WHEN IS A QUASI-P-PROJECTIVE MODULE DISCRETE?

Y. TALEBI* AND I. KHALILI GORJI2

Abstract. It is well-known that every quasi-projective module has D_2-condition. In this note it is shown that for a quasi-p-projective module M which is self-generator, duo, then M is discrete.

1. Introduction and preliminaries

Throughout, R is an associative ring with identity and right R-modules are unitary. Let M be a right R-module. A module N is called M-generated if there is an epimorphism $M^{(I)} \rightarrow N$ for some index set I. In particular, N is called M-cyclic if it is isomorphism to M/L for submodule $L \subseteq M$. Following [3] a module M is called self-generator if it generates all its submodules. For standard notation and terminologies, we refer to [4], [3].

Let M be a right R-module. A right R-module N is called M-p-projective if every homomorphism from N to an M-cyclic submodule of M can be lifted to an R-homomorphism from N to M. A right R-module M is called quasi-p-projective, if it is M-p-projective. A submodule A of M is said to be a small submodule of M (denoted by $A \ll M$) if for any $B \subseteq M$, $A + B = M$ implies $B = M$. A module M is called hollow if every its submodule is small.

In [2], S.Chotchaisthit showed that a quasi-p-injective module M is continuous, if M is duo and semiprefect. Here we study, when a quasi-p-projective module is discrete.

Consider the following conditions for a module M which have studied in [3] : D_1: For every submodules N of M there exist submodules K, L of M such that $M = K \oplus L$ and $K \leq N$ and $N \cap L \ll L$.

Date: Received: 27 September 2008.
* Corresponding author.
2000 Mathematics Subject Classification. Primary 16D40; Secondary 16D60, 16D90.
Key words and phrases. Supplemented Module, H-Supplemented Module, Lifting Module.
\[D_2: \text{If } N \text{ is a submodule of } M \text{ such that } M/N \text{ is isomorphism to a direct summand of } M, \text{ then } N \text{ is a direct summand of } M. \]

\[D_3: \text{For every direct summands } K, L \text{ of } M \text{ with } M = K + L, K \cap L \text{ is a direct summand of } M. \]

If the module \(M \) satisfies \(D_1 \) and \(D_2 \) then it is called a \emph{discrete} module.

It is clear that if \(M \) is hollow, then it has \(D_1 \) and \(D_2 \) conditions, since hollow module is indecomposition.

\section{2. Main results}

Recall that a submodule \(N \) of \(M \) is called a \emph{fully invariant} submodule if \(s(N) \subseteq N \), for any endomorphism \(s \) of \(M \). A right \(R \)-module is called a \emph{duo} module if every submodule is fully invariant. A ring \(R \) is right duo if every right ideal is two sided. The proof of the following Lemma is routine.

\begin{lemma}
Let \(M \) be a duo right \(R \)-module and \(A \) its direct summand. Then:
\begin{enumerate}
\item \(A \) is itself a duo module;
\item If \(M \) is a self-generator, then \(A \) is also a self-generator.
\end{enumerate}
\end{lemma}

\begin{proof}
(1) Let \(f \in \text{End}(A) \), \(\pi : M \to A \), \(i : A \to M \) be the projection and inclusion maps. Then \(g = i \pi \in \text{End}(M) \). It follows that for any submodule \(X \) of \(A \), \(f(X) = g(X) \subseteq X \), proving our Lemma.

(2) Let \(M = A \oplus B \). Then \(f(M) = f(A) + f(B) \) for any \(f \in \text{End}(M) \). Let \(X \) be a submodule of \(A \). Since \(M \) is a self-generator, we can write \(X = \sum_{f \in I} f(M) = \sum_{f \in I} (f(A) + f(B)) \), for some subset \(I \) of \(\text{End}(M) \). Since \(f(B) \subseteq B \), it follows that \(f(B) = 0 \) for all \(f \in I \). Hence \(X = \sum_{f \in I} f(A) \). Moreover, \(f \) can be considered as an endomorphism of \(A \), since \(f(A) \subseteq A \). This shows that \(A \) is a self-generator.
\end{proof}

\begin{lemma}
Let \(M \) be a quasi-p-projective. If \(S = \text{End}(M_R) \) is local, then for any non-trivial fully invariant \(M \)-cyclic submodules \(A \) and \(B \) of \(M \), \(A + B \neq M \).
\end{lemma}

\begin{proof}
Let \(0 \neq s(M) = A \) and \(0 \neq t(M) = B \), \(s, t \in S \) and \(A + B = M \). Define the map \(f : M = (s+t)(M) \to M/(A \cap B) \) such that \(f((s+t)(m)) = s(m) + (A \cap B) \). For any \(m, m' \in M \), \((s+t)(m) = (s+t)(m') \) implies \(s(m-m') \in t(m-m') \subseteq A \cap B \). So \(s(m) = s(m') \in (A \cap B) \). Clearly \(f \) is an \(R \)-homomorphism. By quasi-p-projective, there exist \(g \in S \) such that \(\pi \circ g = f \) and \(\pi : M \to M/(A \cap B) \) is natural epimorphism. It follows \(\pi \circ g(s+t)(m) = \pi(s(m)) \). Then \(((1-g) \circ s - g \circ t)(M) \subseteq (A \cap B) \). Since \(S \) is local, \(g \) or \(1-g \) is invertible. If \(1-g \) is invertible, we have \((s-(1-g)^{-1} \circ g \circ t)(M) \subseteq (A \cap B) \). \(A \subseteq (s-(1-g)^{-1} \circ g \circ t)(M) \subseteq (1-g)^{-1}(A \cap B) \subseteq (A \cap B) \). Then \(A \subseteq (A \cap B) \), that is contradiction. If \(g \) is invertible we have \(B \subseteq (g^{-1} \circ (1-g) \circ s - t) \subseteq g^{-1}(A \cap B) \subseteq (A \cap B) \). Then \(B \subseteq (A \cap B) \), that is contradiction.
\end{proof}

\begin{corollary}
If \(M \) is quasi-p-projective duo module which is a self-generator with local endomorphism ring, then \(M \) is hollow, hence it is discrete.
\end{corollary}

\begin{proof}
It is clear by Lemma 2.2.
\end{proof}

\begin{lemma}
Let \(M = \bigoplus_{i \in I} B_i \) be duo module. Then for any submodule \(A \) of \(M \) we have \(A = \bigoplus_{i \in I}(A \cap B_i) \).
\end{lemma}
Proof. See [1].

Corollary 2.5. Let M be a duo module. If A and B are direct summands of M, then so $A \cap B$.

Proof. Let $M = A \oplus A_1 = B \oplus B_1$, then by lemma 2.4 $B = B \cap (A \oplus A_1 = (A \cap B) \oplus (B \cap A_1)$. hence $M = (A \cap B) \oplus (B \cap A_1) \oplus B_1$. So $A \cap B$ is a direct summand of M. □

Theorem 2.6. Let $M = \oplus_{i \in I} M_i$ be quasi-p-projective module where each M_i is hollow. If M is duo module, $\text{Rad}(M) \ll M$ then M is discrete.

Proof. By Lemma 2.4 every submodule A of M can be written in the form $A = \oplus_{j \in J} (A \cap M_j)$ where $J \subseteq I$ and $A \cap M_j \neq 0$. Since $A \cap M_j$ is small in M_j we see that A is small in M. Thus we have proved. □

Theorem 2.7. Suppose that M is semisimple quasi-p-projective duo module and $\text{Rad}(M) \ll M$. If M is self-generator, then M is discrete.

Proof. We have $M = \oplus_{i \in I} M_i$ such that M_i is simple, then $\text{End}(M_i)$ is local. By Lemma 2.1 each M_i is duo and self-generator. Since any direct summand of a quasi-p-projective is again quasi-p-projective, it follows from Corollary 2.3 that each M_i is discrete. From Theorem 2.6 that M is discrete, proving our Theorem. □

Acknowledgements. This research partially is supported by the ”research center in Algebraic Hyperstructure and Fuzzy Mathematics University of Mazandaran, Babolsar, Iran”.

References

1 Department of Mathematics, University of Mazandaran, Babolsar, Iran.

E-mail address: talebi@umz.ac.ir