GLOBAL EXISTENCE AND L^∞ ESTIMATES OF SOLUTIONS FOR A QUASILINEAR PARABOLIC SYSTEM

JUN ZHOU

Abstract. In this paper, we study the global existence, L^∞ estimates and decay estimates of solutions for the quasilinear parabolic system $u_t = \nabla \cdot (|\nabla u|^m \nabla u) + f(u, v)$, $v_t = \nabla \cdot (|\nabla v|^n \nabla v) + g(u, v)$ with zero Dirichlet boundary condition in a bounded domain $\Omega \subset \mathbb{R}^N$.

1. Introduction

In this paper, we are concerned with the global existence, L^∞ estimates and decay estimates of solutions for the quasilinear parabolic system

\begin{align*}
 u_t &= \nabla \cdot (|\nabla u|^m \nabla u) + f(u, v), \quad x \in \Omega, \ t > 0, \\
 v_t &= \nabla \cdot (|\nabla v|^n \nabla v) + g(u, v), \quad x \in \Omega, \ t > 0, \\
 u(x, 0) &= u_0(x), \quad v(x, 0) = v_0(x), \quad x \in \Omega, \\
 u(x, t) &= v(x, t) = 0, \quad x \in \partial \Omega,
\end{align*}

where Ω is a bounded domain in $\mathbb{R}^N (N > 1)$ with smooth boundary $\partial \Omega$ and $m, n > 0$.

For $m = n = 0, f(u, v) = u^\alpha v^\beta, g(u, v) = u^\gamma v^\delta$ and $u_0(x), v_0(x) \geq 0$, the problem (1.1) has been investigated extensively and the existence and nonexistence of solutions for (1.1) are well understood (see [3, 5, 6, 13] and the references cited there). We summarize some of the results. Suppose that the initial data $u_0(x), v_0(x) \geq 0$ and $u_0, v_0 \in L^\infty(\Omega)$. Then

Date: Revised: 4 March 2010.
* Corresponding author
© 2010 N.A.G.
2000 Mathematics Subject Classification. Primary 35K55; Secondary 35K57.
Key words and phrases. Global existence, quasilinear parabolic system, L^∞ estimates and decay estimates.
(A1) let $\alpha > 1$ or $\beta > 1$ or $s_0 = (1 - \alpha)(1 - \beta) - pq < 0$. Problem (1.1) admits a global solution for small initial data and the solution for (1.1) must blow up in finite time for large initial data;

(A2) all solutions of (1.1) are global if $\alpha, \beta \leq 1$ and $s_0 \geq 0$.

The case $m > 0$ for the single equation

\[
\begin{align*}
 u_t &= \nabla \cdot (|\nabla u|^m \nabla u) + f(x, u), \quad x \in \Omega, \ t > 0, \\
 u(x, 0) &= u_0(x), \quad x \in \Omega, \\
 u(x, t) &= 0, \quad x \in \partial \Omega
\end{align*}
\]

has been widely investigated in [1, 2, 4, 7, 9, 11, 12] and the references therein. But the problem (1.1) is not considered sufficiently and there seems to be little results on global existence, L^∞ estimates and blow-up of solutions for (1.1).

In this paper we are interested in extending the previous results A1 and A2 for $m = n = 0$ to $m, n > 0$. We consider problem (1.1) for general initial data (try to be more specific here) and obtain sufficient conditions for the global existence of solutions. Furthermore, we obtain L^∞ and decay estimates for solutions of (1.1), that give the behavior of solutions as $t \to 0$ and $t \to \infty$. Our method, very different from that on the basis of comparison principle used in [3, 5, 6, 13, 14, 15, 16], is based on a priori estimates and an improved Moser’s technique as in [2, 10]. In contrast with other results (which results [2, 4, 7, 9, 11]), our initial data u_0, v_0 is neither restricted to be bounded nor nonnegative. To drive the L^∞ estimates for solutions of (1.1), we must treat carefully the parameters m, n, p, q, α and β.

Definition 1.1. A pair of functions $(u(x, t), v(x, t))$ is a global weak solution of (1.1) if $(u(x, t), v(x, t)) \in (L^\infty_{loc}((0, \infty), W^{1,m+1}_0(\Omega)) \cap L^{m+1}_{loc}(R^+, W^{1,m+1}_0(\Omega))) \times (L^\infty_{loc}((0, \infty), W^{1,n+1}_0(\Omega)) \cap L^{n+1}_{loc}(R^+, W^{1,n+1}_0(\Omega)))$ and the following equalities

\[
\begin{align*}
 \int_0^t \int_{\Omega} \{-u \varphi_t + |\nabla u|^m \nabla u \nabla \varphi - f(u, v) \varphi\} \, dxdt &= \int_{\Omega} \{u_0(x) \varphi(x, 0) - u(x, t) \varphi(x, t)\} \, dx, \\
 \int_0^t \int_{\Omega} \{-v \varphi_t + |\nabla v|^n \nabla v \nabla \varphi - g(u, v) \varphi\} \, dxdt &= \int_{\Omega} \{v_0(x) \varphi(x, 0) - u(x, t) \varphi(x, t)\} \, dx
\end{align*}
\]

are valid for any $t > 0$ and $\varphi \in C^1(R^+, C^0_0(\Omega))$, where $R^+ = [0, \infty)$.

Our results read as follows.

Theorem 1.2. Suppose that

(H1) The functions $f(u, v), g(u, v) \in C^0(R^2) \cap C^1(R^2 \setminus (0, 0))$ and

\[
\begin{align*}
 |f(u, v)| &\leq K_1 |u|^\alpha |v|^p, \\
 |g(u, v)| &\leq K_2 |u|^q |v|^\beta, \quad (u, v) \in R^2,
\end{align*}
\]

(1.3)
where the parameters \(\alpha, \beta, p, q \) satisfy
\[
0 \leq \alpha < 1 + m, \quad 0 \leq \beta < 1 + n; \quad m, n, p, q > 0;
\]
\[
s = (m + 1 - \alpha)(n + 1 - \beta) - pq > 0.
\]

\((H_2)\) \(u_0(x) \in L^{p_0}(\Omega) \), \(v_0(x) \in L^{q_0}(\Omega) \) with
\[
p_0 > \max\{1, q + 1 - \alpha\}, \quad q_0 > \max\{1, p + 1 - \beta\}.
\]

Then problem (1.1) admits a global weak solution \(u(x, t), v(x, t) \) which satisfies
\[
u \in L^\infty \left(R^+, L^{p_0}(\Omega) \right), \quad v \in L^\infty \left(R^+, L^{q_0}(\Omega) \right)
\]
and the following estimates hold for any \(T > 0 \)
\[
\|u\|_\infty \leq Ct^{-\sigma}, \quad \|v\|_\infty \leq Ct^{-\sigma}, \quad 0 \leq t \leq T,
\]
\[
\|u\|_{m+2}^2 + \|v\|_{n+2}^2 \leq C (t^{-1-\sigma} + t^{1-2(p+\alpha)\sigma} + t^{1-2(q+\beta)\sigma}), \quad 0 \leq t \leq T,
\]
where \(C = C(T, \|u_0\|_{p_0}, \|v_0\|_{q_0}, \sigma, \sigma = \min\{N/(p_0 + mN), N/(q_0 + nN)\}) \).

Theorem 1.3. Suppose \(s < 0 \). Then there exist \(p_0, q_0 > 1, d_0 > 0 \) such that if \(u_0(x) \in L^{p_0}(\Omega), v_0(x) \in L^{q_0}(\Omega) \) and \(\|u_0\|_{p_0} + \|v_0\|_{q_0} < d_0 \) the problem (1.1) admits a global weak solution \(u(x, t), v(x, t) \) that
\[
\begin{align*}
 u(x, t) & \in L^\infty_\text{loc} \left((0, \infty), W^{1,m+1}_{0}(\Omega) \right) \cap L^{m+1}_\text{loc} \left(R^+, W^{1,m+1}_{0}(\Omega) \right) \\
 v(x, t) & \in L^\infty_\text{loc} \left((0, \infty), W^{1,n+1}_{0}(\Omega) \right) \cap L^{n+1}_\text{loc} \left(R^+, W^{1,n+1}_{0}(\Omega) \right)
\end{align*}
\]
satisfying
\[
\|u\|_{p_0} \leq C(1 + t)^{-\frac{1}{\theta}}, \quad \|v\|_{q_0} \leq C(1 + t)^{-\frac{1}{\theta}}, \quad t \geq 0,
\]
where \(\theta = \min\{m/p_0, n/q_0\} \).

To derive Theorem 1.2 and 1.3, we will use the following lemmas.

Lemma 1.4. [9] Let \(\beta \geq 0, N > p \geq 1, \beta + 1 \leq q, \) and \(1 \leq r \leq q \leq (\beta + 1)Np/(N - p) \). Then for \(\|u\|^\beta u \in W^{1,p}(\Omega) \), we have
\[
\|u\|_q \leq C^{1/(\beta + 1)}\|u\|_{r}^{1-\theta}\|u\|_{1,p}^{\beta\theta/(\beta + 1)},
\]
with \(\theta = (\beta + 1)(r^{-1} - q^{-1})/(N^{-1} - p^{-1} + (\beta + 1)r^{-1})^{-1} \), where \(C \) is a constant depending only on \(N, p \) and \(r \).

Lemma 1.5. [11] Let \(y(t) \) be a nonnegative differentiable function on \((0, T]\) satisfying
\[
y'(t) + A t^{\lambda - 1}y^{1+\theta}(t) \leq Bt^{-k}y(t) + Ct^\delta
\]
with \(A, \theta > 0, \lambda \theta \geq 1, B, C \geq 0, k \leq 1 \). Then we have
\[
y(t) \leq A^{-1/\theta}(2A + 2BT^1-k)^{1/\theta}t^{-\lambda} + 2C(\lambda + BT^1-k)^{-1}t^{1-\delta} \quad 0 < t \leq T
\]

This paper is organized as follows. In Section 2, we apply Lemmas 1.4 and 1.5 to establish \(L^\infty \) estimates for solutions of problem (1.1). The proof of Theorem 1.3 will be given in Section 3.
2. Proof of Theorem 1.2

For \(j = 1, 2, \ldots \), we choose \(f_j(u, v), g_j(u, v) \in C^1 \) in such a way \(f_j(u, v) = f(u, v), g_j(u, v) = g(u, v) \) when \(u^2 + v^2 \geq j^{-2}, |f_j(u, v)| \leq \eta, |g_j(u, v)| \leq \eta \) when \(u^2 + v^2 \leq j^{-2} \) with some \(\eta > 0 \) and \((f_j(u, v), g_j(u, v)) \to (f(u, v), g(u, v)) \) uniformly in \(R^2 \) as \(j \to \infty \).

Let \((u_{0,j}, v_{0,j}) \in C^0(\Omega) \) and \(u_{0,j} \to u_0 \) in \(L^{p_0}(\Omega) \), \(v_{0,j} \to v_0 \) in \(L^q(\Omega) \) as \(j \to \infty \). We consider the approximate problem of (1.1)

\[
\begin{align*}
 u_t &= \nabla \cdot ([|\nabla u|^2 + j^{-1})^m/2 \nabla u] + f_j(u, v), & x \in \Omega, & t > 0, \\
 v_t &= \nabla \cdot ([|\nabla v|^2 + j^{-1})^{n/2} \nabla v] + g_j(u, v), & x \in \Omega, & t > 0, \\
 u(x, 0) &= u_{0,j}(x), & x \in \Omega, & t > 0, \\
 u(x, t) &= v(x, t) = 0, & x \in \partial \Omega.
\end{align*}
\]

(2.1)

The problem (2.1) is a standard quasilinear parabolic system and admits a unique smooth solution \((u_j(x, t), v_j(x, t)) \) on \([0, T]\) for each \(j = 1, 2, \ldots \), see [7] [8]. Furthermore, if \(T < \infty \), then

\[
\limsup_{t \to T} (\|u_j(\cdot, t)\|_\infty + \|v_j(\cdot, t)\|_\infty) = +\infty.
\]

In the sequel, we will always write \((u, v)\) instead of \((u_j, v_j)\) and \((u^p, v^p)\) for \(|u|^{p-1}u, |v|^{p-1}v\) when \(p > 0 \). Also, let \(C \) and \(C_i \) be the generic constants independent of \(j \) and \(p \) changeable from line to line.

Lemma 2.1. Let \((H_1)\) and \((H_2)\) hold. If \((u(x, t), v(x, t))\) is the solution of problem (2.1). Then \(u \in \mathcal{L}^\infty (R^+, L^{p_0}(\Omega)), v \in \mathcal{L}^\infty (R^+, L^q(\Omega))\).

Proof. Let \(p_0, q_0 > 1 \). Multiplying the first equation in (2.1) by \(|u|^{p_0-2}u\), we obtain that

\[
\frac{1}{p_0} \frac{d}{dt} \|u\|_{p_0}^{p_0} + \frac{(p_0-1)(m+2)^{m+2}}{(p_0 + m)^{m+2}} \|\nabla u\|_{m+2}^{m+2} \leq \int_{\Omega} f_j(u, v) |u|^{p_0-2} u dx.
\]

(2.2)

Notice that

\[
\int_{\Omega} f_j(u, v) |u|^{p_0-2} u dx \leq \eta_j^{1-p_0} |\Omega| + C_1 \int_{\Omega} |u|^{\alpha + p_0 - 1} |v|^p dx.
\]

(2.3)

Similarly, we have

\[
\frac{1}{q_0} \frac{d}{dt} \|v\|_{q_0}^{q_0} + \frac{(q_0-1)(n+2)^{n+2}}{(q_0 + n)^{n+2}} \|\nabla v\|_{n+2}^{n+2} \leq \eta_j^{1-q_0} |\Omega| + C_2 \int_{\Omega} |v|^{\beta + q_0 - 1} |u|^q dx,
\]

(2.4)

with \(C_1, C_2 > 0 \).

By Young’s inequality, we obtain

\[
|u|^\gamma |v|^\rho + |u|^\delta |v|^\rho \leq \frac{|v|^{p_1}}{p_1} + \frac{|u|^{p_2}}{p_2} + \frac{|u|^{q_1}}{q_1} + \frac{|v|^{q_2}}{q_2},
\]

(2.5)

where \(\gamma = \alpha + p_0 - 1, \rho = \beta + q_0 - 1, t_0 = \gamma \rho - pq > 0 \) and

\[
p_1 = \frac{t_0}{p(\gamma - q)}, p_2 = \frac{t_0}{\gamma(\rho - p)}, q_1 = \frac{t_0}{q(\rho - p)}, q_2 = \frac{t_0}{\rho(\gamma - q)}.
\]

(2.6)
The assumption \((H_2)\) on \(p_0, q_0\) and \((1.3)\) imply that \(pp_1 < q_0 + n, qq_1 < p_0 + m.\) Thus we have from \((2.2)-(2.5)\) and a Sobolev’s inequality that
\[
\frac{d}{dt} \left(\|u\|_{p_0}^{p_0} + \|v\|_{q_0}^{q_0} \right) + C_3 \left(p_0^{-m} \|u\|_{p_0^{p_0 + m}}^{p_0 + m} + q_0^{-n} \|v\|_{q_0^{q_0 + n}}^{q_0 + n} \right) \\
\leq \eta |\Omega| \left(p_0^{j - p_0} + q_0^{j - q_0} \right) + \int_{\Omega} \left(|u|^{\gamma_1} + |v|^{\gamma_2} \right) dx.
\]
By the Young’s inequality, we have
\[
|\Theta| \leq \eta |\Omega| \left(p_0^{j - p_0} + q_0^{j - q_0} \right) + C_4 \int_{\Omega} \left(|u|^{\gamma_1} + |v|^{\gamma_2} \right) dx.
\]
Using Young’s inequality and letting \(j \to \infty\) in \((2.7)\), we conclude that
\[
\frac{d}{dt} \left(\|u\|_{p_0}^{p_0} + \|v\|_{q_0}^{q_0} \right) + C_5 \left(\|u\|_{p_0^{p_0 + m}}^{p_0 + m} + \|v\|_{q_0^{q_0 + n}}^{q_0 + n} \right) \leq C
\]
and
\[
\frac{d}{dt} \left(\|u\|_{p_0}^{p_0} + \|v\|_{q_0}^{q_0} \right) + C_6 \left(\|u\|_{p_0}^{p_0} + \|v\|_{q_0}^{q_0} \right)^{1+\varrho} \leq C
\]
with \(\varrho = \min\{m/p_0, n/q_0\}\). Thus \((2.9)\) implies that \(u(t) \in L^\infty(R^+, L^{p_0}(\Omega)), v(t) \in L^\infty(R^+, L^{q_0}(\Omega))\) if \(u_0 \in L^{p_0}(\Omega)\) and \(v_0 \in L^{q_0}(\Omega)\). The proof is completed.

Lemma 2.2. Under the assumptions of Lemma \([2.1]\) and for any \(T > 0\), the solution \((u(t), v(t))\) also satisfies
\[
\|u\|_\infty \leq Ct^{-a}, \quad \|v\|_\infty \leq Ct^{-b}, \quad 0 < t \leq T, \quad (2.10)
\]
\[
\|u\|_{m+2}^{m+2} + \|v\|_{n+2}^{n+2} \leq C \left(t^{-1 - \sigma} + t^{1 - 2(p + a)\sigma} + t^{1 - 2(q + b)\sigma} \right), \quad 0 < t \leq T, \quad (2.11)
\]
where the constant \(C\) depends on \(T, \|u_0\|_{p_0}, \|v_0\|_{q_0}\) and \(a = N/(p_0(m + 2) + mN), b = N/(q_0(n + 2) + nN), \sigma = \min\{a, b\}\).

Proof. We only consider \(N > \max\{m + 2, n + 2\}\) and the other cases can be treated in a similar way.

Multiplying the first equation and the second equation in \((2.1)\) by \(|u|^{\lambda - 2} u\) and \(|v|^{\mu - 1} v\) respectively, we obtain
\[
\frac{d}{dt} \left(\|u\|_\lambda^{\lambda} + \|v\|_\mu^{\mu} \right) + C_1 \left(\lambda^{-m} \|\nabla u\|_{m+2}^{m+2} \|\nabla v\|_{n+2}^{n+2} \right) \\
\leq C_2(\lambda + \mu) \left(1 + \int_{\Omega} |u|^{\alpha + \lambda - 1} |v|^p + |u|^q |v|^{\beta + \mu - 1} \right) dx.
\]
By the Young’s inequality, we have
\[
|u|^{\gamma_1} |v|^p + |u|^q |v|^{\gamma_2} \leq \frac{|v|^{\gamma_1 \epsilon_2}}{\epsilon_1} + \frac{|u|^{\gamma_2 \epsilon_1}}{\epsilon_2} + \frac{|u| q \eta_1}{\eta_2} + \frac{|v|^{\gamma_2 \eta_1}}{\eta_2},
\]
with \(\gamma_1 = \alpha + \lambda - 1, \gamma_2 = \beta + \mu - 1\) and \(p \epsilon_1 = \gamma_2 \eta_2, \gamma_1 \epsilon_2 = q \eta_1, \epsilon_1^{-1} + \epsilon_2^{-1} = 1, \eta_1^{-1} + \eta_2^{-1} = 1\).

The direct computation shows that
\[
\eta_1 = \frac{\tau}{q(\gamma_2 - p)}, \quad \eta_2 = \frac{\tau}{\gamma_2(\gamma_1 - q)}, \quad \epsilon_1 = \frac{\tau}{\gamma_1 (\gamma_2 - q)}, \quad \epsilon_2 = \frac{\tau}{\gamma_1 (\gamma_2 - p)}.
\]
where \(\tau = \gamma_1 \gamma_2 - pq > 0 \), \(\lambda, \mu \) are chosen properly so that \(0 < p \varepsilon_1 < \mu + n \) and \(0 < q \eta_1 < \lambda + m \). We take two sequences of \(\{ \lambda_k \} \) and \(\{ \mu_k \} \) as follows

\[
\lambda_1 = p_0, \quad \lambda = \lambda_k = b_1 + b_{12} R^{k-1}; \\
\mu_1 = q_0, \quad \mu = \mu_k = b_2 + b_{22} R^{k-1}, \quad k = 2, 3, \ldots
\]

where \(b_1 = q + 1 - \alpha, \ b_{12} = (b_1 + m) / s, \ b_2 = p + 1 - \beta, \ b_{22} = (b_2 + n) / s \) and \(R \) is chosen so that \(R > 1, \ \lambda_2 > p_0, \ \mu_2 > q_0 \). Notice that \(\lambda_k \sim \mu_k \) as \(k \to \infty \).

We now derive the estimates for the integrals \(\int_{\Omega} |v|^p \varepsilon_1 dx \) and \(\int_{\Omega} |u|^q \eta dx \). If \(p \varepsilon_1 \leq \mu \) and \(q \eta_1 \leq \lambda \), then we have

\[
\int_{\Omega} |v|^p \varepsilon_1 dx \leq C \left(1 + \int_{\Omega} |v|^\mu dx \right), \quad \int_{\Omega} |u|^q \eta dx \leq C \left(1 + \int_{\Omega} |u|^\lambda dx \right). \tag{2.15}
\]

Without loss of generality, we suppose \(\mu < p \varepsilon_1 < \mu + n, \ \lambda < q \eta_1 < \lambda + m \) and \(r = \tau / (\gamma_1 - q) - \mu > 0, \ h = \tau / (\gamma_2 - p) - \lambda > 0 \). Then from (2.12) and (2.13), we have

\[
\frac{d}{dt} \left(\|u\|_\lambda^2 + \|v\|_\mu^2 \right) + 2 C_1 \left(\lambda^{-m} \|\nabla u^\frac{\lambda}{m+2}\|_{m+2} + \mu^{-n} \|\nabla v^\frac{\mu}{n+2}\|_{n+2} \right) \tag{2.16}
\]

\[
\leq C_2 \lambda \left(1 + \|u\|^{\lambda+\delta}_{\lambda+\delta} \right) + C_2 \mu \left(1 + \|v\|^{\mu+\tau}_{\mu+\tau} \right).
\]

where the constants \(C_1, C_2 \) are independent of \(\lambda \) and \(\mu \). Furthermore, we have following by Hölder’s and Sobolev’s inequalities

\[
\int_{\Omega} |u|^{\lambda+h} dx \leq \|u\|^{\theta_1}_{\theta_0} \|u\|^{\theta_2}_{\theta_0} \|u\|^{\theta_3}_{\mu} \leq C \|u\|^{\theta_1}_{\lambda} \|\nabla u^\frac{\lambda}{m+2}\|_{m+2} + \lambda \tag{2.17}
\]

\[
C_1 C_2^{-1} \lambda^{-1-m} \|\nabla u^\frac{\lambda}{m+2}\|_{m+2} + C_3 \lambda^{m-1} \|u\|_{\lambda}^m
\]

with

\[
\lambda^* = \frac{N(\lambda + m)}{N - m - 2}, \quad \theta_1 = \lambda \left(1 - \frac{hN}{p_0(m + 2) + m N^2}, \quad \theta_2 = \frac{hN}{p_0(m + 2) + m N^2}, \quad \theta_3 = \frac{hN(\lambda + m)}{p_0(m + 2) + m N} \right)
\]

\[
\sigma_1 = \frac{(m + 1)(p_0(m + 2) + N(m - h))}{h N} > 0.
\]

Similarly, we can derive that

\[
\int_{\Omega} |v|^{\mu+\tau} dx \leq C_1 C_2^{-1} \mu^{-1-n} \|\nabla v^\frac{\mu}{n+2}\|_{n+2} + C_3 \mu^{\sigma_2} \|v\|_{\mu}^\mu, \tag{2.18}
\]

with \(\sigma_2 = (n + 1)(q_0(n + 2) + N(n - r))/r N \). Hence it follows from (2.16)-(2.18) that

\[
\frac{d}{dt} \left(\|u\|_\lambda^2 + \|v\|_\mu^2 \right) + C_1 \left(\lambda^{-m} \|\nabla u^\frac{\lambda}{m+2}\|_{m+2} + \mu^{-n} \|\nabla v^\frac{\mu}{n+2}\|_{n+2} \right) \tag{2.19}
\]

\[
\leq C_2 \lambda \left(1 + \|u\|_{\lambda}^2 \right) + C_3 \mu \left(1 + \|v\|_{\mu}^{\mu_2} \right).
\]

Now we employ an improved Moser’s technique as in [2, 10]. Let \(\{ \lambda_k \}, \ \{ \mu_k \} \) be two sequences as defined in (2.14). From Lemma 1.4 we see that

\[
\|u\|_{\lambda_k} \leq C \frac{m+2}{m+2} \|u\|_{\lambda_{k-1}}^\frac{1-\theta_k}{\lambda_{k-1}} \|\nabla u^\frac{\lambda_k}{m+2}\|_{m+2}^\frac{(m+2)\theta_k}{\lambda_k}, \tag{2.20}
\]
where the constant C is independent of λ_k and μ_k, and
\[
\theta_k = \frac{\lambda_k + m}{m + 2} \left(\frac{1}{\lambda_{k-1}} - \frac{1}{\lambda_k} \right) \left(\frac{1}{N} - \frac{1}{m + 2} + \frac{\lambda_k + m}{(m + 2)\lambda_{k-1}} \right)^{-1},
\]
\[
\overline{\theta}_k = \frac{\mu_k + n}{n + 2} \left(\frac{1}{\mu_{k-1}} - \frac{1}{\mu_k} \right) \left(\frac{1}{N} - \frac{1}{n + 2} + \frac{\mu_k + n}{(n + 2)\mu_{k-1}} \right)^{-1}.
\]

Let $t_k = \frac{\lambda_k + m}{\mu_k} - \lambda_k$, $s_k = \frac{\mu_k + n}{\mu_k} - \mu_k$. Then (2.20) and (2.21) give
\[
\lambda_k^{-m} \| \nabla u \|_\infty^{m+2} \| u \|_{\lambda_k} \| u \|_{\lambda_k-1} \geq C^{-\frac{m+2}{\mu_k}} \| \lambda_k \| u \|_{\lambda_k} \| u \|_{\lambda_k-1}^{m+2}, \tag{2.22}
\]
\[
\mu_k^{-n} \| \nabla v \|_\infty^{n+2} \| v \|_{\mu_k} \| v \|_{\mu_k-1} \geq C^{-\frac{n+2}{\mu_k}} \| \mu_k \| v \|_{\mu_k} \| v \|_{\mu_k-1}^{n+2}. \tag{2.23}
\]

Denote
\[
y_k(t) = \| u \|_{\lambda_k} \| v \|_{\mu_k}, \quad t \geq 0.
\]

Then inserting (2.22) - (2.23) into (2.19) ($\lambda = \lambda_k, \mu = \mu_k$), we find that
\[
y_k'(t) + C_1 C^{-\frac{m+2}{s_k}} \| u \|_{\lambda_k} \| u \|_{\lambda_k-1}^{m-t} + C_1 C^{-\frac{n+2}{\mu_k}} \| v \|_{\mu_k} \| v \|_{\mu_k-1}^{n-s_k} \geq C_3 (\lambda_k + \mu_k) + C \lambda_k^{s+1} \| u \|_{\lambda_k} + C \mu_k^{s+1} \| v \|_{\mu_k}. \tag{2.24}
\]

We claim that there exist the bounded sequence $\{\xi_k\}, \{\eta_k\}, \{m_k\}, \{r_k\}$ such that
\[
\| u \|_{\lambda_k} \leq \xi_k t^{-m_k}, \quad \| v \|_{\mu_k} \leq \eta_k t^{-r_k}, \quad 0 < t \leq T. \tag{2.25}
\]

Without loss of generality, we suppose that $\xi_k, \eta_k \geq 1$. By Lemma 2.1 (2.25) holds for $k = 0$ if we take $m_0 = r_0 = 0$ and $\xi_0 = \sup_{t \geq 0} \| u \|_{\lambda_0}, \eta_0 = \sup_{t \geq 0} \| v \|_{\mu_0}$. If (2.25) is true for $k - 1$, then we have from (2.24) that
\[
y_k'(t) + C_1 \| u \|_{\lambda_k} (\xi_{k-1} t^{-m_{k-1}})^{m-t} + C_1 \| v \|_{\mu_k} (\eta_{k-1} t^{-r_{k-1}})^{n-s_k} \leq C (\lambda_k + \mu_k) \left(\lambda_k^{s+1} \| u \|_{\lambda_k} + \mu_k^{s+1} \| v \|_{\mu_k} \right). \tag{2.26}
\]

We take $\sigma_0 = \max\{\sigma_1, \sigma_2\}, \tau_k = \min\{t_k/\lambda_k, s_k/\mu_k\}, \alpha_k = \min\{m - t_k, n - s_k\}$ and $A_{k-1} = \max\{\xi_{k-1}, \eta_{k-1}\}, \beta_k = \max\{t_k - m, s_k - n\}$. Then we have from (2.26) that
\[
y_k'(t) + C_3 A_k \alpha_k t^{\beta_k} y_k(t) \leq CA_k C \lambda_k^{s+1} y_k(t) + CA_k \lambda_k^{s+1} T^{\beta_k}, \quad 0 < t < T. \tag{2.27}
\]

Applying Lemma 1.5 to (2.27), we get
\[
y_k(t) \leq B_k t^{-(1+\beta_k)/\tau_k}, \quad 0 < t < T, \tag{2.28}
\]

where
\[
B_k = 2 \left(C_3 A_k^{\alpha_k} \right)^{-\frac{1}{\tau_k}} \left(C_3 \lambda_k^{s+1} + \frac{1 + \beta_k}{\tau_k} \right)^{\frac{1}{\tau_k}} + 2C \lambda_k \left(C \lambda_k^{s+1} + \frac{1 + \beta_k}{\tau_k} \right)^{-1}.
\]

Moreover, (2.28) implies that
\[
\| u \|_{\lambda_k} \leq B_k^{\frac{1}{\tau_k}} t^{1+\beta_k/\tau_k}, \quad \| v \|_{\mu_k} \leq B_k^{\frac{1}{\tau_k}} t^{1+\beta_k/\tau_k}, \quad 0 < t \leq T. \tag{2.29}
\]
We take
\[\xi_k = B_k^{\frac{1}{\tau_k}}, \quad \eta_k = B_k^{\frac{1}{\alpha_k}}, \quad m_k = \frac{1 + \beta_k}{\lambda_k \tau_k}, \quad r_k = \frac{1 + \beta_k}{\mu_k \tau_k}. \]

By a similar argument in [2, 10], we know that \(\{\xi_k\}, \{\eta_k\} \) are bounded and there exist two subsequences \(\{m_{kl}\} \subset \{m - k\} \) and \(\{r_{kl}\} \subset \{r_k\} \) such that
\[m_{kl} \to a = \frac{N}{p_0(m + 2) + mN}, \quad r_{kl} \to b = \frac{N}{q_0(n + 2) + nN}, \quad (as \ l \to \infty). \]

Therefore, letting \(l \to \infty \) in \((2.28) \), we obtain
\[\|u\|_\infty \leq Ct^{-a}, \quad \|v\|_\infty \leq Ct^{-b}, \quad 0 < t < T, \quad (2.30) \]
This yields \((2.10) \).

It remains to prove the estimate \((2.11) \). In order to derive \((2.11) \), we use a similar argument in [10]. We first choose \(\mu > \max \{\sigma, 2(p + \alpha)\sigma - 2, 2(q + \beta)\sigma - 2\} \) and \(h(t) \in C([0, \infty) \cap \mathbb{R}(0, \infty) \) such that \(h(t) = \vartheta^t, \ 0 \leq t \leq 1; h(t) = 2, t \geq 2 \) and \(h(t), h'(t) \geq 0 \) in \((0, \infty) \). Then multiplying the first equation by \(h(t)u \) and the second equation by \(h(t)v \) in \((2.1) \), and letting \(j \to \infty \), we obtain
\[\int_0^t h(s)g(s)ds + \frac{1}{2}h(t) \int_\Omega (|u|^2 + |v|^2)dx \leq \int_\Omega (u|^\mu + |v|^\mu)dx \]
\[\leq \frac{1}{2} \int_0^t \int_\Omega h'(s)(|u|^2 + |v|^2)dxds + C \int_0^t \int_\Omega h(s)(|u|^{1+\alpha}|v|^p + |u|^q|v|^{1+\beta})dxds \]
with \(g(t) = \|\nabla u\|_{m+2}^2 + \|\nabla v\|_{n+2}^2, \ t \geq 0. \)

By Young's inequality and the assumption \((1.4) \), we obtain
\[C \int_\Omega (|u|^{1+\alpha}|v|^p + |u|^q|v|^{1+\beta})dx \leq \int_\Omega (|u|^\tau_1 + |v|^\tau_2)dx \]
\[\leq \varepsilon \int_\Omega (|u|^{m+2} + |v|^{n+2})dx + C_\varepsilon |\Omega| \leq C(|\nabla u|_{m+2}^2 + |\nabla v|_{n+2}^2) + C_\varepsilon |\Omega| \]
for any \(\varepsilon > 0 \) and \(\tau_1 = ((\alpha + 1)\beta + 1) - pq)/(\beta + 1 - p) \leq m + 2, \tau_2 = ((\alpha + 1)(\beta + 1) - pq)/(\alpha + 1 - q) < n + 2. \) Furthermore, we take \(\varepsilon = 1/2. \) Then \((2.31) \) \((2.32) \) yields
\[\int_0^t h(s)g(s)ds + h(t)(\|u\|_2^2 + \|v\|_2^2) \leq Ct^{\mu - \sigma} \quad (2.33) \]

Next, let \(\rho(t) = \int_0^t h(s)ds, \ t \geq 0. \) Similarly, multiplying the first equation in \((2.1) \) by \(\rho(t)u \) and the second equation by \(\rho(t)v \), and letting \(j \to \infty \), we have from \((2.30) \) \((2.31) \) that
\[\int_0^t \rho(s)(\|u\|^2 + |v|^2)ds + \rho(t)g(t) \leq C \int_0^t \int_\Omega \rho(s)(|u|^{2\alpha}|v|^{2p} + |u|^{2q}|v|^{2\beta})dxds \]
\[+ \int_0^t \rho'(s)g(s)ds \leq C \int_0^t \rho(s) \left(s^{-(\alpha + p)\sigma} + s^{-(\beta + q)\sigma} \right)ds + Ct^{\mu - \sigma} \]
\[\leq C \left(t^{\mu - \sigma} + t^{\mu + 2 - (p + \alpha)\sigma} + t^{\mu + 2 - (q + \beta)\sigma} \right), \ 0 < t < T. \quad (2.34) \]
Thus (2.34) implies
\[g(t) \leq C \left(t^{-1-\sigma} + t^{1-2(p+\alpha)} + t^{1-2(q+\beta)} \right), \quad 0 < t \leq T, \] (2.35)
and (2.11) is proved. The proof is completed. \(\square \)

Proof of Theorem 1.2 We notice that the estimate constant \(C \) in (2.30) and (2.35) is independent of \(j \), we may obtain the desired solution \((u, v)\) as limit of \(\{(u_j, v_j)\} \) (or a subsequence) by the standard compact argument as in [6, 8, 9, 10]. The solution \((u, v)\) of problem (1.1) also satisfies (1.5)-(1.6). The proof is completed. \(\square \)

Remark:
- From the proof of Theorem 1.2, we see that if the assumption (1.3) is replaced by
\[|f(u, v)| \leq K_1(1 + |u|^a|v|^p), \quad |g(u, v)| \leq K_2(1 + |u|^q|v|^\beta), \]
the conclusions in Theorem 1.2 still hold.

3. Proof of Theorem 1.3

By the standard compact argument as in [2, 7, 9, 10], we only consider the estimate (1.8) and show that \((u, v) \in L_{loc}^{1,m+1}(R^+, W_0^{1,m+1}(\Omega)) \cap L_{loc}^{1,n+1}(R^+, W_0^{1,n+1}(\Omega))\) for the solution of (2.1).

Proof of Theorem 1.3 Suppose that \(s < 0 \) holds. Let
\[p_0 = b_1 + b_{12}\varepsilon > 1, \quad q_0 = b_2 + b_{22}\varepsilon > 1, \] (3.1)
with \(b_1 = q+1-\alpha, b_2 = p+1-\beta, b_{12} = -(q+m+1-\alpha)/s, b_{22} = -(p+n+1-\beta)/s. \) Since \(s < 0 \), we can take \(\varepsilon > 0 \) such that \(p_0 \geq \max\{4q, 4\alpha, 2 + 2\alpha\}, q_0 \geq \max\{4p, 4\beta, 2 + 2\beta\}, S_0 = (\alpha + p_0 - 1)(\beta + q_0 - 1) - pq > 0. \) Then it follows from (2.5) and (2.7) that
\[
\frac{d}{dt}\left(\|u\|_{p_0}^{q_0} + \|v\|_{q_0}^{p_0} \right) + C_1 \left(\|\nabla u\|_{m+2}^{q_0 + m} + \|\nabla v\|_{m+2}^{q_0 + n} \right) \leq C \int |u|^{q_1} + |v|^{p_1} \, dx, \tag{3.2}
\]
where \(q_1 = S_0/(q_0 + \beta - 1 - p) > p_0 + m, pp_1 = S_0/(\alpha + p_0 - q - 1) > q_0 + n. \) We now estimate the right-hand side of (3.2). Let \(q_1 = p_0 + \theta, pp_1 = q_0 + \tau \) and \(\theta > m, \tau > n. \) Then
\[
\int_\Omega |u|^{q_1} \, dx = \|u\|_{p_0}^{q_0 + \theta} \leq C_2 \|u\|_{p_0}^{\theta - m} \|\nabla u\|_{m+2}^{q_0 + m}, \tag{3.3}
\]
\[
\int_\Omega |v|^{p_1} \, dx = \|v\|_{q_0}^{p_0 + \tau} \leq C_2 \|v\|_{q_0}^{\tau - n} \|\nabla v\|_{m+2}^{q_0 + n}, \tag{3.4}
\]
Denote
\[\phi(t) = \|u\|_{p_0}^{p_0} + \|v\|_{q_0}^{q_0}, \quad f(t) = \|\nabla u\|_{m+2}^{m+2} + \|\nabla v\|_{m+2}^{m+2}, \]
then (3.2) becomes
\[
\phi'(t) + C_1 f(t) \leq C_2 \left(\|u\|_{p_0}^{\theta-m} \|\nabla u\|_{m+2}^{m+2} + \|v\|_{q_0}^{r-n} \|\nabla v\|_{n+2}^{q_0+n} \right) \tag{3.5}
\]
with \(\alpha_0 = \min\{(\theta - m)/p_0, (r - n)/q_0\} > 0 \).

(3.5) implies that there is \(C_0 > 0 \) such that
\[
\phi'(t) + C_0 f(t) \leq 0 \quad \text{if} \quad C_3 \phi^{\alpha_0}(0) = C_3 \left(\|u_0\|_{p_0}^{\rho_0} + \|v_0\|_{q_0}^{\nu_0} \right)^{\alpha_0} < C_1. \tag{3.6}
\]
Furthermore, we have from Sobolev embedding theorems that
\[
\|\nabla u\|_{m+2}^{m+2} \geq d_1 \|u\|_{p_0}^{p_0+m} \geq d_2 \|u\|_{p_0}^{p_0+m}, \quad \|\nabla v\|_{n+2}^{q_0+n} \geq d_2 \|v\|_{q_0}^{q_0+n},
\]
for some \(d_2 > 0 \). Hence,
\[
f(t) \geq d_2 \left(\|u\|_{p_0}^{p_0+m} + \|v\|_{q_0}^{q_0+m} \right) \geq d_2 \phi^{1+\vartheta}, \quad \vartheta = \min\{m/p_0, n/q_0\}.
\]

Now (3.6) gives
\[
\phi'(t) + d_2 \phi^{1+\vartheta} \leq 0, \quad t \geq 0. \tag{3.7}
\]
This implies that
\[
\phi(t) \leq C (1 + t)^{-\frac{\vartheta}{\vartheta}}. \tag{3.8}
\]

Next, we show that \((u, v) \in L^{1+m+1}_{\text{loc}} \left(R^+, W^{1,m+1}_0 \right) \cap L^{1,n+1}_{\text{loc}} \left(R^+, W^{1,n+1}_0 \right) \). By the definition of \(p_0 \) and \(q_0 \), we have from (3.8) that for any \(t \geq 0 \),
\[
\int_{\Omega} |u|^{1+\alpha}|v|^p dx \leq C_1 \|u\|_{p_0}^{1+\alpha} \|v\|_{q_0}^p, \quad \int_{\Omega} |u|^q |v|^{1+\beta} dx \leq C_1 \|u\|_{p_0}^q \|v\|_{q_0}^{1+\beta}
\]
Here \(C_1 \) is a constant independent of \(t \). Thus (2.31) yields that
\[
\int_0^t h(s) g(s) ds \leq C \left(h(t) + \int_0^t g(s) ds \right) \leq C (h(t) + \rho(t)), \quad t \geq 0. \tag{3.9}
\]
Similarly, we have
\[
\int_{\Omega} |u|^{2\alpha}|v|^{2p} dx \leq \|u\|_{p_0}^{2\alpha} \|v\|_{q_0}^{2p}, \quad \int_{\Omega} |u|^{2q}|v|^{2\beta} dx \leq \|u\|_{p_0}^{2q} \|v\|_{q_0}^{2\beta} \leq C_2.
\]
Then from (2.34) and (3.9), we obtain
\[
\rho(t) g(t) \leq C_3 \left(\int_0^t \rho(s) ds + \int_0^t h(s) g(s) ds \right) \leq C_3 \left(\int_0^t \rho(s) ds + h(t) + \rho(t) \right) \tag{3.10}
\]
It implies
\[
g(t) \leq C_4 (t + t^{-1} + 1), \quad 0 \leq t \leq T, \tag{3.11}
\]
and \((u, v) \in L^{1,m+1}_{\text{loc}} \left(R^+, W^{1,m+1}_0 \right) \cap L^{1,n+1}_{\text{loc}} \left(R^+, W^{1,n+1}_0 \right) \). This completes the proof of Theorem 1.2. The proof is completed. \(\square \)

Acknowledgement. This work is supported by Basic Research Foundation Project of China SWU (No. XDJK2009C069)
GLOBAL EXISTENCE AND L^∞ ESTIMATES...

REFERENCES

* SCHOOL OF MATHEMATICS AND STATISTICS, SOUTHWEST UNIVERSITY, CHONGQING, 400715, P. R. CHINA.
E-mail address: zhoujun_math@hotmail.com