On Banach contraction principle in a cone metric space

Shobha Jaina, Shishir Jainb,*, Lal Bahadur Jainc

aQuantum School of Technology, Roorkee (U.K), India.
bShri Vaishnav Institute of Technology and Science, Indore (M.P.), India.
cRetd. Principal, Govt. Arts and Commerce College Indore (M.P.), India.

This paper is dedicated to Professor Ljubomir Ćirić

Communicated by Professor V. Berinde

Abstract

The object of this paper is to establish a generalized form of Banach contraction principle for a cone metric space which is not necessarily normal. This happens to be a generalization of all different forms of Banach contraction Principle, which have been arrived at in L. G. Huang and X. Zhang [L. G. Huang and X. Zhang, J. Math. Anal. Appl 332 (2007), 1468–1476] and Sh. Rezapour, R. Hamlbarani [Sh. Rezapour, R. Hamlbarani, J. Math. Anal. Appl. 345 (2008) 719-724] and D. Ilic, V. Rakocevic [D. Ilic, V. Rakocevic, Applied Mathematics Letters 22 (2009), 728–731]. It also results that the theorem on quasi contraction of Ćirić [L. J. B. Ćirić, Proc. American Mathematical Society 45 (1974), 999–1006]. for a complete metric space also holds good in a complete cone metric space. All the results presented in this paper are new. ©2012. All rights reserved.

Keywords: Cone metric space, common fixed points.

1. Introduction

There has been a number of generalizations of metric space. One such generalization is a cone metric space. In the second half of previous century a lot of work has been done in a K-metric space, which is in the setting of cone in a real normed linear space and variously defined notions of convergence and a Cauchy
sequence [13]. However, another school in U.S.S.R [7] worked in K-metric space in the setting of a Banach space B and a closed cone in it in the name of a generalized metric space or a SKS metric space. Recently, in [3] Huang and Zhang defined cone metric space in the same setting of a real Banach space E ordered with a closed cone P in it with $\text{int}P \neq \Phi$ defining convergence and a Cauchy sequence with respect to interior points of P. In this space they replaced the set of real numbers of a metric space by an ordered metric space. In this paper we prove a common fixed point theorem for a sequence of self maps satisfying a generalized contractive condition assuming the normality of cone metric space.

Recently, Rezapour and Hamlbarani [11] omitted the assumption of normality in cone metric space, which is a milestone in developing fixed point theory in cone metric space. In [5], the authors introduced the concept of a compatible pair of self maps in a cone metric space and established a basic result for a non-normal cone metric space with an example, while in [6] weakly compatible maps have been studied. In this paper we are proving a common fixed point theorem for a sequence of self maps satisfying a generalized contractive condition for a non-normal cone metric space. It results in a generalized form of Banach contraction principle in this space.

2. Preliminaries

Definition 2.1. [3] Let E be a real Banach space and P be a subset of E. P is called a cone if

(i) P is a closed, nonempty and $P \neq \{0\}$;
(ii) $a, b \in R, a, b \geq 0, x, y \in P$ imply $ax + by \in P$;
(iii) $x \in P$ and $-x \in P$ imply $x = 0$.

Given a cone $P \subseteq E$, we define a partial ordering “\leq” in E by $x \leq y$ if $y - x \in P$. We write $x < y$ to denote $x \leq y$ but $x \neq y$ and $x << y$ to denote $y - x \in P_0$, where P_0 stands for the interior of P.

P is called normal if for some $M > 0$ for $x, y \in E, 0 \leq x \leq y$ implies $\|x\| \leq M\|y\|$.

Proposition 2.2. Let P be a cone in a real Banach space E. If for $a \in P$ and $a \leq ka$, for some $k \in [0, 1)$ then $a = 0$.

Proof: For $a \in P, k \in [0, 1)$ and $a \leq ka$ gives $(k - 1)a \in P$ implies $-(1 - k)a \in P$. Therefore by (ii) we have $-a \in P$, as $1/(1 - k) > 0$. Hence $a = 0$, by (iii).

Proposition 2.3. [4] Let P be a cone is a real Banach space E with non-empty interior. If for $a \in E$ and $a << c$, for all $c \in P_0$, then $a = 0$.

Remark 2.4. [11] $\lambda P_0 \subseteq P_0$, for $\lambda > 0$ and $P_0 + P_0 \subseteq P_0$.

Definition 2.5. [3] Let X be a nonempty set and P be a cone in a real Banach space E. Suppose the mapping $d : X \times X \rightarrow E$ satisfies:

(a) $0 \leq d(x, y)$, for all $x, y \in X$ and $d(x, y) = 0$, if and only if $x = y$;
(b) $d(x, y) = d(y, x)$, for all $x, y \in X$;
(c) $d(x, y) \leq d(x, z) + d(z, y)$, for all $x, y, z \in X$.

Then d is called a cone metric on X, and (X, d) is called a cone metric space. If P is normal, then (X, d) is said to be a normal cone metric space.

Example 2.6. [2] Let $E = R^2, P = \{(x, y) \in E : x \geq 0, y \geq 0\}$ and $X = R$. For $x, y \in R$ define $d(x, y) = |x - y|(1, \alpha)$ where $\alpha \geq 0$ is some fixed constant. Then (X, d) is a cone metric space.

Example 2.7. Let $E = C_R^0[0, 1]$ with the norm $\|f\| = \|f\|_{\infty} + \|f'\|_{\infty}$. Consider the cone $P = \{f \in E : f \geq 0\}$. Then P is not a normal cone as shown in [14]. Taking $X = \{1, 1/2, 1/3 \ldots\}$ we define $d : X \times X \rightarrow P$ by $d(t, 0) = f_m$, where $f_m(t) = \frac{1}{m} - \frac{1}{n} |t|$, for all $t \in [0, 1]$. Then (X, d) is a non-normal cone metric space. (X, d) is not a metric space as it is not normal.
Definition 2.8. Let \((X, d)\) be a cone metric space with respect to a cone in a real Banach space \(E\) with non-empty interior. Let \(\{x_n\}\) be a sequence in \(X\) and \(x \in X\). If for every \(c \in E\) with \(0 << c\) there is a positive integer \(N_c\) such that for all \(n > N_c, d(x_n, x) << c\), then the sequence \(\{x_n\}\) is said to converge to \(x\), and \(x\) is called limit of \(\{x_n\}\). We write \(\lim_{n \to \infty} x_n = x\) or \(x_n \to x\), as \(n \to \infty\).

Definition 2.9. Let \((X, d)\) be a cone metric space with respect to a cone with nonempty interior in a real Banach space \(E\). Let \(\{x_n\}\) be a sequence in \(X\). If for any \(c \in E\) with \(0 << c\) there is a positive integer \(N_c\) such that for all \(n, m > N_c, d(x_n, x_m) << c\), then the sequence \(\{x_n\}\) is said to be a Cauchy sequence in \(X\).

In the following \((X, d)\) will stand for a cone metric space with respect to a cone \(P\) with \(P^0 \neq \emptyset\) in a real Banach space \(E\) and \(\leq\) is partial ordering in \(E\) with respect to \(P\).

Remark 2.10. It follows from above definitions that if \(\{x_{2n}\}\) is a subsequence of a Cauchy sequence \(\{x_n\}\) in a cone metric space \((X, d)\) and \(x_{2n} \to z\) then \(x_n \to z\).

Definition 2.11. Let \((X, d)\) be a cone metric space. If every Cauchy sequence in \(X\) is convergent in \(X\), then \(X\) is called a complete cone metric space.

Proposition 2.12. Let \((X, d)\) be a cone metric space and \(P\) be a cone in a real Banach space \(E\). If \(u \leq v, v << w\) then \(u << w\).

Lemma 2.13. Let \((X, d)\) be a cone metric space and \(P\) be a cone in a real Banach space \(E\) and \(k_1, k_2, k > 0\) are some fixed real numbers. If \(x_n \to x, y_n \to y\) in \(X\) and for some \(a \in P\) \((1.1) ka \leq k_1d(x_n, x) + k_2d(y_n, y)\), for all \(n > N\), for some integer \(N\), then \(a = 0\).

Proof. As \(x_n \to x\), and \(y_n \to y\) for \(c \in P^0\) there exists a positive integer \(N_c\) such that \(\frac{c}{k_1 + k_2} - d(x_n, x), \frac{c}{k_1 + k_2} - d(y_n, y) \in P^0\), for all \(n > N_c\). Therefore by Remark 2.4, we have \(\frac{k_1c}{k_1 + k_2} - k_1d(x_n, x), \frac{k_2c}{k_1 + k_2} - k_2d(y_n, y) \in P^0\), for all \(n > N_c\). Again by adding and Remark 2.4, we have \(c - k_1d(x_n, x) - k_2d(y_n, y) \in P^0\) for all \(n > \max\{N, N_c\}\). From (1.1) and Proposition 2.12 we have \(ka << c\), for each \(c \in P^0\). By Proposition 2.3, we have \(a = 0\), as \(k > 0\).

3. MAIN RESULTS

Theorem 3.1. Let \((X, d)\) be a complete cone metric space with respect to a cone \(P\) contained in a real Banach space \(E\). Let \(\{T_n\}\) be a sequence of self maps on \(X\) satisfying:

\(\text{(3.1.1) For some } \lambda, \mu, \delta, \alpha, \beta \in [0, 1) \text{ with } \lambda + \mu + \delta + 2\alpha < 1, \text{ or else } \lambda + \mu + \delta + 2\beta < 1, \text{ for all } x, y \in X \)

\(d(T_1x, T_1y) \leq \lambda d(x, y) + \mu d(T_1x, y) + \delta d(x, y) + \alpha d(T_1x, T_1y) + \beta d(T_1x, y).\)

For \(x_0 \in X\), let \(x_n = T_n x_{n-1}\), for all \(n\). Then the sequence \(\{x_n\}\) converges in \(X\) and its limit \(u\) is a common fixed point of all the maps of the sequence \(\{T_n\}\). This fixed point is unique if \(\delta + \alpha + \beta < 1\).

Proof. We show that \(\{x_n\}\) is a Cauchy sequence in \(X\).

Step 1: Taking \(x = x_{n-1}, y = x_n\) and \(i = n, j = n + 1\) in (3.1.1) we get,

\(d(T_n x_{n-1}, T_{n+1} x_n) \leq \lambda d(T_n x_{n-1}, x_{n-1}) + \mu d(T_{n+1} x_n, x_n) + \delta d(x_{n-1}, x_n) + \alpha d(T_n x_{n-1}, T_{n+1} x_n) + \beta d(T_n x_{n-1}, x_n).\)

As \(x_n = T_n x_{n-1}\), we have

\(d(x_n, x_{n+1}) \leq \lambda d(x_n, x_{n-1}) + \mu d(x_{n+1}, x_n) + \delta d(x_{n-1}, x_n) + \alpha d(x_{n-1}, x_{n+1}) + \beta d(x_n, x_n),\)

\(\leq \lambda d(x_n, x_{n-1}) + \mu d(x_{n+1}, x_n) + \delta d(x_{n-1}, x_n) + \alpha [d(x_{n-1}, x_n) + d(x_n, x_{n+1})].\)
Writing $d(x_n, x_{n+1}) = d_n$, we have

$$d_n \leq \lambda d_{n-1} + \mu d_n + \delta d_{n-1} + \alpha[d_n + d_{n-1}],$$

i.e.

$$(1 - \mu - \alpha)d_n = (\lambda + \delta + \alpha)d_{n-1},$$

which implies

$$d_n \leq hd_{n-1}, \quad (3.1)$$

if $h = \frac{(\lambda + \delta + \alpha)}{1 - \mu - \alpha}$.

As $\lambda + \mu + \delta + 2\alpha < 1$ we obtain that $h < 1$.

Now

$$d_n \leq hd_{n-1} \leq h^2d_{n-2} \leq h^3d_{n-3} \leq \ldots \leq h^nd_0, \text{ where } d_0 = d(x_0, x_1).$$

Also

$$d(x_{n+p}, x_n) \leq d(x_{n+p}, x_{n+p-1}) + d(x_{n+p-1}, x_{n+p-2}) + \ldots + d(x_{n+1}, x_n),$$

i.e.

$$d(x_{n+p}, x_n) \leq d_{n+p-1} + d_{n+p-2} + \ldots + d_n.$$

For an arbitrary fixed m we show that

$$T$$

is a common fixed point of all the maps of the sequence $\{T_n\}$. Now

$$d(x_{n+p}, x_n) \leq h^n d_0/(1 - h), \quad (3.2)$$

for all $n > N_c$, for all p, by Proposition 2.12. This implies $d(x_{n+p}, x_n) \leq c$, for all $n > N_c$, for all p. Hence $\{x_n\}$ is a Cauchy sequence in X, which is complete.

Step II: For an arbitrary fixed m we show that $T_mu = u$.

Now,

$$d(T_mu, u) \leq d(T_mu, T_nx_{n-1}) + d(T_nx_{n-1}, u),$$

and

$$d(T_mu, u) \leq d(x_{n+i}, u) + \lambda d(T_nx_{n-1}, x_{n-1}) + \mu d(T_mu, u) + \delta d(u, x_{n-1}) + \alpha d(T_nx_{n-1}, x_{n-1}) + \beta d(u, x_{n-1}).$$

Using (3.1.1) with $x = x_{n-1}$, $y = u$, $i = n$ and $j = m$ we have

$$d(T_mu, u) \leq [\mu + \delta + \alpha]d(x_{n-1}, u) + [1 + \lambda + \beta]d(u, x_{n-1}).$$

As $\{x_n\} \rightarrow u$, $\{x_{n-1}\} \rightarrow u$, and $1 - \mu - \alpha > 0$, using Lemma 2.13, we have $d(T_mu, u) = 0$, and we get $T_mu = u$. Thus u is a common fixed point of all the maps of the sequence $\{T_n\}$.

Step III (Uniqueness): Let $Tnz = z$, for all n, be another common fixed point of all the maps of the sequence $\{T_n\}$. Now

$$d(z, u) = d(Tnz, T_nu).$$

Taking $x = z$ and $y = u$ with $i = j = n$ in (3.1.1) we get

$$d(z, u) \leq \lambda d(Tnz, z) + \mu d(T_nu, u) + \delta d(z, u) + \alpha d(z, T_nu) + \beta d(Tnz, u),$$

which gives

$$d(z, u) \leq (\delta + \alpha + \beta)d(z, u).$$
As $\delta + \alpha + \beta < 1$, using Proposition 2.2, we have $d(z,u) = 0$ i.e. $u = z$. Thus u is the unique common fixed point of all the maps of the sequence $\{T_n\}$. To see the sufficiency of the alternate condition $\lambda + \mu + \delta + 2\beta < 1$, in step I we choose $x = u, y = x_{n-1}$ with $i = n + 1$ and $j = n$ in (3.1.1) to obtain $(1 - \lambda - \beta) d_{n} \leq (\mu + \delta + \beta) d_{n-1}$. Thus $d_{n} \leq h'd_{n-1}$, where $h' = \frac{\mu + \delta + \beta}{1 - \lambda - \beta} < 1$.

Again in step II we choose $x = u, y = x_{n-1}$, and in (3.1.1) receiving $(1 - \lambda - \beta) d(T_{m}(u),u) \leq \ldots$ and we get $T_{m}u = u, \forall m$. □

Theorem 3.2. Let (X,d) be a complete cone metric space with respect to a cone P contained in a real Banach space E. Let $\{A_{n}\}$ be a sequence of self maps in X satisfying:

(3.2.1) For some $\lambda, \mu, \delta, \alpha, \beta \in [0,1)$ with $\lambda + \mu + \delta + 2\alpha < 1$, or else $\lambda + \mu + \delta + 2\beta < 1$ and $\delta + \alpha + \beta < 1$, there exists positive integer m_{i}, for each i, such that for all $x, y \in X$

$$d(A_{m_{i}}^{n}x, A_{m_{i}}^{n}y) \leq \lambda d(A_{m_{i}}^{n}x, x) + \mu d(A_{m_{i}}^{n}y, y) + \delta(x, y) + \alpha d(x, A_{m_{i}}^{n}x) + \beta d(A_{m_{i}}^{n}x, y).$$

Then all the maps of the sequence $\{A_{n}\}$ have a unique common fixed point in X.

Proof. In view of (3.2.1) and using Theorem 3.1, all the maps of the sequence $\{A_{m_{i}}^{n}\}$ have a unique common fixed point, say z. Hence $A_{m_{i}}^{n}z = z$, for all i. Now $A_{m_{i}}^{n}z = z$, implies $A_{m_{i}}^{n}A_{1}z = A_{1}z$. Taking $i = 1, j = 2$ in (3.2.1) we have $A_{2}z = z$. Continuing in similar way it follows that $A_{i}z = z$, for all i. Thus z is a common fixed point of all the maps of the sequence $\{A_{i}\}$. Its uniqueness follows from the fact that $A_{i}z = z$, implies $A_{m_{i}}^{n}z = z$, for all i. □

Example 3.3. (of Theorem 3.2) Let $X = [0,1], E = R^{2}, P = \{(x,y) \in R^{2} : x \geq 0, y \geq 0\} \subseteq R^{2}$, be a cone in E. Fix a real number $\gamma > 0$. We define $d : X \times X \to E$ by $d(x,y) = \|x - y\|1, \gamma)$. Then (X,d) is a complete cone metric space. Define $\{A_{n}\}$ on X as follows:

$$A_{n}(x) = \begin{cases} 0, & \text{if } x \in [0, \frac{1}{n+2}], \\ \frac{1}{n+3}, & \text{otherwise.} \end{cases}$$

Taking $m_{i} = 2$, for all i. Then the maps $A_{3}^{2}, A_{3}^{2}, A_{3}^{3}, \ldots$ satisfy the condition (3.2.1) for $\lambda = \mu = \delta = \frac{1}{3}$ and $\alpha = \beta = \frac{1}{10}$. Hence by Theorem 3.2, all the maps of the sequence $\{A_{n}\}$ have a unique common fixed point ($u = 0$) in X.

Taking $T_{1} = T_{2} = T_{3} = \cdots = T_{n-1} = T_{n} = \cdots = A$ in Theorem 3.1, we get the following general form of Banach contraction principal in a cone metric space which is not necessarily normal

Theorem 3.4. Let (X,d) be a complete cone metric space with respect to a cone P contained in a real Banach space E and A be a self map in X satisfying:

(3.4.1) For some $\lambda, \mu, \delta, \alpha, \beta \in [0,1)$ with $\lambda + \mu + \delta + 2\alpha < 1$, or else $\lambda + \mu + \delta + 2\beta < 1$, for all $x, y \in X$

$$d(Ax, Ay) \leq \lambda d(Ax, x) + \mu d(Ay, y) + \delta(x, y) + \alpha d(x, Ay) + \beta d(Ax, y).$$

Then for each x in X the sequence $\{A_{n}x\}$ converges in X and its limit u is a fixed point of A. This fixed point is unique if $\delta + \alpha + \beta < 1$.

In [3] L. G. Huang , X. Zhang and in [11] Sh. Rezapour, R. Hambarzumyan proved following various forms of Banach contraction Principle in a normal Cone metric space and in a cone metric space respectively :

Theorem 1[3] and Theorem 2.3[11]: Let (X,d) be a complete cone metric space, Suppose the mapping $T : X \times X \to X$ satisfies the contractive condition

$$d(Tx, Ty) \leq kd(x, y),$$

where $k \in [0,1)$ is a constant. Then T has a unique fixed point in X. For each $x \in X$, the iterative sequence $\{T^n x\}$ converges to the fixed point.

Theorem 3[3] and Theorem 2.6[11]: Let (X,d) be a complete cone metric space. Suppose the mapping $T : X \times X \to X$ satisfies the contractive condition

$$d(Tx, Ty) \leq k[d(Tx, x) + d(Ty, y)]$$

for all $x, y \in X$, where $k \in [0,1/2)$ is a constant. Then T has a unique fixed point in X. And for $x \in X$, the iterative sequence $\{T^n x\}$ converges to the fixed point.
Theorem 4 [3] and Theorem 2.7 [11]: Let \((X, d)\) be a complete cone metric space. Suppose the mapping \(T: X \times X \rightarrow X\) satisfies the contractive condition
\[
d(Tx, Ty) \leq k[d(Tx, y) + d(Ty, x)]
\]
for all \(x, y \in X\), where \(k \in [0, 1/2)\) is a constant. Then \(T\) has a unique fixed point in \(X\). For each \(x \in X\), the iterative sequence \(\{T^n x\}\) converges to the fixed point.

Theorem 2.8 [11]: Let \((X, d)\) be a complete cone metric space. Suppose the mapping \(T: X \times X \rightarrow X\) satisfies the contractive condition
\[
d(Tx, Ty) \leq kd(x, y) + ld(y, Tx)
\]
for all \(x, y \in X\), where \(k, l \in [0, 1)\) are constants. Then \(T\) has a fixed point in \(X\). Also the fixed point of \(T\) is unique whenever \(k + l < 1\).

Remark 3.5. Above Theorems of [3] and [11] follow from Theorem 3.4 of this paper by taking :
(a) \(\lambda = \mu = \alpha = \beta = 0\) and \(\delta = k\),
(b) \(\lambda = \mu = k\) and \(\delta = \alpha = \beta = 0\),
(c) \(\lambda = \mu = \delta = 0\) and \(\alpha = \beta = k\), and
(d) \(\lambda = \mu = \alpha = 0, \delta = k\), and \(\beta = l\)
respectively in it.

Precisely, Theorem 3.4 synthesizes and generalizes all the results of [3] and [11] for a non-normal cone metric space. Theorem 3.1 is a general form of Banach contraction principle in a complete cone metric space which is not necessarily normal.

Definition 3.6. [4] (Quasi contraction) A self-map \(f\) on a cone metric space \((X, d)\) is said to be a quasi contraction if for a fixed \(\lambda \in (0, 1)\),
\[
d(f(x), f(y)) \leq \lambda u
\]
for every \(x, y \in X\), where
\[
u \in \{d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))\}.
\]

Theorem 2.1 [4]: Let \((X, d)\) be a complete cone metric space and \(P\) be a normal cone. Then a quasi contraction \(f\) has a unique fixed point in \(X\) and for each \(x \in X\) the iterative sequence \(\{f^n(x)\}\) converges to the fixed point.

Remark 3.7. Keeping one of the constants \(\{\alpha, \beta, \gamma, \delta, \mu\}\) non-zero and all others equal to zero in Theorem 3.4, it follows that the above result of [4] is true even for non-normal complete cone metric space.

Remark 3.8. It has been established in L. J. B. Ćirić [2] that a quasi contraction has a unique fixed point in a complete metric space. It follows from the above Remark that the result of [2] is also true for a complete cone metric space even if it is non-normal.

References

