COMMENT ON AND A CHARACTERIZATION OF THE CONCEPT OF COMPLETE RESIDUATED LATTICE

FATHEI M. ZEYADA1 AND M. A. ABD-ALLAH2

Abstract. We prove that some properties of the definition of complete residuated lattice [2,4] can be derived from the other properties. Furthermore we prove that the concept of strictly two-sided commutative quantale [1,3] and the concept of complete residuated lattice are equivalent notions.

1. Introduction

Definition 1. A structure $(L, \lor, \land, *, \rightarrow, \bot, \top)$ is called a complete residuated lattice iff

1. $(L, \lor, \land, \bot, \top)$ is a complete lattice whose greatest and least element are \top, \bot respectively,
2. $(L, *, \top)$ is a commutative monoid, i.e.,
 a) $*$ is a commutative and associative binary operation on L, and
 b) $\forall a \in L, a * \top = \top * a = a$,
3. $(a) *$ is isotone,
 b) \rightarrow is a binary operation on L which is antitone in the first and isotone in the second variable,
 c) \rightarrow is couple with $*$ as: $a * b \leq c$ iff $a \leq b \rightarrow c \ \forall a, b, c \in L$.

The following proposition illustrates that the conditions (3)(a) and (3)(b) are consequences from the other conditions. Therefore conditions (3)(a) and (3)(b) should be omit from Definition 1 to be consistent.

Date: Received: March 2008; Revised: May 2008
* Corresponding author.
2000 Mathematics Subject Classification. Primary 42A20; Secondary 42A32.
Key words and phrases. Complete residuated lattice; Quantale; Complete MV-algebra.
Proposition 1. The conditions (3)(a) and (3)(b) are obtained from the commutativity of * and from (3)(c).

Proof. Let \(a_1, a_2, b \in L \) s.t. \(a_1 \leq a_2 \).

(3)(a) Since \(a_2 \ast b \leq a_2 \ast b \), then \(a_2 \leq b \rightarrow (a_2 \ast b) \) and so \(a_1 \leq b \rightarrow (a_2 \ast b) \). So \(a_1 \ast b \leq a_2 \ast b \). Since * is commutative, then \(b \ast a_1 \leq b \ast a_2 \). Hence * is isotone.

(3)(b) Since \(a_2 \rightarrow b \leq a_2 \rightarrow b \), then \((a_2 \rightarrow b) \ast a_2 \leq b \). So, \((a_2 \rightarrow b) \ast a_1 \leq b \) which implies that \(a_2 \rightarrow b \leq a_1 \rightarrow b \), i.e., \(\rightarrow \) is antitone in the first variable. Since \(b \rightarrow a_1 \leq b \rightarrow a_1 \), then \((b \rightarrow a_1) \ast b \leq a_1 \leq a_2 \). So, \(b \rightarrow a_1 \leq b \rightarrow a_2 \), i.e., \(\rightarrow \) is isotone in the second variable.

For the following definition we refer to [1,3].

Definition 2. A structure \((L, \lor, \land, \ast, \rightarrow, \bot, \top)\) is called a strictly two-sided commutative quantale iff

1. \((L, \lor, \land, \bot, \top)\) is a complete lattice whose greatest and least element are \(\top, \bot \) respectively,
2. \((L, \ast, \top)\) is a commutative monoid,
3. \((a \ast \lor_{j \in J} b_j = \lor_{j \in J}(a \ast b_j) \forall a \in L, \forall \{b_j \mid j \in J\} \subseteq L, (b) \rightarrow \) is a binary operation on \(L \) defined by : \(a \rightarrow b = \lor_{\lambda \ast a \leq b} a \forall a, b \in L \).

Lemma 1. In any strictly two-sided commutative quantale \((L, \lor, \land, \ast, \rightarrow, \bot, \top)\), * is isotone.

Proof. Let \(a_1, a_2, b \in L \) s.t. \(a_1 \leq a_2 \). Now, \(b \ast a_2 = b \ast (a_1 \lor a_2) = (b \ast a_1) \lor (b \ast a_2) \). Then \(b \ast a_1 \leq b \ast a_2 \). Hence * is commutative, then \(a_1 \ast b \leq a_2 \ast b \). Hence * is isotone.

Theorem 1. A structure \((L, \lor, \land, \ast, \rightarrow, \bot, \top)\) is complete residuated lattice iff it is strictly two-sided commutative quantale.

Proof. : First, since for every \(\lambda \in L \) s.t. \(a \ast \lambda \leq b \) we have \(\lambda \leq a \rightarrow b \). Then \(\lor_{\lambda \ast a \leq b} \lambda \leq a \rightarrow b \). Since \(a \rightarrow b \leq a \rightarrow b \), then \((a \rightarrow b) \ast a \leq b \). So, \(a \rightarrow b \in \{\lambda \in L \mid \lambda \ast a \leq b\} \). Hence \(\lor_{\lambda \ast a \leq b} \lambda = a \rightarrow b \).

Second, since * is isotone, then \(\lor_{j \in J}(a \ast b_j) \leq a \ast \lor_{j \in J} b_j \). Now, \(\forall j \in J, b_j \leq a \rightarrow (a \ast b_j) \) which implies that \(\lor_{j \in J} b_j \leq a \rightarrow \lor_{j \in J}(a \ast b_j) \). Thus \(a \ast \lor_{j \in J} b_j \leq \lor_{j \in J}(a \ast b_j) \). Hence \(a \ast \lor_{j \in J} b_j = \lor_{j \in J}(a \ast b_j) \).

\(\Rightarrow \) : Let \(a \ast b \leq c \). Then \(b \rightarrow c = \lor_{\lambda \ast b \leq c} \lambda \geq a \). Conversely, let \(a \leq b \rightarrow c \). Then, \(a \leq \lor_{\lambda \ast b \leq c} \lambda \). So from Lemma 1, \(a \ast b \leq (\lor_{\lambda \ast b \leq c} \lambda) \ast b = \lor_{\lambda \ast b \leq c} (\lambda \ast b) \leq c \).

Definition 3 [1]. A structure \((L, \lor, \land, \ast, \rightarrow, \bot, \top)\) is called a complete MV-algebra iff the following conditions are satisfied:

1. \((L, \lor, \land, \ast, \rightarrow, \bot, \top)\) is a strictly two-sided commutative quantale;
2. \(\forall a, b \in L, (a \rightarrow b) \rightarrow b = a \lor b \).
Corollary 1. \((L, \lor, \land, *, \to, \bot, \top)\) is a complete MV-algebra iff \((L, \lor, \land, *, \to, \bot, \top)\) is a complete residuated lattice satisfies the additional property

\((MV)\ (a \to b) \to b = a \lor b \ \forall a, b \in L.\)

References