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Abstract
In this work, a new generalized derivative operator Mm

α,β,λ is introduced. This operator obtained by using convolution
(or Hadamard product) between the linear operator of the generalized Mittag-Leffler function in terms of the extensively-
investigated Fox-Wright pΨq function and generalized polylogarithm functions defined by

Mm
α,β,λf(z) = Fα,βf(z) ∗Dmλ f(z) = z+

∞∑
n=2

Γ(β)nm(n+ λ− 1)!
Γ [α(n− 1) +β]λ!(n− 1)!

anz
n,

where m ∈ N0 = {0, 1, 2, 3, . . .} and min{ Re (α), Re (β)} > 0. By making use of Mm
α,β,λf(z), a class of analytic functions

is introduced. The sharp upper bound for the nonlinear |a2a4 − a2
3| (also called the second Hankel functional) is obtained.

Relevant connections of the results presented here with those given in earlier works are also indicated.
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1. Introduction

Let A denotes the family of analytic functions in the open unit disk U = {z ∈ C : |z| < 1} of the form

f(z) = z+

∞∑
n=2

anz
n. (1.1)

A function f is said to be univalent in the domain U, if it is one-to-one in U. Let S denote the subclass
of A consisting of functions which are univalent in U.
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Studies of convolution play an important role in geometric function Theory (GFT). By making use of
the Hadamard product (or convolution), several new and interesting subclasses of analytic and univalent
functions have been introduced and investigated in the direction of well-known concepts such as the
subordination and superordination inequalities, integral mean and partial sums, Hankel determinant and
so on.

For functions f ∈ A given by (1.1) and g ∈ A given by g(z) = z+
∑∞
n=2 bnz

n, we define the Hadamard
product (or convolution) of f and g by

(f ∗ g)(z) = z+
∞∑
n=2

anbnz
n, z ∈ U. (1.2)

In the present paper we introduced a new generalized derivative operator Mm
α,β,λf(z) obtained by

convolution between between the linear operator of the generalized Mittag-Leffler function in terms of
the extensively-investigated Fox-Wright pΨq function and generalized polylogarithm functions defined
as follow.

Definition 1.1 ([20]). For f ∈ A, the linear operator of the generalized Mittag-Leffler function in term of
the extensively-investigated Fox-Wright pΨq function is defined by Fα,βf(z) : A→ A

Fα,βf(z) = z+

∞∑
n=2

Γ(β)

Γ [α(n− 1) +β]
anz

n,

where min Re {(α), Re (β)} > 0; z ∈ U.

Definition 1.2 ([4]). For f ∈ A, the generalized polylogarithms is defined by Dmλ f(z) : A→ A,

Dmλ f(z) = z+

∞∑
n=2

nm(n+ λ− 1)!
λ!(n− 1)!

anz
n,

where m ∈N0 = {0, 1, 2, . . .}, z ∈ U. It is clear that the operator Dmλ f(z) included two unknown derivative
operators. Note that Dm0 = Dm and D0

λ = Dλ which are Sǎlǎgean and Ruscheweyh derivative operators
respectively.

Thus, in term of Hadamard (or convolution) given by (1.2). We defined the following convolution
operator:

Definition 1.3. For f ∈ A, the generalized Mittag-Leffler function in term of the extensively-investigated
Fox-Wright pΨq function Mm

α,β,λf(z) and the generalized polylogarithm functions Dmλ f(z) is defined by
Mm
α,β,λf(z) : A→ A,

Mm
α,β,λf(z) = Fα,βf(z) ∗Dmλ f(z) = z+

∞∑
n=2

Γ(β)nm(n+ λ− 1)!
Γ [α(n− 1) +β]λ!(n− 1)!

anz
n,

where m ∈N0 = {0, 1, 2, . . .}, and min Re {(α), Re (β)} > 0; z ∈ U.
In [16], Noonan and Thomas defined the qth Hankel determinant of f q > 1 and n > 1 as

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q+1
an+1 an+2 . . . an+q+2

...
...

...
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣ .
Cantor [6] shows the application of Hankel determinant in showing that a function of bounded char-

acteristic in U, i.e., a function which a ratio of two bounded analytic functions with its Laurent series
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around the origin having integral coefficients, is rational. Wilson [21] studied the application of Han-
kel determinant in meromorphic functions. Noor in [17] have determined the rate of growth of it with
bounded boundary and also studied the Hankel determinant for Bazilevic functions in [18]. The Henkel
determinant of exponential polynomials were studied by Ehrenborg [7], and Layman in [13] discussed
some of its properties.

It is easily observe that for q = 2 and n = 1, we will have a classical theorem of Fekete and Szegö [8]

H2(1) =
∣∣∣∣ a1 a2
a2 a3

∣∣∣∣ .
They made an early study for the estimates of |a3 − µa

2
2| when a1 = 1 and µ real. The well-known

result due to them states that if f ∈ S, then

|a3 − µa
2
2| 6


4µ− 3, if µ > 1,

1 + 2e(
−2µ
1−µ ), if 0 6 µ 6 1,

3 − 4µ, if µ 6 0.

In 1969, Keogh and Merkes [12] discussed the sharp estimates for |a3 − µa
2
2| when f is close-to-convex

and starlike in U.
For our discussion in this paper, we consider the Hankel determinant of f ∈ S for q = 2 and n = 2,

given by

H2(2) =
∣∣∣∣ a2 a3
a3 a4

∣∣∣∣ = a2a4 − a
2
3,

known as the second Hankel determinant. The determinant H2(2) has been investigated by several au-
thors. For example, Janteng et al. [10] have studied the sharp bound for the function f in (1.1), consisting
the functions which derivative has a positive real part and have the result |a2a4 −a

2
3| 6 4/9. The same au-

thor [11] obtained the result for the sharp upper bounds for starlike and convex functions as |a2a4 −a
2
3| 6 1

and |a2a4 − a
2
3| 6 1/8, respectively.

The subclass Mm
α,β,λf(z) is defined as the following.

Definition 1.4. Let f be given by (1.1). Then f is said to be the class Mm
α,β,λf(z) if it is satisfies the inequality

Re
{
[Mm
α,β,λf(z)]

′} > 0, (z ∈ U),

where Mm
α,β,λf(z) is a new generalized operator from convolution between the linear operator of the

generalized Mittag-Leffler function in term of the extensively-investigated Fox-Wright pΨq function in-
troduced by Srivastava et. al [20] and the generalized polylogarithm functions Dmλ f(z) introduced by
Al-Saqsi and Darus [4].

Various authors studied and investigated the second Hankel determinant for a certain class of analytic
functions such as Al-Refai and Darus [3], Abubaker and Darus [1], Al-Abbadi and Darus [2], and Bansal
[5].

Motivated by the results obtained by different authors in this direction mentioned above, in the present
paper we introduced a new generalized derivative operator Mm

α,β,λf(z) and investigate the upper bound
for functional |a2a4 − a

2
3| for the function f belonging to the class Mm

α,β,λf(z).
We first state some preliminary lemmas required for proving our results.

2. Preliminary Results

Let P be the family of all functions p analytic in U for which Re {p(z)} > 0 and

p(z) = 1 + c1z+ c2z
2 + · · · (2.1)

for z ∈ U.
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Lemma 2.1 ([19]). If p ∈ P, then |ck| 6 2 for each k.

Lemma 2.2 ([9]). The power series for p(z) given in (2.1) converges in U to a function in P if and only if the
Toeplitz determinants

Dn =

∣∣∣∣∣∣∣∣∣
2 c1 c2 . . . cn
c−1 2 c1 . . . cn−1

...
...

...
...

...
c−n c−n+1 c−n+2 . . . 2

∣∣∣∣∣∣∣∣∣ , n = 1, 2, 3, . . .

and ck = c̄k, are all nonnegative. They are strictly positive except for p(z) =
∑l
k=1 ρkp0(e

itkz), ρk > 0, tk
real and tk 6= tj for k 6= j; in this case Dn > 0 for n < l− 1 and Dn = 0 for n > l.

This necessary and sufficient condition is due to Carathéodory and Toeplitz and can be found in [9].
Referring to the method shown by Libera and Zlotkiewicz [14, 15], we may assume without restriction

that c1 > 0 and rewriting Lemma 2.2 for the cases n = 2 and n = 3.

D2 =

∣∣∣∣∣∣
2 c1 c2
c1 2 c1
c̄2 c1 2

∣∣∣∣∣∣ = 8 + 2 Re {c2
1c2}− 2|c2|− 4c2

1 > 0,

which is equivalent to
2c2 = c2

1 + x(4 − c2
1) (2.2)

for some x,|x| 6 1. Then D3 > 0 is equivalent to

|(4c3 − 4c1c2 + c
3
1)(4 − c2

1) + c1(2c2 − c
2
1)

2| 6 2(4 − c2
1)

2 − 2|2c2 − c
2
1|

2,

and this, with (2.2), provides the relation

4c3 = c3
1 + 2(4 − c2

1)c1x− c1(4 − c2
1)x

2 + 2(4 − c2
1)(1 − |x|2)z (2.3)

for some value of z, |z| 6 1.

3. Main Result

Our main result is the following.

Theorem 3.1. Let the function f given by (1.1) be in the class Mm
α,β,λf(z). Then

|a2a4 − a
2
3| 6

16[Γ(2α+β)]2

9m+1(λ+ 1)2(λ+ 2)2[Γ(β)]2
.

The result obtained is sharp.

Proof. Since f ∈ Mm
α,β,λf(z), by virtue of Definition 1.4 there exists an analytic function p ∈ P in the unit

disk U with p(0) = 1 and [ Rep(z)] > 0 such that

[Mm
α,β,λf(z)]

′ = p(z). (3.1)

Replacing [Mm
α,β,λf(z)]

′ and p(z) with their equivalent series expressions in (3.1), we have for some z ∈ U.

1 +

∞∑
n=2

Γ(β)nm+1(n+ λ− 1)!
Γ [α(n− 1) +β]λ!(n− 1)!

anz
n−1 = 1 + c1z+ c2z

2 + c3z
3 + · · · .
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Upon simplification, we have

1+2
2m(λ+ 1)Γ(β)
Γ [α+β]

a2z+
3
2

3m(λ+ 2)(λ+ 1)Γ(β)
2Γ [2α+β]

a3z
2

+
2
3

4m(λ+ 3)(λ+ 2)(λ+ 1)Γ(β)
Γ [3α+β]

a4z
3 + · · · = 1 + c1z+ c2z

2 + c3z
3 + · · · .

(3.2)

Equating coefficients in (3.2) of the like powers z0, z, and z2, respectively, yields

a2 =
1
2

c1Γ(α+β)

2m(λ+ 1)Γ(β)
,

a3 =
2
3

c2Γ(2α+β)

3m(λ+ 2)(λ+ 1)Γ(β)
,

a4 =
3
2

c3Γ(3α+β)

4m(λ+ 3)(λ+ 2)(λ+ 1)Γ(β)
.

(3.3)

Substituting the values of a2,a3, and a4 from (3.3) in the second Hankel functional |a2a4 − a
2
3|, it can be

easily established that

|a2a4 − a
2
3| =

1
(λ+ 1)2(λ+ 2)

∣∣∣∣34 c1c3Γ(α+β)Γ(3α+β)

8m(λ+ 3)[Γ(β)]2
−

4
9
c2

2[Γ(2α+β)]2

9m(λ+ 2)[Γ(β)]2

∣∣∣∣ .
We make use of Lemma 2.2 to obtain the proper bound on

1
(λ+ 1)2(λ+ 2)

∣∣∣∣34 c1c3Γ(α+β)Γ(3α+β)

8m(λ+ 3)[Γ(β)]2
−

4
9
c2

2[Γ(2α+β)]2

9m(λ+ 2)[Γ(β)]2

∣∣∣∣ . (3.4)

Now, to simplify our calculation, we let r = Γ(β), s = Γ(α+ β), t = Γ(2α+ β),u = Γ(3α+ β), v = 8n, and
w = 9n. Thus, equation (3.4) can be written as

1
(λ+ 1)2(λ+ 2)

∣∣∣∣34 c1c3su

v(λ+ 3)r2 −
4
9

c2
2t

2

w(λ+ 2)r2

∣∣∣∣ .
By substituting the values of c2 and c3 from (2.2) along with (2.3) from Lemma 2.2 in (3.4), we get

1
(λ+ 1)2(λ+ 2)

∣∣∣∣34 c1c3su

v(λ+ 3)r2 −
4
9

c2
2t

2

w(λ+ 2)r2

∣∣∣∣
=

1
(λ+ 1)2(λ+ 2)

∣∣∣∣∣ [27suw(λ+ 2) − 16t2v(λ+ 3)]c2 − 64v(λ+ 3)t2

144vw(λ+ 3)(λ+ 2)r2

+
[27suw(λ+ 2) − 16t2v(λ+ 3)]

72vw(λ+ 3)(λ+ 2)r2 c2(4 − c2)x

− (4 − c2)x2 [27suw(λ+ 2) − 16t2v(λ+ 3)]c2 − 64v(λ+ 3)t2

144vw(λ+ 3)(λ+ 2)r2 +
3csu(4 − c2)(1 − |x|2)z

8vr2(λ+ 3)

∣∣∣∣∣.
By using the facts |z| < 1 and triangle inequality with taking c1 = c and c ∈ [0, 2] shows that

1
(λ+ 1)2(λ+ 2)

∣∣∣∣34 c1c3su

v(λ+ 3)r2 −
4
9

c2
2t

2

w(λ+ 2)r2

∣∣∣∣
6

1
(λ+ 1)2(λ+ 2)

{
|27suw(λ+ 2) − 16t2v(λ+ 3)|c4

144vw(λ+ 3)(λ+ 2)r2 +
3csu(4 − c2)

8vr2(λ+ 3)
(3.5)

+ c2(4 − c2)ρ
|27suw(λ+ 2) − 16t2v(λ+ 3)|

72vw(λ+ 3)(λ+ 2)r2
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+ (4 − c2)(c− 2)ρ2

[
27suw(λ+ 2)c− 16t2v(λ+ 3)(c+ 2)

144vw(λ+ 3)(λ+ 2)r2

]}
= F(c, ρ) for 0 6 ρ = |x| 6 1.

We assume that the upper bound for (3.5) attains at the interior point of ρ ∈ [0, 1] and c ∈ [0, 2]. Next, we
maximize the function F(c, ρ) on the closed square [0, 2]× [0, 1]. Differentiating (3.5) with respect to ρ, we
obtain

∂F

∂ρ
= c2(4 − c2)

|27suw(λ+ 2) − 16t2v(λ+ 3)|
72vw(λ+ 3)(λ+ 2)r2

+ (4 − c2)(c− 2)ρ

[
27suw(λ+ 2)c− 16t2v(λ+ 3)(c+ 2)

72vw(λ+ 3)(λ+ 2)r2

]
.

(3.6)

From (3.6) we observe that ∂F∂ρ > 0 for ρ > 0. Thus (3.6) is an increasing function of ρ and hence it cannot
have a maximum in the interior of the closed region [0, 2]× [0, 1]. Moreover, for fixed c ∈ [0, 2] we have

max
06ρ61

F(c, ρ) = F(c, 1) = G(c).

Therefore, by substituting ρ = 1 in (3.5), upon simplification we obtain

G(c) = F(c, 1) =
1

144vwr2(λ+ 1)2(λ+ 2)2(λ+ 3)

{
54suw(λ+ 2)(4 − c2)c

+ |27suw(λ+ 2) − 16t2v(λ+ 3)|[c4 + 2c2(4 − c2)]

+ (4 − c2)(c− 2)[27suw(λ+ 2)c− 16t2v(λ+ 3)(c+ 2)]
}

,

then

G ′(c) =
1

144vwr2(λ+ 1)2(λ+ 2)2(λ+ 3)

{
(4 − 3c2)[54suw(λ+ 2)]

+ 4c(4 − c2)|27suw(λ+ 2) − 16t2v(λ+ 3)|

+ 2c(2 − c)[27suw(λ+ 2)c− 16t2v(λ+ 3)(c+ 2)]

+ 2(4 − c2)[(27suw(λ+ 2)(c− 1) − 16t2v(λ+ 3)c]
}

.

(3.7)

From (3.7), we note that G ′(c) 6 0 for every c ∈ [0, 2]. Therefore, G(c) is a decreasing function of c in
the interval c ∈ [0, 2], whose maximum values which occur at points of G must be on the boundary of
c ∈ [0, 2]. However, G(c) > G(2) and thus G has maximum value at c = 0.

The upper bound for (3.5) corresponds to ρ = 1 and c = 0, in which case

|a2a4 − a
2
3| =

1
(λ+ 1)2(λ+ 2)

∣∣∣∣34 c1c3su

v(λ+ 3)r2 −
4
9

c2
2t

2

w(λ+ 2)r2

∣∣∣∣ =
16t2

9wr2(λ+ 1)2(λ+ 2)
. (3.8)

By substituting r = Γ(β), t = Γ(2α+β) and w = 9m in (3.8). We have the upper bound

|a2a4 − a
2
3| =

16[Γ(2α+β)]2

9m+1[Γ(β)]2(λ+ 1)2(λ+ 2)
. (3.9)

By setting c1 = 0 and choosing x = 1 in (2.2) and (2.3), we find that c2 = 2 and c3 = 0. Substituting these
values in (3.9), the equality is attained, which shows that our result is sharp.

This concludes the proof of our theorem.

Equality holds for the functions in Mm
α,β,λf(z) given by

f ′(z) =
1 + z2

1 − z2 .

For the choice of α = 1/2,β = 1,m = 0, and λ = 0 into Theorem 3.1, we will obtained the result coincides
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with Janteng et al. [10] as shown in the following corollary.

Corollary 3.2. Let f ∈ R given by (1.1) be in the class M0
1/2,1,0f(z). Then

|a2a4 − a
2
3| 6

4
9

.

The result obtained is sharp.
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