Fixed Point Theorems for Multi-valued Weakly C -contractive Mappings in Quasi-ordered Metric Spaces

E. Nazari

Department of Mathematics, Tafresh University, Tehran Ave. Tafresh, Iran. nazari.esmaeil@gmail.com

Article history:
Received November 2014
Accepted December 2014
Available online January 2015

Abstract
The goal of this paper is to present some common fixed point theorems for multivalued weakly C-contractive mappings in quasi-ordered complete metric space. These results generalizes the existing fixed point results in the literature.

Keywords: Multivalued mapping, Hausdorff distance, Weakly C-contractive mapping, Common fixed point.

1. Introduction

Fixed point theory for contractive mapping first studied by Banach [1]. He proved that every contraction defined on a complete metric space has a unique fixed point. Since then the fixed point theory for single valued and multivalued mappings in metric space has been rapidly developed. In 1972, Chatterjea [2] introduce the concept of C-contraction as follows.

Definition1.1. A mapping $T : X \rightarrow X$ where (X, d) is a metric space is said to be a C-contraction if there exists $k \in (0,0.5)$ such that for all $x, y \in X$ the following inequality holds:

$$d(Tx, Ty) \leq k((d(x, Ty) + d(y, Tx)).$$
Chatterjea [2] proved the following theorem:

Theorem 1.1. Every C-contraction in a complete metric space has a unique fixed point.

Choudhury [3] introduce the concept of weakly C-contractive mapping as a generalization of C-contractive mapping and prove that every weakly C-contractive mapping in a complete metric space has a unique fixed point.

Definition 1.2. Let \((X, d)\) be a metric space. A mapping \(T : X \to X\), is said to be weakly C-contractive if for all \(x, y \in X\),

\[
d(Tx, Ty) \leq \frac{1}{2}(d(x, Ty) + d(y, Tx)) - \varphi(d(x, Ty), d(y, Tx)),
\]

Where \(\varphi : [0, \infty)^2 \to [0, \infty)\) is a continuous function such that \(\varphi(x, y) = 0\) if and only \(x = y = 0\).

Harjani et al. [5] announced some fixed point results for weakly C-contractive mappings in a complete metric space endowed with a partial order. Meanwhile, Shatanawi [9] proved some fixed point theorems for a nonlinear weakly C-contraction type mapping in metric and ordered metric spaces. In this paper, we introduce the concept of multivalued weakly C-contractive mappings in quasi-ordered partial metric spaces and we prove some existence theorems of common fixed point for such mappings in the context of complete quasi-partial metric spaces under certain conditions.

2. Preliminaries

Let \((X, d, \leq)\) be a quasi-ordered metric space, with an order \(\leq\) as a quasi-order (that is, a reflexive and transitive relation) and a metric \(d\). Assume that \(X\) having the following properties which appears in [8]:

\(\text{(H1)}\): if \(\{x_n\}\) is a non-decreasing (resp. non-increasing) sequence in \(X\) such that \(x_n \to x\), then \(x_n \leq x\) (resp. \(x_n \geq x\)) for all \(n \in \mathbb{N}\).

Let \(2^X\) denote the family consisting of all nonempty subsets of \(X\) we define the Hausdorff-Pseudo metric in \(H_d : 2^X \times 2^X \to \mathbb{R}_+ \cup \{\infty\}\) given by

\[
H_d(C, D) = \max\{\sup_{a \in C} d(a, D), \sup_{b \in D} d(C, b)\},
\]

where \(d(a, D) = \inf_{b \in D} d(a, b)\), \(d(C, b) = \inf_{a \in C} d(a, b)\).

Definition 2.1. Let \((X, d, \leq)\) be a quasi-ordered metric space. We say that \(X\) is sequentially complete if every Cauchy sequence whose consecutive terms are comparable in \(X\) converges.

Definition 2.2. [6,7] Let \(X\) be a quasi-ordered metric space. A subset \(D \subseteq X\) is said to be approximative if the multivalued mapping
\[P_n(x) = \{ y \in D : d(x, y) = d(D, x) \}, \quad \forall x \in X \]

has nonempty values.

The multivalued mapping \(T : X \to 2^X \) is said to have approximative values, AV for short, if \(T x \) is approximative for each \(x \in X \).

The multivalued mapping \(T : X \to 2^X \) is said to have comparable approximative values, CAV for short, if \(T \) has approximative values and, for each \(z \in X \), there exists \(y \in P_{Tz}(x) \) such that \(y \) is comparable to \(z \).

The multivalued mapping \(T : X \to 2^X \) is said to have upper comparable approximative values, UCAV, for short (resp: lower comparable approximative values, LCAV for short) if \(T \) has approximative values and, for each \(z \in X \), there exists \(y \in P_{Tz}(x) \) such that \(y \geq z \) (resp: \(y \leq z \)). It is clear that \(T \) has approximative values if it has compact values. In addition, if \(T \) is single-valued, Then UCAV (LCAV) means that \(T x \geq x \) (\(T x \leq x \) for \(x \in X \).

Definition 2.3. The multivalued mappings \(T, S \) are said to have a common fixed point if there is \(x \in X \) such that \(x \in Tx \) and \(x \in Sx \).

In what follows, we give an analogy of the contraction which called multivalued C-weakly contraction mapping will play an important role in this sequel. To this end, we first introduce the following function.

Let \(a \in (0, \infty], R^+_a = [0, a) \). let \(f : R^+_a \to R \) satisfy,

(i) \(f(0) = 0 \) and \(f(t) > 0 \) for each \(t \in (0, a) \)

(ii) \(f \) is non-decreasing on \(R^+_a \)

(iii) \(f \) is continuous

(iv) \(f(t+s) \leq f(t) + f(s) \) for \(s, t \in R^+_a \).

For examples of such function \(f \) we refer to (6).

Define

\[\mathfrak{B}(0, a) = \{ f \mid f \text{ satisfies (i)-(iv) above} \}. \]

Let \(a \in (0, \infty] \), \(\phi : R^+_a \times R^+_a \to R^+ \) satisfy

(i) \(\phi(t, s) = 0 \) if and only if \(s = t = 0 \).

(ii) \(\phi \) is continuous.

(iii) For any sequence \(\{r_n\} \) with \(\lim r_n = 0 \), there exist \(a \in (0, \frac{1}{2}) \) and \(n_0 \in \mathbb{N} \) such that \(\phi(r_n, 0) \geq (1-a)r_n^a \) (or \(\phi(0, r_n) \geq (1-a)r_n^a \)) for each \(n \geq n_0 \). Define

\[\Phi([0, a] \times [0, a]) = \{ \phi : \phi \text{ satisfies (i)-(iii) above} \}. \]
Definition 2.3. Let X be a metric space and $d = \sup\{d(x, y) : x, y \in X\}$. Set $a = d$ if $d = \infty$ and $a > d$ if $d < \infty$. Suppose the multivalued mappings $T, S : X \to 2^X$, $f \in \mathcal{F}(0, a)$ and $\varphi \in \Phi([0, f(a-0)) \times [0, f(a-0))]$ satisfy
\[
 f(H_d(Tx, Sy)) \leq f\left(\frac{1}{2}(d(x, Sy) + d(y, Tx))\right) - \varphi(f(d(x, Sy)), f(d(y, Tx)))
\]
for all $x, y \in X$ with x and y comparable. Then we say T and S satisfy weakly C-contraction with respect to f and φ.

Definition 2.4. For two subsets A, B of X, we say that r_{AB} if, for each $a \in A$, there exists $b \in B$ such that $ab \leq r$ and each $a \in A$ and each $b \in B$ imply that $ab \leq r$. A multi-valued mapping $T : X \to 2^X$ is said to be r-non-decreasing (r-non-increasing) if $xy \leq r$ implies that $Tx \leq Ty$ ($Ty \leq Tx$) for all $x, y \in X$. T is said to be r-monotone if T is r-non-decreasing or r-non-increasing. The notion of non-decreasing (non-increasing) is similarly defined by writing \leq instead of the notation \leq.

3. Main Result

In this section we established common fixed point theorems for multivalued mappings on quasi-ordered complete metric spaces. The idea of the present theorem originate from the study of analogous problem for single-valued mappings in [4] and [9], and multivalued mappings in [6], [7] and [10].

Theorem 3.1. Let X be a quasi-ordered sequentially complete metric space and satisfy (H1). Suppose that the multivalued mappings T and S have UCAV and satisfy the weakly C-contraction with respect to f and φ, then T and S have a common fixed point. Further, for each $x_0 \in X$, the iterated sequence $\{x_n\}$ with $x_{2n+1} \in Tx_{2n}$ and $x_{2n+2} \in Sx_{2n+1}$ converges to the common fixed point of T and S.

Proof: First we show that, if T or S has a fixed point it is a common fixed point of T and S. Indeed, let x be a fixed point of T then we have,
\[
 f(d(x, Sx)) \leq f(H_d(Tx, Sx)) \\
 \leq f(0.5(d(x, Sx) + d(x, Tx))) - \varphi(f(d(x, Sx)), f(d(x, Tx))) \\
 = f(0.5d(x, Sx)) - \varphi(f(d(x, Sx), 0) \\
 \leq f(0.5d(x, Sx)) - \varphi(f(d(x, Sx), 0)
\]
This implies that, $\varphi(f(d(x, Sx)), 0) = 0$ and hence $f(d(x, Sx)) = 0$ therefore $d(x, Sx) = 0$. Since x is AV, therefore there exist $y \in P_{x_0}(x)$ such that $d(y, x) = 0$ i.e, $y = x$. Thus
$x \in Sx$. Let $x_0 \in X$, if $x_0 \in Tx_0$ the proof is finished. Otherwise, from the fact that Tx_0 has UCAV it follows there exists $x_i \in Tx_0$ with $x_i \neq x_0$ and $x_i \geq x_0$ such that

$$d(x_0, x_i) = \inf_{x \in Tx_0} d(x, x_0) = d(Tx_0, x_0).$$

Again since Sx_i has UCAV it follows there exist $x_2 \in Sx_i$ with $x_2 \neq x_i$ and $x_2 \geq x_i$ such that

$$d(x_i, x_2) = \inf_{x \in Sx_i} d(x, x_i) = d(Sx_i, x_i).$$

By induction and using UCAV, we can find in this way a sequence $\{x_n\}$ in X with $x_{n+1} \geq x_n$ such that $x_{2n+1} \in Tx_{2n}$ and

$$d(x_{2n+1}, x_{2n}) = d(Tx_{2n}, x_{2n}).$$

and $x_{2n+2} \in Sx_{2n+1}$ with

$$d(x_{2n+2}, x_{2n+1}) = d(Sx_{2n+1}, x_{2n+1}).$$

On the other hand

$$d(Tx_{2n}, x_{2n}) \leq \sup_{x \in Sx_{2n-1}} d(Tx_{2n}, x) \leq H_d(Tx_{2n}, Sx_{2n-1}).$$

Therefore

$$d(x_{2n+1}, x_{2n}) \leq H_d(Tx_{2n}, Sx_{2n-1}). \quad (1)$$

Similarly we can show that

$$d(x_{2n+2}, x_{2n+1}) \leq H_d(Sx_{2n+1}, Tx_{2n}). \quad (2)$$

Now we show that $\lim_{n \to \infty} d(x_{n+1}, x_n) = 0$. By using (2) and since f is non-decreasing, we have

$$f(0.5(d(x_{2n+1}, x_{2n+2})) \leq f(H_d(Tx_{2n}, Sx_{2n+1})) \leq f(0.5(f(d(x_{2n}, Sx_{2n+1}) + d(x_{2n+1}, Tx_{2n}))) - \phi(f(d(x_{2n}, Sx_{2n+1})), f(d(x_{2n+1}, Tx_{2n})))) \leq f(0.5(d(x_{2n}, x_{2n+2}))) - \phi(f(d(x_{2n}, x_{2n+2})), 0) \leq f(0.5(d(x_{2n}, x_{2n+2}))). \quad (3)$$

As f is a non-decreasing function, we get

$$d(x_{2n+1}, x_{2n+2}) \leq 0.5d(x_{2n}, x_{2n+2}). \quad (3)$$

Since
\[d(x_{2n}, x_{2n+2}) \leq d(x_{2n}, x_{2n+1}) + d(x_{2n+1}, x_{2n+2}). \]

We have

\[d(x_{2n+1}, x_{2n+2}) \leq d(x_{2n}, x_{2n+1}). \quad (4) \]

Similarly, by using (1) one can show that

\[d(x_{2n}, x_{2n+1}) \leq 0.5d(x_{2n-1}, x_{2n+1}). \quad (5) \]

Thus

\[d(x_{2n}, x_{2n+1}) \leq d(x_{2n-1}, x_{2n}). \quad (6) \]

From (4) and (6), we have

\[d(x_n, x_{n+1}) \leq d(x_{n-1}, x_n), \quad \forall n \in N. \quad (7) \]

So, by (7) we get that \(\{d(x_n, x_{n+1}): n \in N\} \) is a non-increasing sequence. Hence there is \(r \geq 0 \) such that

\[\lim_{n \to \infty} d(x_n, x_{n+1}) = r. \]

By (3) and (5) we have

\[d(x_n, x_{n+1}) \leq 0.5d(x_{n-1}, x_{n+1}) \]
\[\leq 0.5\left(d(x_{n-1}, x_n) + d(x_n, x_{n+1})\right). \quad (8) \]

Letting \(n \to \infty \) and using (8), we get that

\[r \leq \lim_{n \to \infty} 0.5d(x_{n-1}, x_{n+1}) \leq 0.5(r + r). \]

Hence

\[\lim_{n \to \infty} d(x_{n-1}, x_{n+1}) = 2r. \]

Using the continuity \(f \), \(\varphi \) and (3), we get that

\[f(r) \leq f(0.5(2r)) - \varphi(f(2r), 0), \]

which implies that \(\varphi(f(2r), 0) = 0 \) and hence \(r = 0 \).

Next we show that \((x_n) \) is a Cauchy sequence in \(X \). Since \(\lim_{n \to \infty} f(d(x_{n-1}, x_{n+1})) = 0 \), from assumption (iii) of \(\varphi \) there exists \(0 < a < \frac{1}{2} \) and \(n_0 \in N \) such that

\[\varphi(f((d(x_{n-1}, x_{n+1})), 0) \geq af(d(x_{n-1}, x_{n+1})) \quad \text{for all} \quad n \geq n_0. \]

238
On the other hand, for any given \(\epsilon > 0 \), we choose \(\delta > 0 \) to be small enough such that
\[
 f(\delta) < \frac{a}{1 - 2a} f(\epsilon).
\]
Moreover, there exists \(n_1 \) such that \(d(x_{n+1}, x_n) \leq \delta \), for each \(n \geq n_1 \).

Now for any numbers \(m > n \geq \max\{n_0, n_1\} \), from the inequality (1) and (2) we have
\[
 f(d(x_{n+1}, x_n)) \leq f(H_d(Tx_n, Sx_{n-1})) \quad \text{or} \quad f(H_d(Tx_{n-1}, Sx_n))
\]
\[
 \leq f\left(0.5(d(x_n, Sx_{n-1}) + d(x_{n-1}, Tx_n))\right)
\]
\[
 - \phi\left(f\left(d(x_n, Sx_{n-1})\right), f\left(d(x_{n-1}, Tx_n)\right)\right)
\]
\[
 \leq f\left(0.5\left(d(x_{n-1}, x_{n+1})\right)\right) - \phi(0, f\left(d(x_{n-1}, x_{n+1})\right))
\]
\[
 \leq f\left(d(x_{n-1}, x_{n+1})\right) - (1 - a)f\left(d(x_{n-1}, x_{n+1})\right)
\]
\[
 \leq af\left(d(x_{n-1}, x_{n+1})\right)
\]
\[
 \leq a\left(f\left(d(x_{n-1}, x_n)\right) + f\left(d(x_n, x_{n+1})\right)\right).
\]

Therefore
\[
 f(d(x_n, x_{n+1})) \leq (a / (1 - a)) f(d(x_{n-1}, x_n)).
\]

Set \(\alpha = \frac{a}{1 - a} < 1 \). By repeating this procedure, for any \(k > n \) we obtain
\[
 f(d(x_k, x_{k-1})) \leq \alpha f(d(x_{k-1}, x_{k-2})) \leq \ldots \leq a^{k-n} f(d(x_n, x_{n-1})).
\]

Therefore, from the assumption of \(f \) we have,
\[
 f(d(x_n, x_m)) \leq f(d(x_m, x_{m-1})) + f(d(x_{m-1}, x_{m-2})) + \ldots + f(d(x_n, x_{n-1}))
\]
\[
 \leq \alpha^{m-n} f(d(x_n, x_{n-1})) + \alpha^{m-n-1} f(d(x_n, x_{n-1})) + \ldots
\]
\[
 + \alpha f\left(d(x_n, x_{n-1})\right)
\]
\[
 = (\alpha - \alpha^{m-n+1} / (1 - \alpha)) f(d(x_n, x_{n-1}))
\]
\[
 < (\alpha / (1 - \alpha)) f(d(x_n, x_{n-1})) < (\alpha / (1 - \alpha)) f(\delta)
\]
\[
 = (a / (1 - 2a)) f(\delta) < f(\epsilon).
\]

This shows that \(d(x_n, x_n) < \epsilon \), so \(\{x_n\} \) is a \(\leq - \) non-decreasing Cauchy sequence. Since \(X \) is a sequentially complete, there exists \(x^* \in X \) such that \(\lim_{n \to \infty} x_n = x^* \). Finally, we prove that
\(x^* \) is a common fixed point of \(T \) and \(S \). For every \(n \in N \), \((H1) \) guarantees that \(x_n \) is comparable to \(x^* \), so for \(n \in N \) we have,
\[f(d(x_{2n+2}, Sx^*)) \leq f(\sup_{x \in Tx_{2n+1}} d(x, Sx^*)) \leq f(H_d(Tx_{2n+1}, Sx^*)) \]
\[\leq f(0.5(d(x_{2n+1}, Sx^*) + d(x^*, Tx_{2n+1}))) - \varphi(f(d(x_{2n+1}, Sx^*)), f(d(x^*, Tx_{2n+1}))) \]
\[\leq f(0.5(d(x_{2n+1}, Sx^*) + d(x^*, x_{2n+2}))) - \varphi(f(d(x_{2n+1}, Sx^*)), f(d(x^*, x_{2n+2}))), \]
\[(9) \]

Since \(\varphi \) is l.s.c, letting \(n \to \infty \) in (9) we get
\[f(d(x^*, Sx^*)) \leq f(0.5d(x^*, Sx^*)) - \varphi(f(d(x^*, Sx^*)), 0). \]

Which implies \(\varphi(f(d(x^*, Sx^*)), 0) = 0 \) and hence \(d(x^*, Sx^*) = 0 \). Since \(Sx^* \) is AV, there exist \(y \in P_{Sx^*} \) such that \(d(y, x^*) = 0 \) i.e. \(y = x^* \), therefore \(x^* \) is a fixed point of \(S \), and so it is a common fixed point. This completes the proof.

Similar to the proof of Theorem 3.1 we have the following Theorem.

Theorem 3.2. Let \(X \) be a sequentially complete quasi-ordered metric space and satisfy (H1). Suppose that \(T, S : X \to 2^X \) be two mappings that satisfy weakly \(C \)-contraction with respect to \(f \) and \(\varphi \), and have LCAV. Then \(T \) and \(S \) have a common fixed point. Further, for each \(x_0 \in X \), the iterated sequence \(\{x_n\} \) with \(x_{2n+1} \in Tx_{2n} \) and \(x_{2n+2} \in Sx_{2n+1} \) converges to the common fixed point of \(T \) and \(S \).

Theorem 3.3. Let \(X \) be a totally ordered sequentially complete metric space and satisfy (H1) and the following

(H2) \(x \leq y \leq z \) implies that \(d(z, x) \geq d(y, x) \) for all \(x, y, z \in X \).

Suppose that \(T \) and \(S \) satisfy all conditions given in Theorem 3.1 (resp. in Theorem 3.2), then \(T, S \) have a unique common fixed point \(x \in X \) and the iterated convergence of Theorem 3.1 holds.

Proof: Theorem 3.1 (resp. Theorem 3.2) ensures existence of common fixed points. To prove the uniqueness, let both \(x \) and \(y \) be common fixed point of \(T \) and \(S \). Since \((X, \leq) \) is a totally ordered space, we have either \(x > y \) or \(y > x \). Without loss of generality, we assume that the former is true. If \(T \) has UCAV, we have \(x^* \in Tx \), with \(x \leq x^* \) and \(d(x^*, y) = d(Tx, y) \). From our assumption it follows that \(d(x^*, y) \geq d(x, y) \). On the other
hand, \(x \in Tx \) implies that \(d(x^*, y) \leq d(x, y) \). Hence, \(d(x^*, y) = d(x, y) = d(Tx, y) \). If \(x \neq y \), then \(d(x, y) > 0 \). Thus

\[
d(x, y) = d(Tx, y) \leq H_d(Tx, Sy). \tag{10}
\]

If \(T \) has LCAV, so does \(S \), we have \(y^* \in Sy \) with \(y^* \leq y \) and \(d(y^*, x) = d(Sy, x) \). From (H2) it follows that \(d(y^*, x) \geq d(x, y) \). On the other hand, \(y \in Sy \) implies that \(d(y^*, x) \leq d(x, y) \). Hence, \(d(y^*, x) = d(x, y) = d(x, Sy) \). At all events, (10) holds if \(x \neq y \).

\[
f(d(x, y)) \leq f(H_d(Tx, Sy)) \leq f\left(\frac{1}{2}(d(y, Tx) + d(x, Sy))\right) - \varphi(d(y, Tx), d(x, Sy))
\]

\[
= f(d(x, y)) - \varphi(d(x, y), d(x, y)) < f(d(x, y))
\]

This is a contradiction. Consequently, the inequality \(x < y \) is not true. By the same methods we can verify that \(y < x \) is also not true. Thus \(x = y \).

Theorem 3.3. Let \(X \) be a sequentially complete quasi-ordered metric space and satisfy (H1). Suppose that \(T, S : X \to 2^X \) be two mappings have AV, are non-decreasing, and weak \(C \)-contraction with respect to \(f \) and \(\varphi \). If there exists \(x_0 \in X \) such that \(\{x_0\} \leq Sx_0 \leq Tx_0 \). Then \(T \) and \(S \) have a common fixed point. Further, the iterated convergence of Theorem 3.1 holds.

Proof: let \(x_0 \in X \), if \(x_0 \in Sx_0 \) then is a common fixed point of \(T \) and \(S \) thus the proof is complete. Otherwise, since \(Sx \) has AV, there exist \(x_i \in Sx_0 \) with \(x_i \geq x_0 \) and \(d(x_0, x_i) = d(Sx_0, x_i) \). Since \(x \geq x_i \) for all \(x \in Tx_i \). If \(x_i \in Tx_i \), the proof is finished, otherwise, by means of \(Tx \) is AV, there exist \(x_2 \in Tx_1 \) with \(x_2 \geq x_i \) and \(d(x_1, x_2) = d(Tx_1, x_i) \). Inductively, we can construct a sequence \(x_n \) in \(X \) as \(x_n \neq x_{n-1} \) and \(x_n \geq x_{n-1} \) such that \(x_{2n+i} \in T_{2n+i} \), \(x_{2n+2} \in Sx_{2n+1} \) and (1), (2) hold. Now the rest of the proof is the same as theorem 3.1.

References
