COMMON FIXED POINTS FOR D-MAPS SATISFYING INTEGRAL TYPE CONDITION

K.P.R. RAO1*, MD. MUSTAQ ALI 2 AND A. SOM BABU3

Abstract. In this paper, we obtain two common fixed point theorems one for two pairs of single and set-valued mappings and another for four set-valued mappings satisfying integral type conditions.

1. Introduction and preliminaries

Recently Ali and Imdad \cite{8} obtained some common fixed point theorems for four self maps using implicit relations in a metric space. Branciari \cite{4} introduced integral type contractive conditions and proved a fixed point theorem for a self map on a metric space. Based on this concept, Bouhadjera and Djoudi \cite{3} proved common fixed point theorems for pairs of single and set-valued D-maps satisfying an integral type condition. In this paper, we obtain a theorem different from that of \cite{3} and obtain a generalization of a theorem of \cite{8}. We also obtain common fixed point theorems for four set-valued mappings and obtain a generalization of theorems of \cite{8} and \cite{2}.

In the sequel, we need the following

Let \((X, d)\) be a metric space and \(B(X)\), the set of all nonempty bounded subsets of \(X\). For \(A, B \in B(X)\), define \(\delta(A, B) = \sup\{d(a, b) : a \in A, b \in B\}\).

If \(A = \{a\}\), then we write \(\delta(A, B) = \delta(a, B)\) and also if \(B = \{b\}\) then we write \(\delta(A, B) = d(a, b)\).

From the definition of \(\delta(A, B)\), we have \(\delta(A, B) = \delta(B, A) \geq 0\),
\(\delta(A, B) = 0 \) iff \(A = B = \{a\} \), \(\delta(A, B) \leq \delta(A, C) + \delta(C, B) \),
\(\delta(A, A) = \text{diam}A \) for all \(A, B, C \in B(X) \).

Definition 1.1. ([6]): A sequence \(\{A_n\} \) of nonempty subsets of \(X \) is said to be convergent to a subset \(A \) of \(X \) if
(i) each point \(a \) in \(A \) is the limit of a convergent sequence \(\{a_n\} \), where \(a_n \) is in \(A_n \) for \(n \in \mathbb{N} \),
(ii) for arbitrary \(\epsilon > 0 \), there exists an integer \(m \) such that \(A_n \subseteq A \) for \(n > m \), where \(A_n \)
denotes the set of all points \(x \in X \) for which there exists a point \(a \in A \), depending on \(x \),
such that \(d(x, a) < \epsilon \). \(A \) is then said to be the limit of the sequence \(\{A_n\} \).

Lemma 1.2. ([6]): If \(\{A_n\} \) and \(\{B_n\} \) are sequences in \(B(X) \) converging to \(A \) and \(B \) in \(B(X) \), respectively, then the sequence \(\{\delta(A_n, B_n)\} \) converges to \(\delta(A, B) \).

Lemma 1.3. ([7]): Let \(\{A_n\} \) be a sequence in \(B(X) \) and \(y \) be a point in \(X \) such that \(\delta(A_n, y) \to 0 \). Then the sequence \(\{A_n\} \) converges to the set \(\{y\} \) in \(B(X) \).

Definition 1.4. ([9]): The maps \(f : X \to X \) and \(F : X \to B(X) \) are weakly compatible or coincidentally commuting (some authors call it as subcompatible) if \(\{t \in X/\text{Ft} = \{ft\}\} \subseteq \{t \in X/\text{Ft} = \text{Ft}\} \).

The following definition is an extension of (E.A.) property due to Aamri and Moutawakil [1].

Definition 1.5. ([5]): The maps \(f : X \to X \) and \(F : X \to B(X) \) are said to be D-maps if there exists a sequence \(\{x_n\} \) in \(X \) such that \(\lim f x_n = t \) and \(\lim F x_n = \{t\} \) for some \(t \in X \).

Recently in 2008, Bouhadjera and Djoudi [3] proved the following:

Theorem 1.6. (Theorem 2.1 of [3]): Let \(f, g \) be self maps of a metric space \((X, \phi) \) and let \(F, G : X \to B(X) \) be two set-valued maps such that
(1.6.1) \(FX \subseteq gX \) and \(GX \subseteq fX \),
(1.6.2) \[\int_0^\phi \left(\delta(Fx, Gy), d(fx, gy), \delta(fx, Fx), \delta(gy, Gy), \delta(fx, Gy), \delta(gy, Fx) \right) \varphi(t) dt \leq 0 \]
for all \(x, y \in X \), where \(\phi : R_+ \to R \) is a continuous function satisfying
(i) \(\int_0^\phi \varphi(t) dt \leq 0 \) implies \(u = 0 \),
(ii) \(\int_0^\phi \varphi(t) dt \leq 0 \) implies \(u = 0 \),
(iii) \(\int_0^\phi \varphi(t) dt > 0 \) for all \(u > 0 \) and
\(\varphi : R_+ \to R \) is a Lebesgue-integrable map which is summable.
(1.6.3)(a) \(f \) and \(F \) are subcompatible D-maps; \(g \) and \(G \) are subcompatible and \(FX \) is closed,
(or)
(1.6.3)(b) \(g \) and \(G \) are subcompatible D-maps; \(f \) and \(F \) are subcompatible and \(GX \) is closed.
Then \(f, g, F \) and \(G \) have a unique common fixed point \(t \in X \) such that \(Ft = Gt = \{ft\} = \{gt\} = \{t\} \).

In this paper we prove a slight variation theorem of the above theorem using more general contractive condition.
2. Main results

First implicit relation:
Let \(\phi : R^4_+ \rightarrow R \) be a lower semi continuous function satisfying
\[
\int_0^{\phi(u,u,u,u)} \varphi(t) dt \leq 0 \text{ implies } u = 0 \text{, where } \varphi : R_+ \rightarrow R \text{ is a Lebesgue-integrable map which is summable.}
\]
Now we give some examples.
(i) Let \(\phi(t_1,t_2,t_3,t_4) = t_1 - k \max\{t_2,t_3,t_4\} \), where \(k \in [0,1] \) and \(\varphi(t) = t \) or \(\varphi(t) = \frac{3\pi}{4(1+t^2)} \cos(\frac{3\pi t}{4(1+t^2)}) \) for all \(t \in R_+ \).
Then \(\phi(u,u,u,u) = (1-k)u \).
Case: Suppose \(\varphi(t) = t \).
Then \(\int_0^{\phi(u,u,u,u)} \varphi(t) dt \leq 0 \) implies \(\frac{1}{2}(1-k)^2u^2 \leq 0 \) so that \(u \leq 0 \). But \(u \geq 0 \). Hence \(u = 0 \).
Case: Suppose \(\varphi(t) = \frac{3\pi}{4(1+t^2)} \cos(\frac{3\pi t}{4(1+t^2)}) \).
Then \(\int_0^{\phi(u,u,u,u)} \varphi(t) dt \leq 0 \) implies \(\sin(\frac{3\pi(1-k)u}{4(1+(1-k)u)}) \leq 0 \) so that \(u = 0 \) since
\[
0 \leq \frac{3\pi(1-k)u}{4(1+(1-k)u)} < \pi.
\]
The following \(\phi \) functions satisfy the first implicit relation with \(\varphi(t) = t \) for all \(t \in R_+ \) or \(\varphi(t) = \frac{3\pi}{4(1+t^2)} \cos(\frac{3\pi t}{4(1+t^2)}) \).
(ii) \(\phi(t_1,t_2,t_3,t_4) = t_1 - k (\max\{t_2,t_3,t_4\})^\frac{1}{2} \), where \(k \in [0,1] \).
(iii) \(\phi(t_1,t_2,t_3,t_4) = t_1^3 - \alpha \max\{t_2^2,t_3^2,t_4^2\} - \beta \max\{t_2t_3,t_3t_4\} \), where \(\alpha, \beta \geq 0 \) such that \(\alpha + \beta < 1 \).
(iv) \(\phi(t_1,t_2,t_3,t_4) = t_1^3 - \alpha \max\{t_it_jt_k/i,j,k \in \{2,3,4\}\} \), where \(\alpha \in [0,1] \).

Theorem 2.1. Let \(f, g \) be self maps of a metric space \((X,d) \) and let \(F,G : X \rightarrow B(X) \) be two set-valued maps such that
\[
(2.1.1) \quad \int_0^{\phi(u,u,u,u)} \varphi(t) dt \leq 0 \text{ for all } x, y \in X, \text{ where } \phi : R^4_+ \rightarrow R \text{ is a lower semi continuous function satisfying}
\]
\(\varphi : R_+ \rightarrow R \text{ is a Lebesgue-integrable map which is summable,} \)
\[
(2.1.2) \quad (f,F) \text{ and } (g,G) \text{ are subcompatible pairs,}
\]
\[
(2.1.3)(a) \quad (f,F) \text{ is a pair of } D\text{-maps} \Rightarrow Fx \subseteq g(X) \:\forall x \in X \text{ and } f(X) \text{ is closed (or)}
\]
\[
(2.1.3)(b) \quad (g,G) \text{ is a pair of } D\text{-maps} \Rightarrow Gx \subseteq f(X) \:\forall x \in X \text{ and } g(X) \text{ is closed.}
\]
Then \(f,g,F \) and \(G \) have a unique common fixed point in \(X \).

Proof. Suppose (2.1.3)(a) holds.
Since \((f,F) \) is a pair of \(D\)-maps, there exists a sequence \(\{x_n\} \) in \(X \) such that \(\lim f x_n = t \) and \(\lim F x_n = \{t\} \) for some \(t \in X \).
Since \(Fx \subseteq g(X) \:\forall x \in X \), there exists \(\alpha_n \in F x_n \) and \(y_n \in X \) such that \(\alpha_n = gy_n \:\forall n \).
Also \(d(gy_n,t) = d(\alpha_n,t) \leq d(F x_n,t) \rightarrow 0 \) as \(n \rightarrow \infty \).
Suppose \(\lim G y_n = A \). Now
\[
\int_0^\phi \left(\delta(Fx_n, Gy_n), d(fx_n, gy_n) + \delta(fx_n,Fx_n) + \delta(gy_n, Gy_n), \right) \varphi(t) dt \leq 0
\]
Letting \(n \to \infty \), we get
\[
\int_0^\phi \left(\delta(t, A), \delta(t, A), \delta(t, A) \right) \varphi(t) dt \leq 0
\]
Hence \(\delta(t, A) = 0 \) so that \(A = \{t\} \). Thus \(\lim G y_n = \{t\} \).

Since \(f(X) \) is closed, there exists \(u \in X \) such that \(t = fu \). Now,
\[
\int_0^\phi \left(\delta(Fu, Gy_n), d(fu, gy_n) + \delta(fu,Fu) + \delta(gy_n, Gy_n), \right) \varphi(t) dt \leq 0
\]
Letting \(n \to \infty \), we get
\[
\int_0^\phi \left(\delta(Fu, t), \delta(Fu, t), \delta(Fu, t) \right) \varphi(t) dt \leq 0
\]
Hence \(\delta(Fu, t) = 0 \) so that \(Fu = \{t\} \). Thus \(Fu = \{t\} = \{fu\} \).

Since \(\{t\} = Fu \subseteq g(X) \), there exists \(w \in X \) such that \(t = gw \). Now,
\[
\int_0^\phi \left(\delta(Fx_n, Gw), d(fx_n, gw) + \delta(fx_n,Fx_n) + \delta(gw, Gw), \right) \varphi(t) dt \leq 0
\]
Letting \(n \to \infty \), we get
\[
\int_0^\phi \left(\delta(t, Gw), \delta(t, Gw), \delta(t, Gw) \right) \varphi(t) dt \leq 0
\]
Hence \(\delta(t, Gw) = 0 \) so that \(Gw = \{t\} \). Thus \(Gw = \{t\} = \{gw\} \).

Since \((f, F) \) is subcompatible, we have \(Ft = Ffu = fFu = \{ft\} \). Now,
\[
\int_0^\phi \left(\delta(Ft, Gw), d(ft, gw) + \delta(ft, Ft) + \delta(gw, Gw), \right) \varphi(t) dt \leq 0
\]
which implies
\[
\int_0^\phi \left(\delta(Ft, t), \delta(Ft, t), \delta(Ft, t) \right) \varphi(t) dt \leq 0
\]
Hence \(\delta(Ft, t) = 0 \) so that \(Ft = \{t\} \). Thus \(Ft = \{t\} = \{ft\} \).

Since \((g, G) \) is subcompatible, we have \(Gt = Ggw = gGw = \{gt\} \). Now,
\[
\int_0^\phi \left(\delta(Fu, Gt), d(fu, gt) + \delta(fu, Fu) + \delta(gt, Gt), \right) \varphi(t) dt \leq 0
\]
which implies

\[\int_0^\phi \left(\delta(t, Gt), \delta(t, Gt), \delta(t, Gt), \delta(t, Gt) \right) \varphi(t) dt \leq 0 \]

Hence \(\delta(t, Gt) = 0 \) so that \(Gt = \{t\} \). Thus \(Gt = \{t\} = \{gt\} \).

Thus \(t \) is a common fixed point of \(F, G, f \) and \(g \). Uniqueness of common fixed point follows easily from (2.1.1). Similarly, we can prove the theorem if (2.1.3)(b) holds. \(\square \)

Let \(\Psi_6 \) denote the set of all lower semicontinuous functions \(\psi : R^6_+ \rightarrow R \) satisfying

(i) \(\psi(t, 0, t, 0, t) > 0 \ \forall t > 0 \),
(ii) \(\psi(t, 0, t, 0, t) > 0 \ \forall t > 0 \),
(iii) \(\psi(t, t, 0, t, t) > 0 \ \forall t > 0 \).

Clearly the conditions (i),(ii) and (iii) imply \(\phi(t, t, t, t, t, t) \leq 0 \) if we define \(\phi(t_1, t_2, t_3, t_4, t_5, t_6) = \phi(t_1, t_2 + t_3 + t_4, t_3 + t_5, t_4 + t_6) \).

We observe that \(\phi(t, t, t, t, 0) \leq 0 \Rightarrow t = 0 \) need not imply(i),(ii),(iii) if we take \(\phi(t_1, t_2, t_3, t_4) = t_1 - k \max\{t_2, t_3, t_4\} \), where \(k \in [0,1) \) and \(\psi(t_1, t_2, t_3, t_4, t_5, t_6) = \phi(t_1t_2, t_2t_3, t_3t_4, t_4t_5) \).

Clearly \(\psi(t, 0, t, 0, 0, t) = \phi(0, 0, 0, 0, 0) = 0 \).

Theorem 2.1 is a generalization of the following

Theorem 2.2. (Theorem 3.3,[8]): Let \(A, B, S \) and \(T \) be self mappings of a metric space \((X, d)\) satisfying

\[
\psi(d(Ax, By), d(Sx, Ty), d(Sx, Ax), d(Ty, By), d(Sx, By), d(Ty, Ax)) \leq 0
\]

for all \(x, y \in X \), where \(\psi \in \Psi_6 \).

Suppose that (2.2.2) the pair \((A, S) \) (or \((B, T) \)) has Property(E.A.),

(2.2.3) \(A(X) \subseteq T(X) \) (or \(B(X) \subseteq S(X)) \),

(2.2.4) \(S(X) \) (or \(T(X) \)) is a closed subset of \(X \) and

(2.2.5) the pairs \((A, S) \) and \((B, T) \) are weakly compatible.

Then \(A, B, S \) and \(T \) have a unique common fixed point.

Proof. Let \(F = \{A\}, G = \{B\}, f = S, g = T \) be single valued mappings and \(\varphi(t) = 1 \) for all \(t > 0 \) in Theorem 2.1. Define \(\psi(t_1, t_2, t_3, t_4, t_5, t_6) = \phi(t_1 + t_2 + t_3 + t_4, t_3 + t_5, t_4 + t_6) \).

Clearly the conditions (i),(ii),(iii) on \(\psi \) imply that \(\phi(t, t, t, t) \leq 0 \) implies that \(t = 0 \). The rest follows from Theorem 2.1. \(\square \)

Now we prove a common fixed point theorem for four set-valued mappings.

Theorem 2.3. Let \(F, G, f \) and \(g \) : \(X \rightarrow B(X) \) be set- valued mappings satisfying

\[
\int_0^\phi \left(\delta(Fx, Gy), \delta(fx, gy) + \delta(fx, Fx), \delta(gy, Gy) \right) \varphi(t) dt \leq 0
\]

for all \(x, y \in X \), where \(\phi \) and \(\varphi \) are as in Theorem 2.1,

(2.3.2)(a) Suppose that there exists a sequence \(\{x_n\} \) in \(X \) such that \(\{Fx_n\} \) and \(\{fx_n\} \) converge to the same limit \(\{z\} \) for some \(z \in X \). (or)
Hence \(\delta \) implies \(\delta \).

Letting \(n \to \infty \), we get

\[
\int_0^\phi \left(\delta(Fx_n, Gv), \delta(fx_n, gv) + \delta(fx_n, Fx_n) + \delta(gv, Gv),
\delta(fx_n, Fx_n) + \delta(fx_n, Fx_n) + \delta(gv, Gv) \right) \varphi(t)dt \leq 0
\]

Hence \(\delta(z, Gv) = 0 \) so that \(Gv = \{z\} \). Thus \(Gv = \{z\} = gv \).

Since \((g, G)\) is coincidentally commuting, we have \(Gz = Gv = gGv = gz = \text{singleton} \) from (2.3.5). Now,

\[
\int_0^\phi \left(\delta(Fx_n, Gz), \delta(fx_n, gz) + \delta(fx_n, Fx_n) + \delta(gz, Gz),
\delta(fx_n, Fx_n) + \delta(fx_n, Fx_n) + \delta(gz, Gz) \right) \varphi(t)dt \leq 0
\]

Hence \(\delta(z, Gz) = 0 \) so that \(Gz = \{z\} \). Thus \(Gz = \{z\} = gz \).

which implies

\[
\int_0^\phi \left(\delta(Fu, z), \delta(Fu, z), \delta(Fu, z), \delta(Fu, z) \right) \varphi(t)dt \leq 0
\]

Hence \(\delta(Fu, z) = 0 \) so that \(Fu = \{z\} \). Thus \(Fu = \{z\} = fu \).

Since \((f, F)\) is coincidentally commuting, we have \(Fz = Fu = fFu = fz = \text{singleton} \) from (2.3.5). Now,

\[
\int_0^\phi \left(\delta(Fz, Gz), \delta(fz, gz) + \delta(fz, Fz) + \delta(gz, Gz),
\delta(fz, Fz) + \delta(fz, Gz), \delta(gz, Gz) + \delta(gz, Fz) \right) \varphi(t)dt \leq 0
\]
Similarly we can show that

\[\text{Case : Suppose } \phi \]

\[\text{Let } \delta \]

\[\text{Proof.} \]

\[\text{Theorem 2.4.} \]

Hence \(\delta(Fz,z) = 0 \) so that \(Fz = \{ z \} \). Thus \(Fz = \{ z \} = fz \). Thus \(z \) is a common fixed point of \(F, G, f \) and \(g \). Uniqueness of common fixed point follows easily from (2.3.1).

Suppose \(f = \{ w \} = \{ w \} \) for some \(w \in X \).

\[\int_0^\infty \left(\delta(Fw,Gz), \delta(fw,gz) + \delta(fw,Fw) + \delta(gz,Gz), \right) \varphi(t)dt \leq 0 \]

which implies

\[\int_0^\infty \left(d(w,z), d(w,z) \right) \varphi(t)dt \leq 0 \]

Hence \(d(w,z) = 0 \) so that \(w = z \). Thus \(z \) is the unique common fixed point of \(f \) and \(F \).

Similarly we can show that \(z \) is the unique common fixed point of \(g \) and \(G \). Similarly, we can prove the theorem when (2.3.2)(b) holds.

\[\square \]

Theorem 2.3 is a generalization of the following

Theorem 2.4. (Theorem 3.1,[8]) Let \(A, B, S \) and \(T \) be self mappings of a metric space \((X,d) \) satisfying (2.2.1) of Corollary (2.2). Suppose that

(2.4.1) the pairs \(\{ A, S \} \) and \(\{ B, T \} \) enjoy the common property (E.A.),

(2.4.2) \(S(X) \) and \(T(X) \) are closed subsets of \(X \),

(2.4.3) the pairs \(\{ A, S \} \) and \(\{ B, T \} \) are weakly compatible.

Then \(A, B, S \) and \(T \) have a unique common fixed point in \(X \).

Proof. Let \(F = \{ A \} \), \(G = \{ B \} \), \(f = \{ S \} \), \(g = \{ T \} \) be single valued mappings and \(\varphi(t) = 1 \) for all \(t > 0 \) in Theorem 2.3. Define \(\psi(t) = \delta(t_1,t_2+t_3+t_4,t_5+t_6) \). From (2.4.1), there exist sequences \(\{ x_n \} \) and \(\{ y_n \} \) in \(X \) such that

\[\lim Ax_n = \lim Sx_n = \lim By_n = \lim T y_n = z \]

for some \(z \in X \).

From (2.4.2), there exist \(u, v \in X \) such that \(z = Su = Tv \). The rest follows from Theorem 2.3. \(\square \)

Second implicit relation :

Let \(\phi : R_+^5 \to R \) be an upper semi continuous function satisfying

\[\int_0^{\phi(0,u,u,u,u)} \varphi(t)dt \geq 0 \text{ or } \int_0^{\phi(u,u,u,u,u)} \varphi(t)dt \geq 0 \implies u = 0 \]

where \(\varphi : R_+ \to R \) is a Lebesgue-integrable map which is summable.

Now, we give some examples .

(i) Let \(\phi(t_1,t_2,t_3,t_4,t_5) = t_1 - k \min\{ t_2,t_3,t_4,t_5 \} \), where \(k > 1 \) and \(\varphi(t) = t^2 \) or \(\varphi(t) = \frac{3\pi}{4(1-t)} \cos \left(\frac{3\pi t}{4(1-t)} \right) \) for all \(t \in R_+ \).

Case : Suppose \(\varphi(t) = t^2 \).

Then \(\int_0^{\phi(0,u,u,u,u)} \varphi(t)dt \geq 0 \implies -\frac{1}{3}k^3u^3 \geq 0 \implies u \leq 0 \).

But \(u \geq 0 \). Hence \(u = 0 \).

Case : \(\varphi(t) = \frac{3\pi}{4(1-t)} \cos \left(\frac{3\pi t}{4(1-t)} \right) \).
Then \(\int_0^{\phi(0,u,u,u,u)} \varphi(t)dt \geq 0 \Rightarrow \sin(\frac{3\pi ku}{4(1+ku)}) \geq 0 \Rightarrow \sin(\frac{3\pi ku}{4(1+ku)}) \leq 0 \Rightarrow u = 0 \) since \(0 \leq \frac{3\pi ku}{4(1+ku)} < \pi \).

The following \(\phi \) functions satisfy the second implicit relation with \(\varphi(t) = t^2 \) or \(\varphi(t) = \frac{3\pi}{4(1-t^2)} \cos(\frac{3\pi t}{4(1-t)}) \) for all \(t \in R_+ \).

(ii) \(\varphi(t_1, t_2, t_3, t_4, t_5) = t_1 - at_2 - b \frac{(t_2 t_3 + t_3 t_4)}{(t_3 + t_4)} \), where \(a \geq 0, b \geq 0 \) with \(a + b > 1 \).

(iii) \(\varphi(t_1, t_2, t_3, t_4, t_5) = t_1 - \alpha t_2 - \beta \min\{t_3, t_4\} - \gamma \min\{t_2 + t_3, t_4 + t_5\} \), where \(\alpha, \beta, \gamma > 0 \) with \(\alpha + \beta + 2\gamma > 1 \).

Finally, we state the following theorem with expansive condition for four set - valued mappings.

Theorem 2.5. Theorem 2.3 holds if the inequality (2.3.1) is replaced by (2.5.1)

\[
\int_0^{\phi(0,u,u,u,u)} \varphi(t)dt \geq 0 \Rightarrow \sin(\frac{3\pi ku}{4(1+ku)}) \geq 0 \Rightarrow \sin(\frac{3\pi(k-1)u}{4(1+(k-1)u)}) \leq 0 \Rightarrow u = 0.
\]

for all \(x, y \in X \), where \(\phi : R_+^5 \longrightarrow R \) is an upper semi continuous function satisfying \(\int_0^{\phi(0,u,u,u,u)} \varphi(t)dt \geq 0 \) or \(\int_0^{\phi(0,u,u,u,u)} \varphi(t)dt \geq 0 \) implies \(u = 0 \) and \(\varphi \) is as in Theorem 2.1.

Remark 2.6: Theorem 2.5 with \(f \) and \(g \) as single valued mappings is a generalization of Theorem 3.1 of [2].

Acknowledgement : The authors are grateful to the referee for his valuable suggestions.

References

1, 2, 3 Department of Applied Mathematics, Acharya Nagarjuna University - Dr.M.R.Appa Row Campus, Nuzvid-521 201, Krishna Dt., A.P., INDIA.

E-mail address: kprrao2004@yahoo.com