

Journal of Nonlinear Science and Applications

Print: ISSN 2008-1898 Online: ISSN 2008-1901

Stability of a nonlinear Volterra integro-differential equation via a fixed point approach

Sebaheddin Şevgin^{a,*}, Hamdullah Şevli^b

^aYuzuncu Yil University, Faculty of Sciences, Department of Mathematics, 65080 Van, TURKEY. ^bDepartment of Mathematics, Faculty of Sciences and Arts, Istanbul Commerce University, 34672 Uskudar, Istanbul, TURKEY.

Communicated by Janusz Brzdek

Abstract

The object of the present paper is to examine the Hyers-Ulam-Rassias stability and the Hyers-Ulam stability of a nonlinear Volterra integro-differential equation by using the fixed point method. ©2016 All rights reserved.

Keywords: Hyers-Ulam stability, Hyers-Ulam-Rassias stability, Volterra integro-differential equations, fixed-point method. *2010 MSC:* 45J05, 47H10, 45M10.

1. Introduction

This paper is concerned with the following nonlinear Volterra integro-differential equations

$$u'(t) = f(t, u(t)) + \int_0^t k(t, s, u(s)) ds, \quad t \in I := [0, T],$$
(1.1)

with initial condition $u(0) = \alpha$, where f(t, u) is continuous function with respect to variables t and u on $I \times \mathbb{R}$, k(t, s, u) is continuous with respect to t, s and u on $I \times I \times \mathbb{R}$ and α is a given constant. Volterra integrodifferential equations arise widely in the mathematical modeling of physical and biological phenomena.

In 1940, S. M. Ulam posed the following problem: "Under what conditions does there exists an additive mapping near an approximately additive mapping?" [14]. In the following year, Hyers [8] gave an answer to the problem of Ulam for additive functions defined on Banach spaces. In 1978, Rassias [13] provided a

*Corresponding author

Email addresses: ssevgin@yahoo.com (Sebaheddin Şevgin), hsevli@yahoo.com (Hamdullah Şevli)

generalization of the result of Hyers by proving the existence of unique linear mappings near approximate additive mappings.

S. M. Jung [9] applied the fixed point method to the investigation of the Volterra integral equation adhering to the notion of Cadariu and Radu [2]. He proved that if a continuous function $u: I \to \mathbb{C}$ satisfies the perturbed Volterra integral equation of second kind

$$\left| u(t) - \int_{c}^{t} F(\tau, u(\tau)) d\tau \right| \leq \varphi(t)$$

for all $t \in I$, then under some additional conditions, there exist a unique continuous function $u_0 : I \to \mathbb{C}$ and a constant C > 0 such that

$$u_0(t) = \int_c^t F(\tau, u_0(\tau)) d\tau$$
 and $|u(t) - u_0(t)| \le C\varphi(t)$

for all $t \in I$. Recently in [11] the authors jointly with S.-M. Jung proved that if $p: I \to \mathbb{R}, q: I \to \mathbb{R}$, $K: I \times I \to \mathbb{R}$ and $\varphi: I \to [0, \infty)$ are sufficiently smooth functions and if a continuously differentiable function $u: I \to \mathbb{R}$ satisfies the perturbed Volterra integro-differential equation

$$\left| u'(t) + p(t)u(t) + q(t) + \int_c^t K(t,\tau)u(\tau)d\tau \right| \le \varphi(t)$$

for all $t \in I$, then there exists a unique solution $u_0: I \to \mathbb{R}$ of the Volterra integro-differential equation

$$u'(t) + p(t)u(t) + q(t) + \int_{c}^{t} K(t,\tau)u(\tau)d\tau = 0,$$

such that

$$|u(t) - u_0(t)| \le \exp\left\{-\int_c^t p(\tau)d\tau\right\} \int_t^b \varphi(\xi) \exp\left\{\int_c^\xi p(\tau)d\tau\right\} d\xi$$

for all $t \in I$. In the past recent years, several authors proved the Hyers-Ulam stability of Volterra equations of other type (we refer to [1, 3, 4, 6, 7, 12]).

Definition 1.1. If for each continuously differentiable function u(t) satisfying

$$\left|u'(t) - f(t, u(t)) - \int_0^t k(t, s, u(s)) ds\right| \le \psi(t),$$

where $\psi(t) \ge 0$ for all t, there exists a solution $u_0(t)$ of the Volterra integro-differential equations (1.1) and a constant C > 0 with

$$|u(t) - u_0(t)| \le C\psi(t)$$

for all t, where C is independent of u(t) and $u_0(t)$, then we say that the equation (1.1) has the Hyers-Ulam-Rassias stability. If $\psi(t)$ is a constant function in the above inequalities, we say that equation (1.1) has the Hyers-Ulam stability.

For a nonempty set X, we introduce the definition of the generalized metric on X.

Definition 1.2. A function $d: X \times X \to [0, \infty]$ is called a generalized metric on X if and only if d satisfies $(M_1) \ d(x, y) = 0$ if and only if x = y;

- (M_2) d(x, y) = d(y, x) for all $x, y \in X$;
- (M_3) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$.

We now introduce one of the fundamental results of fixed point theory that will play an important role in proving our main theorems. **Theorem 1.3** ([5]). Let (X, d) be a generalized complete metric space. Assume that $\Lambda : X \to X$ a strictly contractive operator with the Lipschitz constant L < 1. If there exists a nonnegative integer k such that $d(\Lambda^{k+1}x, \Lambda^k x) < \infty$ for some $x \in X$, then the followings are true:

- (a) the sequence $\{\Lambda^n x\}$ converges to a fixed point x^* of Λ ;
- (b) x^* is the unique fixed point of Λ in

$$X^* = \left\{ y \in X \mid d(\Lambda^k x, y) < \infty \right\};$$
(1.2)

(c) If $y \in X^*$, then

$$d(y, x^*) \le \frac{1}{1-L} d(\Lambda y, y).$$
 (1.3)

The present paper is motivated by the desire to investigate the Hyers-Ulam-Rassias stability and Hyers-Ulam stability for the nonlinear Volterra integro-differential equation (1.1).

2. Hyers-Ulam-Rassias Stability

In this section, we will prove the Hyers-Ulam-Rassias stability of the nonlinear Volterra integro-differential equation (1.1).

Theorem 2.1. Let I := [0,T] be a given closed and bounded interval, with T > 0, and M, L_f and L_k be positive constants with $0 < ML_f + M^2L_k < 1$. Suppose that $f : I \times \mathbb{R} \to \mathbb{R}$ is a continuous function which satisfies a Lipschitz condition

$$|f(t, u_1) - f(t, u_2)| \le L_f |u_1 - u_2|, \quad \forall t \in I, \ \forall u_1, u_2 \in \mathbb{R}$$
(2.1)

and $k: I \times I \times \mathbb{R} \to \mathbb{R}$ is a continuous function which satisfies a Lipschitz condition

$$|k(t, s, u_1) - k(t, s, u_2)| \le L_k |u_1 - u_2|, \quad \forall t, s \in I, \ \forall u_1, u_2 \in \mathbb{R}.$$
(2.2)

If a continuously differentiable function $u: I \rightarrow \mathbb{R}$ satisfies

$$\left| u'(t) - f(t, u(t)) - \int_0^t k(t, s, u(s)) ds \right| \le \psi(t), \quad \forall t \in I,$$
(2.3)

where $\psi: I \to (0,\infty)$ is a continuous function with

$$\int_0^t \psi(\xi) d\xi \le M \psi(t) \tag{2.4}$$

for each $t \in I$, then there exists a unique continuous function $u_0: I \to \mathbb{R}$ such that

$$u_0(t) = \alpha + \int_0^t f(\xi, u_0(\xi)) d\xi + \int_0^t \int_0^s k(t, \xi, u_0(\xi)) d\xi ds$$
(2.5)

and

$$|u(t) - u_0(t)| \le \frac{M}{1 - (ML_f + M^2 L_k)} \psi(t), \quad \forall t \in I.$$
(2.6)

Proof. Let X denote the set of all real-valued continuous functions on I. For $v, w \in X$, we set

$$d(v,w) = \inf \{ C \in [0,\infty] \mid |v(t) - w(t)| \le C\psi(t), \ \forall t \in I \}.$$
(2.7)

It is easy to see that (X, d) is a complete generalized metric space (see [10]).

Now, consider the operator $\Lambda: X \to X$ defined by

$$(\Lambda v)(t) = \alpha + \int_0^t f(\xi, v(\xi))d\xi + \int_0^t \int_0^s k(t, \xi, v(\xi))d\xi ds, \,\forall t \in I$$

$$(2.8)$$

for all $v \in X$.

We check that Λ is strictly contractive on X. Let $C_{vw} \in [0, \infty]$ be an discretionary constant with $d(v, w) \leq C_{vw}$ for any $v, w \in X$, that is, by (2.7), we have

$$|v(t) - w(t)| \le C_{vw}\psi(t), \ \forall t \in I.$$

$$(2.9)$$

It then follows from (2.1), (2.2), (2.4), (2.8) and (2.9) that

$$\begin{split} |(\Lambda v)(t) - (\Lambda w)(t)| &= \left| \int_0^t \left\{ f(\xi, v(\xi)) - f(\xi, w(\xi)) \right\} d\xi \\ &+ \int_0^t \int_0^s \left\{ k(t, \xi, v(\xi)) - k(t, \xi, w(\xi)) \right\} d\xi ds \right| \\ &\leq \int_0^t |f(\xi, v(\xi)) - f(\xi, w(\xi))| \, d\xi \\ &+ \int_0^t \int_0^s |k(t, \xi, v(\xi)) - k(t, \xi, w(\xi))| \, d\xi ds \\ &\leq L_f \int_0^t |v(\xi) - w(\xi)| \, d\xi + L_k \int_0^t \int_0^s |v(\xi) - w(\xi)| \, d\xi ds \\ &\leq L_f C_{vw} \int_0^t \psi(\xi) d\xi + L_k C_{vw} \int_0^t \int_0^s \psi(\xi) d\xi ds \\ &\leq C_{vw} \psi(t) (ML_f + M^2 L_k), \, \forall t \in I, \end{split}$$

that is, $d(\Lambda v, \Lambda w) \leq C_{vw}\psi(t)(ML_f + M^2L_k)$. Hence, we can conclude that $d(\Lambda v, \Lambda w) \leq (ML_f + M^2L_k)d(v, w)$ for any $v, w \in X$, where we note that $0 < ML_f + M^2L_k < 1$.

It follows from (2.8) that for arbitrary $w_0 \in X$, there exists a constant $0 < C < \infty$ with

$$\begin{aligned} |(\Lambda w_0)(t) - w_0(t)| &= \left| \alpha + \int_0^t f(\xi, w_0(\xi)) d\xi + \int_0^t \int_0^s k(t, \xi, u_0(\xi)) d\xi ds - w_0(t) \right| \\ &\leq C \psi(t), \, \forall t \in I, \end{aligned}$$

since $f(\xi, w_0(\xi)), k(t, \xi, u_0(\xi))$ and $w_0(t)$ are bounded on their domain and $\min_{t \in I} \psi(t) > 0$. Thus, (2.7) implies that

 $d(\Lambda w_0, w_0) < \infty.$

Therefore, according to Theorem 1.3 (a), there exists a continuous function $u_0 : I \to \mathbb{R}$ such that $\Lambda^n w_0 \to u_0$ in (X, d) and $\Lambda u_0 = u_0$, that is, u_0 satisfies equation (2.5) for every $t \in I$.

Since w and w_0 are bounded on I for any $w \in X$ and $\min_{t \in I} \psi(t) > 0$, there exists a constant $0 < C_w < \infty$ such that

$$|w_0(t) - w(t)| \le C_w \psi(t)$$

for any $t \in I$. We have $d(w_0, w) < \infty$ for any $w \in X$. Therefore, we obtained that $\{w \in X \mid d(w_0, w) < \infty\}$ is equal to X. From Theorem 1.3 (b), we deduce that u_0 , given by (2.5), is the unique continuous function.

From (2.3), we have

$$-\psi(t) \le u'(t) - f(t, u(t)) - \int_0^t k(t, s, u(s)) ds \le \psi(t), \quad \forall t \in I.$$
(2.10)

If each term of the inequality (2.10) is integrated from 0 to t, then

$$\left|u(t) - \alpha - \int_0^t f(\xi, u(\xi))d\xi - \int_0^t \int_0^s k(t, \xi, u(\xi))d\xi ds\right| \le \int_0^t \psi(\xi)d\xi, \quad \forall t \in I.$$

Thus, by (2.4) and (2.8), we get

$$|u(t) - (\Lambda u)(t)| \le \int_0^t \psi(\xi) d\xi \le M \psi(t), \quad \forall t \in I,$$

which implies that

$$d(u,\Lambda u) \le M. \tag{2.11}$$

By using Theorem 1.3 (c) and (2.11), we conclude that

$$d(u, u_0) \le \frac{1}{1 - (ML_f + M^2 L_k)} d(\Lambda u, u) \le \frac{M}{1 - (ML_f + M^2 L_k)}.$$

Consequently, this yields the inequality (2.6) for all $t \in I$.

In Theorem 2.1, we have examined the Hyers-Ulam-Rassias stability of the Volterra integro-differential equation (1.1) defined on a bounded and closed interval. We will now show that Theorem 2.1 is also valid for the case unbounded intervals.

Theorem 2.2. For given nonnegative real numbers T, let I denote either $(-\infty, T]$ or \mathbb{R} or $[0, \infty)$. Let M, L_f and L_k be positive constants with $0 < ML_f + M^2L_k < 1$. Suppose that $f: I \times \mathbb{R} \to \mathbb{R}$ is a continuous function which satisfies a Lipschitz condition (2.1) for all $t \in I$ and all $u_1, u_2 \in \mathbb{R}$. If a continuously differentiable function $u: I \to \mathbb{R}$ satisfies the differential inequality (2.3) for all $t \in I$, where $\psi: I \to (0, \infty)$ is a continuous function satisfying the condition (2.4) for each $t \in I$, then there exists a unique continuous function $u_0: I \to \mathbb{R}$ which satisfies (2.5) and (2.6) for all $t \in I$.

Proof. Let $I = \mathbb{R}$. We first show that u_0 is a continuous function. For any $n \in \mathbb{N}$, we define $I_n = [-n, n]$. In accordance with Theorem 2.1, there exists a unique continuous function $u_n : I_n \to \mathbb{R}$ such that

$$u_n(t) = \alpha + \int_0^t f(\xi, u_n(\xi)) d\xi + \int_0^t \int_0^s k(t, \xi, u_n(\xi)) d\xi ds$$
(2.12)

and

$$|u(t) - u_n(t)| \le \frac{M}{1 - (ML_f + M^2 L_k)} \psi(t)$$
(2.13)

for all $t \in I$. The uniqueness of u_n implies that if $t \in I_n$, then

$$u_n(t) = u_{n+1}(t) = u_{n+2}(t) = \cdots$$
 (2.14)

For any $t \in \mathbb{R}$, we define $n(t) \in \mathbb{N}$ as

$$n(t) = \min\left\{n \in \mathbb{N} \mid t \in I_n\right\}.$$

Moreover, let us define a function $u_0 : \mathbb{R} \to \mathbb{R}$ by

$$u_0(t) = u_{n(t)}(t), (2.15)$$

and we claim that u_0 is continuous. We take the integer $n_1 = n(t_1)$ for an arbitrary $t_1 \in \mathbb{R}$. Then, t_1 belongs to the interior of I_{n_1+1} and there exists an $\varepsilon > 0$ such that $u_0(t) = u_{n_1+1}(t)$ for all t with $t_1 - \varepsilon < t < t_1 + \varepsilon$. Since u_{n_1+1} is continuous at t_1 , u_0 is continuous at t_1 for any $t_1 \in \mathbb{R}$.

Now, we will prove that u_0 satisfies (2.5) and (2.7) for all $t \in \mathbb{R}$. Let n(t) be an integer for an arbitrary $t \in \mathbb{R}$. Then, from (2.12) and (2.15), we have $t \in I_{n(t)}$ and

$$u_0(t) = u_{n(t)}(t) = \alpha + \int_0^t f(\xi, u_{n(t)}(\xi)) d\xi + \int_0^t \int_0^s k(t, \xi, u_{n(t)}(\xi)) d\xi ds$$
$$= \alpha + \int_0^t f(\xi, u_0(\xi)) d\xi + \int_0^t \int_0^s k(t, \xi, u_0(\xi)) d\xi ds.$$

Since $n(\xi) \leq n(t)$ for any $\xi \in I_{n(t)}$, the last equality be correct and we have

$$u_{n(t)}(\xi) = u_{n(\xi)}(\xi) = u_0(\xi)$$

by virtue (2.14) and (2.15).

Since $t \in I_{n(t)}$ for every $t \in \mathbb{R}$, by (2.13) and (2.15), we have

$$|u(t) - u_0(t)| \le |u(t) - u_{n(t)}(t)| \le \frac{M}{1 - (ML_f + M^2L_k)}\psi(t)$$

for any $t \in \mathbb{R}$.

Lastly, we prove that u_0 is unique. Assume that $v_0 : \mathbb{R} \to \mathbb{R}$ be another continuous function which satisfies (2.5) and (2.7), with v_0 in place of u_0 , for all $t \in \mathbb{R}$. Let $t \in \mathbb{R}$ be an discretionary number. Since the restrictions $u_0|_{I_{n(t)}}$ and $v_0|_{I_{n(t)}}$ both satisfy (2.5) and (2.7) for all $t \in I_{n(t)}$, the uniqueness of $u_{n(t)} = u_0|_{I_{n(t)}}$ suggest that

$$u_0(t) = u_0|_{I_{n(t)}}(t) = v_0|_{I_{n(t)}}(t) = v_0(t)$$

The proof can be done similarly for the cases $I = (-\infty, T]$ and $I = [0, \infty)$.

3. Hyers-Ulam Stability

In this section, we will prove the Hyers-Ulam stability of the nonlinear Volterra integro-differential equation (1.1).

Theorem 3.1. Let L_f and L_k be positive constants with $0 < TL_f + \frac{T^2}{2}L_k < 1$ and I := [0,T] denote a given closed and bounded interval, with T > 0. Suppose that $f : I \times \mathbb{R} \to \mathbb{R}$ is a continuous function which satisfies a Lipschitz condition (2.1) and $k : I \times I \times \mathbb{R} \to \mathbb{R}$ is a continuous function which satisfies a Lipschitz condition (2.2). If for $\varepsilon \geq 0$ icin a continuously differentiable function $u : I \to \mathbb{R}$ satisfies

$$\left|u'(t) - f(t, u(t)) - \int_0^t k(t, s, u(s)) ds\right| \le \varepsilon, \quad \forall t \in I,$$
(3.1)

then there exists a unique continuous function $u_0: I \to \mathbb{R}$ satisfying equation (2.5) and

$$|u(t) - u_0(t)| \le \frac{T}{1 - (TL_f + \frac{T^2}{2}L_k)}\varepsilon, \quad \forall t \in I.$$
 (3.2)

Proof. Initially, let X denote the set of all real-valued continuous functions on I. Furthermore, we define a generalized metric on X by

$$d(v,w) = \inf \{ C \in [0,\infty] \mid |v(t) - w(t)| \le C, \ \forall t \in I \}.$$
(3.3)

It is easy to see that (X, d) is a complete generalized metric space (see Jung [10]).

Now, we define the operator $\Lambda: X \to X$ by

$$(\Lambda v)(t) = \alpha + \int_0^t f(\xi, v(\xi))d\xi + \int_0^t \int_0^s k(t, \xi, v(\xi))d\xi ds, \,\forall t \in I$$

$$(3.4)$$

for all $v \in X$.

We now prove that Λ is strictly contractive on the generalized metric space X. For any $v, w \in X$, let $C_{vw} \in [0, \infty]$ be an arbitrary constant with $d(h, g) \leq C_{gh}$, that is, let us suppose that

$$|v(t) - w(t)| \le C_{vw}, \ \forall t \in I.$$

$$(3.5)$$

By using (2.1), (2.2), (3.4) and (3.5), we deduce

$$\begin{split} |(\Lambda v)(t) - (\Lambda w)(t)| &= \left| \int_0^t \left\{ f(\xi, v(\xi)) - f(\xi, w(\xi)) \right\} d\xi \\ &+ \int_0^t \int_0^s \left\{ k(t, \xi, v(\xi)) - k(t, \xi, w(\xi)) \right\} d\xi ds \right| \\ &\leq \int_0^t |f(\xi, v(\xi)) - f(\xi, w(\xi))| d\xi \\ &+ \int_0^t \int_0^s |k(t, \xi, v(\xi)) - k(t, \xi, w(\xi))| d\xi ds \\ &\leq L_f \int_0^t |v(\xi) - w(\xi)| d\xi + L_k \int_0^t \int_0^s |v(\xi) - w(\xi)| d\xi ds \\ &\leq L_f C_{vw} t + L_k C_{vw} \frac{t^2}{2} \\ &\leq C_{vw} (TL_f + \frac{T^2}{2} L_k), \, \forall t \in I, \end{split}$$

that is, $d(\Lambda v, \Lambda w) \leq C_{vw}(TL_f + \frac{T^2}{2}L_k)$. We conclude that $d(\Lambda v, \Lambda w) \leq (TL_f + \frac{T^2}{2}L_k)d(v, w)$ for any $v, w \in X$.

Let w_0 be any arbitrary element in X. Then there exists a constant $0 < C < \infty$ with

$$\begin{aligned} |(\Lambda w_0)(t) - w_0(t)| &= \left| \alpha + \int_0^t f(\xi, w_0(\xi)) d\xi + \int_0^t \int_0^s k(t, \xi, w_0(\xi)) d\xi ds - w_0(t) \right| \\ &\leq C, \, \forall t \in I, \end{aligned}$$

since $f(\xi, w_0(\xi)), k(t, \xi, w_0(\xi))$ and $w_0(t)$ are bounded on their domain. Thus, (3.3) implies that

 $d(\Lambda w_0, w_0) < \infty.$

Therefore, according to Theorem 1.3 (a), there exists a continuous function $u_0 : I \to \mathbb{R}$ such that $\Lambda^n w_0 \to u_0$ in (X, d) as $n \to \infty$, and such that $\Lambda u_0 = u_0$, that is, u_0 satisfies equation (2.5) for every $t \in I$.

As in the proof of Theorem 2.1, it can be verify that $\{w \in X \mid d(w_0, w) < \infty\} = X$. Due to Theorem 1.3 (b), u_0 , given by (2.5), is the unique continuous function.

From (2.3), we get

$$-\varepsilon \le u'(t) - f(t, u(t)) - \int_0^t k(t, s, u(s)) ds \le \varepsilon, \quad \forall t \in I.$$

If each term of the above inequality is integrated from 0 to t, then

$$\left| u(t) - \alpha - \int_0^t f(\xi, u_0(\xi)) d\xi - \int_0^t \int_0^s k(t, \xi, u_0(\xi)) d\xi ds \right| \le \varepsilon T, \quad \forall t \in I,$$

that is, it holds that

$$d(u,\Lambda u) \le \varepsilon T. \tag{3.6}$$

Lastly, Theorem 1.3 (c) together with (2.11) implies that

$$d(u, u_0) \le \frac{1}{1 - (TL_f + \frac{T^2}{2}L_k)} d(\Lambda u, u) \le \frac{T}{1 - (TL_f + \frac{T^2}{2}L_k)} \varepsilon,$$

that is the inequality (3.2) be true for all $t \in I$.

Acknowledgements:

This study was supported by a Grant from Yüzüncü Yıl University, the Directorate of Scientific Research Projects (KONGRE-2014/38).

References

- M. Akkouchi, Hyers-Ulam-Rassias stability of nonlinear Volterra integral equations via a fixed point approach, Acta Univ. Apulensis Math. Inform., 26 (2011), 257–266.1
- [2] L. Cădariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., 346 (2004,) 43-52.1
- [3] L. P. Castro, A. Ramos, Hyers-Ulam-Rassias stability for a class of nonlinear Volterra integral equations, Banach J. Math. Anal., 3 (2009), 36–43.1
- [4] L. P. Castro, A. Ramos, Hyers-Ulam and Hyers-Ulam-Rassias stability of Volterra integral equations with delay, Integral methods in science and engineering, Birkhauser Boston, Inc., Boston, MA, 1 (2010), 85–94.1
- [5] J. B. Diaz, B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305–309.1.3
- [6] M. Gachpazan, O. Baghani, Hyers-Ulam stability of Volterra integral equation, J. Nonlinear Anal. Appl., 1 (2010), 19–25.1
- M. Gachpazan, O. Baghani, Hyers-Ulam stability of nonlinear integral equation, Fixed Point Theory Appl., 2010 (2010), 6 pages.1
- [8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A., 27 (1941), 222–224.
 1
- [9] S. M. Jung, A fixed point approach to the stability of a Volterra integral equation. Fixed Point Theory Appl., 2007 (2007), 9 pages.1
- [10] S. M. Jung, A fixed point approach to the stability of differential equations y' = F(x, y), Bull. Malays. Math. Sci. Soc., **33** (2010), 47–56.2, 3
- S.M. Jung, S. Şevgin, H. Şevli. On the perturbation of Volterra integro-differential equations, Appl. Math. Lett., 26 (2013), 665–669.1
- [12] J. R. Morales, E. M. Rojas, Hyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear integral equations with delay, Int. J. Nonlinear Anal. Appl., 2 (2011), 1–6.1
- [13] T. M. Rassias, On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72 (1978), 297–300.1
- [14] S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York, (1964).1