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ABSTRACT. The present paper is a study of some direct results in L, —approximation
by a linear combination of summation-integral type operators. We obtain an
error estimate in terms of the higher order modulus of smoothness using some

properties of the Steklov mean.

1. INTRODUCTION

Motivated by the integral modification of Bernstein polynomials by Durrmeyer [2]
and subsequent work by Derriennic [3] on Bernstein Durrmeyer operators, Gupta
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and Mohapatra [7] considered hybrid type operators by combining the weights
of Szasz and Baskakov operators in order to approximate Lebesgue integrable
functions on the interval [0, c0) as follows:

o0

bna(t,c)f(t)dt, (1.1)

o
= Z pn,d(xa C)
d=0

o —

where pya(,0) = (<12 60(w). bualt.0) = (<1150 (0) and {6}
be a sequence of functions .deﬁned on an interval [0,b], b > 0 having the following
properties for every n € N, k € N° ( the set of non-negative integers):

(1) ¢ne € C=(la,b]); (ii) Gne(0) = 1;

(ili) ¢n,c is completely monotone i.e (—1)]“4255:2 > 0;

(k+1)

(iv) there exists an integer ¢ such that gb —n¢n+cc, n > max{0, —c}.

For f € L,[0,00), the operators M, (f;z) can be expressed as

/Wnt:vc (t)dt,
0

where

W(t,x,c) andxcndtc)

is the kernel of the operators.

Gupta [4] established that operators with different weights give better results
than the corresponding symmetric operators. Here, we observe that for the case
¢ > 0and ¢, .(r) = (1+cx)~", the operators M,, reduce to Baskakov-Durrmeyer
operators and when ¢ = 0 and ¢, .(z) = e ™", these become Szdsz-Durrmeyer
operators. Some approximation properties of these operators were studied in [5].
The rate of convergence by the operators M,, for the particular value ¢ = 1 was
studied in [6].

It turns out that the order of approximation by these operators is at best

O(n™1), however smooth the function may be. In order to speed up the rate of
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convergence by the operators M,,, Agrawal and Gairola [1] considered the linear

combination M, (f,k,.) of the operators M, as

k
Mn(f7 k? l’) = ZC(]7 k>Mdjn(f7 x),
7=0
where .
cG k)= ] y 4 -k #0and C(0,0) = 1, (1.2)
i — Qg

i=0,i#j

dy,dy, ...dg being (k + 1) arbitrary but fixed distinct positive integers.
Let m € N (the set of positive integers) and 0 < a < b < oo. For f € Ly[a, bl

1 < p < 00, the m—th order integral modulus of smoothness of f is defined as

wm(fa 5>p7 [CL, b]) = Sup HAzlf(t)HLp[a,bfmhb
0<h<d

where A" f(t) is the m—th order forward difference of the function f with step
length h and 0 < 0 < (b—a)/m.

In what follows, we suppose that 0 < a < a1 < as < a3 < b3 < by < by <b< o0
and I; = [aj,b;];7 = 1,2,3. Let AC[a,b] and BV]a,b] denote the classes of
absolutely continuous functions and functions of bounded variations respectively
on the interval [a,b]. Further, C' is a constant not always the same at each
occurrence.

For 1 Spgooa let
L](j2k+2)<[1) _ {f c Lp[O,oo) . f(2k+l) c AC’(Il)and f(2k:+2) c Lp(Il)}.

2. PRELIMINARIES

In this section we give some results which are useful in establishing our main

theorems.



SUMMATION-INTEGRAL TYPE OPERATORS 221
Lemma 2.1. [7] For m € NU {0}, if we define the m—th order moment for the

operators M, by

fonm (2, €) andxc/bnd )t — )™ dt
= 0

then
1+cx
n-—c

//Jn,()(l"c) =1 :un,l(xvc) =

and
2cx?(n + ¢) 4+ 2z(n + 2¢) + 2
(n—c)(n—2c)

Mn,Q(x> C) =

Also the following recurrence relation holds

[n —c(m+ 1) pnmsr(z,c) = (1 + ca:)[,u( ) (x,¢) + 2mpty 1 (7, )]

+ [(1 4 2cz)(m + 1) — cx|pnm(z, c).

Further we have,

(1) pnm(x) is a polynomial in x of degree m, m # 1;
(ii) for every x € [0,00), fnm(z) = O (n~1mH1/2])
Corollary 2.2. For each r > 0 and for every x € [0,00), we have
M,(|t —z|",x) = O (nﬂ"/z) , GS M — 00.

Proof. Let I =: M, (|t —x|", z) and s be an even integer > r. Then, using Holder’s

inequality and Lemma 2.1, we obtaim

/ tmc +(1
0

~I|t — x| dt
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r/s 1-=

= /Wn(t, x,c)|t —x|®dt /(Wn(t, x,c)dt

0
< C(n—s/Q)r/s _ Cn—r/2‘

The dual operator M, corresponding to the operator M, is defined as

M,(f;t) = / Wa(t, z, ¢) f(x) dz.

Then the corresponding m—th order moment is given by

fnm(t) = /Wn(t,x,c)(x —t)"dx.

Lemma 2.3. For the function fi,,(t),n/c > m + 2 there holds the recurrence

relation

[TL - C(m + 2)]/:Ln,m+1(m7 C)

=z(1+ C:B)[,&Szn(zv, ) + 2mpiym—1(z,¢)] + [(1 + 2cx)(m + 1) + cx|finm(z, c).
(2.1)

Further we have,

(1) finm(x) is a polynomial in x of degree m, m # 1;

(ii) for every x € [0,00), fipm(x) = O (n~m+D/2)

Proof. We make use of the expressions x(1+cx)p,, 4(z, ¢) = (d—nwz)p, (z, c) and

t(1+ct)b), 4(t,¢) = (d — (n + c)t)bnq(t, c). Thus, we get

t(1+ ) [A), () + Ml ()] + i), (1)
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Z — nt)b,q(t, c) /pnd )(x — )" dx.
0

d=0

This gives

t(1+ ct) [ () + mfi 1 ()] + ct il (8) = finms1 (t)

=3 bualtic) [ U1+ et o)~ )" do
d=0 0

andtc /{cm—t) +t(1+ct) + (1 4 2cx)(z — ) }p), 4(z, c)(x — )™ dx
= T1+T2+T3. (22)

Now, for n/c > m + 2 integration by parts yields 71 = —c(m + 2)finm+1(t),
Ty, = —mt(l + ct)finm-1(t) and T3 = —(m + 1)(1 + 2ct)finm(t). Using these

expressions for 73 — T3 in (2.2) and rearranging the terms we obtain (2.1). O
Lemma 2.4. [8] For r € N and n sufficiently large, there holds

My((t = )",k ) = n " {Q(r, by 2) + o(1)},
where Q(r, k, x) is certain polynomials in x of degree r.

Let f € Ly[0,00), 1 < p < oo. Then for sufficiently small > 0 the Steklov

mean f, , of m—th order corresponding to f is defined as follows:

n/2 n/2
fun®) =07 [ (£0+ (oA )Hdtz, e
-n/2 —n/2

where A}* is m—the order forward difference operator with step length h.

Lemma 2.5. For the function f, ,,, we have
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(a) fom has derivatives up to order m over Iy, fé%_l) € AC(I) and fén%) exists
a.e. and belongs to L,(I1) ;

(0) | fsmll o) < Con"wi(fomop Ii),r = 1,2, omy
(c) |If - f777m||Lp(I2) < Crg1 Wil fym,p, L),
(d) || fomllL, 1) < Cong2|l fllL, )

(e) 113 o) < Conts ™™ f 11,1005

where Cls are certain constants that depend on i but are independent of f and n.

Following [[10], Theorem 18.17] or [[12], pp.163-165], the proof of the above
lemma easily follows hence the details are omitted.
Let f € Lyla,b],1 < p < co. Then the Hardy-Littlewood majorant h¢(x) of

the function f is defined as

1
h(x) = sup
7(@) P,

€
[twd aze <),
Lemma 2.6. [13] If 1 <p < oo and f € Ly[a,b], then hy € Ly[a,b] and

p
p—1

1oy < 277 = 1 e

The next lemma gives a bound for the intermediate derivatives of f in terms

of the highest order derivative and the function in L,—norm.

Lemma 2.7. [9] Let 1 < p < oo, f € Lyla,b]. Suppose f*® € ACla,b] and
fEY € [la,b]. Then

1 sy < 55 (U D) = 1.2

where K; are certain constants independent of f.
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Lemma 2.8. Let f € BV (Iy). The following inequality holds:

< On” % | Fllavin,
Li(I2)

|3t (900 [ 10— aruns)

where ¢(t) is the characteristic function of I.

Proof. For each n there exists a nonnegative integer » = r(n) such that rn="/2 <

max{b; — az,by —a;} < (r + 1)n""/2. Then,

HMn / (t — w0 Laf (w)o(0); 2

K =
p Ly(I2)

- bo z+(+1)n=1/2 z+(I+1)n=1/2

<y { [ oo | [ )|
=0 az z+In—1/2 T
z—In—1/2 T

s [ sewtao -t [ swldw) dt}da:.
x—(I+1)n=1/2 z—(1+1)n—1/2

Let ¢4 denote the characteristic function of the interval [z — dn=2 z +

en~/ 2], where d and e are nonnegative integers. Then we have

by x+(l+1)n"1/2

K < n(z / { / ¢<t>wn<t,x,c>\t—x\2’f+5[ / ¢x,0,z+1(w)\df(w)’]dt

=1 az z+in—1/2

by
b [ swr oo [ oaatlaro)]aar)
z—(1+1)n=1/2 ay

bo b2+n71/2

+ / / qﬁ(t)Wn(t,a:,c)\t_x‘zm{7%7171@)’#(@‘]%%

a2 gy—n=—1/2

Using the moment estimates given by Corollary 2.2 to obtain a bound for

IS Wo(t, z,¢)|t — x|***5dt and then applying Fubini’s theorem, we get
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T

K < On_(2k+1)/2{ 14[/(/%01“ d$)|df( )|

=1

b1 b1

. / ( /¢ i) ] + / ( / braaw)is ) )]
—<2k+1)/2{§l—4l/( /w dx)|df w)|

—(4+1)n—1/2

IN

by wH(+1)n"1/2 b1 wAn—1/2

[ awea] [ (] )

al w al w—n—1/2

O+ ( <2z 3)+2) 1 vy

C'n= | I pv ).

IN

IN

3. MAIN RESULT

In order to prove our main result, we first discuss the approximation in the

smooth subspace LY (1) of L,[0,00).
Theorem 3.1. Ifp>1, [ € LI(,%JFZ)(L)7 then for sufficiently large n

IMa(F ) = F Oy < Con™ ED [ FE]| o |- (31)

Moreover, if f € L1]0,00), f has derivatives up to the order (2k+1) on I, with
f@0 ¢ AC(1,) and f**V € BV(I,), then for sufficiently large n there holds

ILFFs ) = POl < Can™#8 [+ [+ 1 oo
(3.2)

where C7 and Cy are certain constants independent of f and n.
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Proof. Let p > 1, then for all t € [0,00) and = € I, we can write

t

41 () (0 '
F) = f) = S s [t - 0 ) do
+F(t,x)(1 — (1)), (3.3)

where (t) is the characteristic function of the interval I; and

2k+1 f(j)<£6) '
F(t,x) = f(t) = > i (t —x)?, Yt € [0,00) and z € I,.

§=0
Therefore operating by M, (., k, z) on both sides of (3.3), we obtain three terms,
say By, Fy and FE3 corresponding to the three terms in the right hand side of

(3.3).

M (f k) = fl@) = >

+ m]\/[n ((p(t) /(t _ U)2k+1f(2k+2)(v) v, k. :1:')

+ Mn(F<t,$)<1 - cp(t)),k,x)

= FE,+ Ey+ E;s.
In view of Lemma 2.4 and 2.2, we get

||E1||Lp(12) <C () (Hf@HQ)HLp(Ig) + ||f||Lp(lz)> :

To estimate Ey, let hp@isz) be the Hardy-Littlewood majorant of FER2) on 1.

Then, using Holder’s inequality and Corollary 2.2, we get

t

a1 = [ (t0) (6= 0o £ ) i

T
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t
< M, (el = o] [ 1100 dof sz

< My ()]t = 2|y o9y (85 2)

1/q
< {n (etole - s0) | oty (GO e OPi3) |

1/p

o 1/p
< Cn(k+1){ /Wn(t7x7C)’hf(2k+2)|(t)|p dt} :
a

Hence, by Fubini’s theorem and Lemma 2.6, we have

by by
1l < €2 [ [ Wtz )by (@) de do
as ay
b b
< Cn_(k+1)p/ l Wn(t,fL‘,C) d:)?} |h‘f(2k+2)|(t)|p dt
al ag
b1
< COp e /]h feray (t) [P dt (in view of fi,o(t) = n )
- n—c | | ’ n—c
al
< COp~k+Dp Hh (2k42) Hp since n is sufficiently large
— If ‘ Ly(L)’
< CpFr Hf(2k+2)Hip(11) :
Consequently,

||‘]1||Lp(12) < Onp~+D Hf(2k+2

Moy
Thus, we have
B2 2, (1) < Cn~ D Hf(2k+2)|’L,,(11) :

In order to estimate Ej, it is sufficient to consider [ := ‘Mn (F(t, z)(1 —p(t)); x) ‘ .
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For t € [0,00) \ [a1,b1],x € Iy we can find a § > 0 such that |t — 2| > §. Thus

I = ‘Mn (F(t,x)(l - go(t));x)‘
- ‘Mn((ﬂw Y L) (- ot o)

2k+1 ;
_ _ fO(x)
<5 (2k+2)Mn<’f(t)|(t_$)2k+2;x) 1§ (2k+2) Z } j! |

J=0

M"(‘t _ gt .7:)
= J2 + J3, say.

On an application of Holder’s inequality and Corollary 2.2, we get

al <07 g (1) ) o (10 o) )

b 1/p
< O+ / Wt 2, )| £(8)]F dt
Now, applying Fubini’s theorem we get
by by
[EA e n—(k+1)P//Wn(t,x,c)|f(t)‘pdt da

by [/ bo

< ¢ / W(t,a,c)da | | ()] dt
al a2
by

< C n_(k“)p/ ‘f(t)|p dt (in view of fi,,o(t) = n C).

n —_—

ai

So,

| J2 < Cn )1l 0.00)-

Iy =

Now, in view of Corollary 2.2 and Lemma 2.7, we have the inequality

HJ?’HLTJ(IQ) <¢ ot <||f||Lp(12) + ||f(2k+2)HLp(12)> '
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Therefore,

| Esz, ) < C n~(+1) (”fHLp[0,00) + Hf(2k+2)HLp(12)> :

Combining the estimates for Ey — Ej3, (3.1) follows.
Now, let p = 1. Since f**1) € BV(I}), it follows from Theorem 17.17 of [10]
that f?*+1) is continuous a.e. on I;. This alongwith Theorem 14.1 of [11] implies

that for almost all values of z € I5 and for all ¢ € [0, c0),

t

2k+1 o(j) . '
fO) = f(z) = 2. ! j!( J(t —ayi + m / p(t)(t — v)H df D (v)
+ F(t2)(1 = e(1)), (3.4)

where ¢(t) and F(t,x) are defined as above. Therefore operating by M, (., k, z)
on both sides of (3.4),we obtain three terms E,, E5 and Eg, say corresponding to
the three terms on the right hand side of (3.4).

Now proceeding as in the case of the estimate of F;, we have

1Bl < € nm 8D (Ul + 174 ) - (3:5)

To estimate Es, since f@*+Y) ¢ BV(I;), using Corollary 2.2 and Lemma 2.8,

we obtain

1Bs ]|y < € 0= E P NFE gy,

To estimate FEg, it is sufficient to consider M, <F(t,x)(1 - go(t));x). Since
t €10,00) \ [a1,b1] and x € I, we can choose a 6 > 0 such that |t — x| > ¢ which
implies that

by oo

1B, < C //Wn(t,x,c)|f(t)(1—go(t))|dtdx
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241 by oo

+ Z //W (t,z,0) | fO@)| |t — z['(1 — p(t)) dt dz =: S) + Ss, say.
For sufficiently large ¢, we can find positive constant M and C’ such that

(t— x)2k+2

'
W>C Vi > M, x € Is.

By Fubini’s theorem,

M by oo bo

(// [ [ )t olola - el dede = s+ 5,

a2 M a2

Now, using Lemma 2.3 we have

Sy < gk / / Wt 2, ) F (Ot — 2)2+2 do dt

and

% b )2h+2
//W (t,z,c) t2’“+2+1| ()| dx dt
M a2

< Cn~ k+1>/|f (t)|dt,
M

Combining the estimates of S3 and Sy, we get

S < O | £l 20,00
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Further, using Lemma 2.1 and Lemma 2.7, we obtain
8o < C = ® (|l + [ F#O) )
Hence,
1M (F(t,2))(L = o(8)); 2] () < O~ &Y (||f||L1[o,oo> + Hf(%“’HLl(Ig))
Consequently,
1 Eoll (1) < C =Y (HfHLl[o,o@ + Hf(z’““)HLl(Iz))-

From these estimates of Ey, F5, s we get (3.2). O

Finally, we establish the following direct theorem:

Theorem 3.2. Let f € L,[0,00),p > 1. Then, for all n sufficiently large there
holds

1 _
HMn(fa k’ ) - fHLp(IQ) < Ck (W2k+2 <f> ﬁapv [1) +n (k+l)HfHLp[Ovoo)> )

where Cy, is a constant independent of f and n.

Proof. Let f, or+2 be the Steklov mean of order (2k + 2) corresponding to the

function f over I, where n > 0 is sufficiently small. Then we have

| M (f ky) = fllo,) < IMa(f = frorres B )l Lpm) + 1Mo (fooke2, by ) — frorselln, )

+ | farse = fllop) = J1 4+ J2 + J3, say.

Letting ¢(t) to be the characteristic function of I3, we get

Mo ((f = Foan2)@); ) = Mu(&(0)(f = frons2)(t); 7)
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+ Mu((1 = o(0)(f = foars+2)(t); 7)
= 21 + 22, say.
Clearly, the following inequality holds for p = 1, for p > 1, it follows from
Holder’s inequality

by b3

/|z \pdx<//w (6, ) (f = framsa) (DPdt o

az ag

Using Fubini’s theorem and Lemma 2.3 we get

121, ) < 20F — foonsalln, s)-

Proceeding in similar manner, for all p > 1

19|z, (1) < Cn~ V| f = £ 2m2] 10,00 -

Consequently, by the property (c) of Steklov mean, we get

5<C (W%+2(f, 0,0, 1) + 1= FO|Fl L o)

| (2 -|—1

Since | ,2k42 ”BV(Ig) an22kk;—:-12||L1([3)7 using Theorem 3.1 and properties (b)

and (d) of Steklov mean, we obtain

Jy < C n D <||f77 ok+2|L,[0,00) T ||f77 2%k HLP(Is))

< Cn7 (1 Ly + 0w (fmp 1))
Finally, by the property (c) of Steklov mean, we get
J3 < C W2k+2(f,777p7 -71)'

Choosing 7 = 1/4/n and combining the estimates J; — J3, the required result
follows. O
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