s

0
|v(ξ)− w(ξ)| dξds

≤ LfCvwt+ LkCvw
t2

2

≤ Cvw(TLf +
T 2

2
Lk), ∀t ∈ I,

that is, d(Λv,Λw) ≤ Cvw(TLf + T 2

2 Lk). We conclude that d(Λv,Λw) ≤ (TLf + T 2

2 Lk)d(v, w) for any
v, w ∈ X.

Let w0 be any arbitrary element in X. Then there exists a constant 0 < C <∞ with

|(Λw0)(t)− w0(t)| =
∣∣∣∣α+

∫ t

0
f(ξ, w0(ξ))dξ +

∫ t

0

∫ s

0
k(t, ξ, w0(ξ))dξds−w0(t)

∣∣∣∣
≤ C, ∀t ∈ I,

since f(ξ, w0(ξ)), k(t, ξ, w0(ξ)) and w0(t) are bounded on their domain. Thus, (3.3) implies that

d(Λw0, w0) <∞.

Therefore, according to Theorem 1.3 (a), there exists a continuous function u0 : I → R such that
Λnw0 → u0 in (X, d) as n→∞, and such that Λu0 = u0, that is, u0 satisfies equation (2.5) for every t ∈ I.

As in the proof of Theorem 2.1, it can be verify that {w ∈ X | d(w0, w) <∞} = X. Due to Theorem
1.3 (b), u0, given by (2.5), is the unique continuous function.

From (2.3), we get

−ε ≤ u′(t)− f(t, u(t))−
∫ t

0
k(t, s, u(s))ds ≤ ε, ∀t ∈ I.

If each term of the above inequality is integrated from 0 to t, then∣∣∣∣u(t)− α−
∫ t

0
f(ξ, u0(ξ))dξ −

∫ t

0

∫ s

0
k(t, ξ, u0(ξ))dξds

∣∣∣∣ ≤ εT, ∀t ∈ I,

that is, it holds that
d(u,Λu) ≤ εT. (3.6)

Lastly, Theorem 1.3 (c) together with (2.11) implies that

d(u, u0) ≤
1

1− (TLf + T 2

2 Lk)
d(Λu, u) ≤ T

1− (TLf + T 2

2 Lk)
ε,

that is the inequality (3.2) be true for all t ∈ I.
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