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Abstract
In this paper, a spatio-temporal model as systems of ODE which describe two-species Beddington-DeAngelis type predator-

prey system living in a habitat of two identical patches linked by migration is investigated. It is assumed in the model that the
per capita migration rate of each species is influenced not only by its own but also by the other one’s density, i.e., there is
cross diffusion present. We show that a standard (self-diffusion) system may be either stable or unstable, a cross-diffusion
response can stabilize an unstable standard system and destabilize a stable standard system. For the diffusively stable model,
numerical studies show that at a critical value of the bifurcation parameter the system undergoes a Turing bifurcation and the
cross migration response is an important factor that should not be ignored when pattern emerges.
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1. Introduction

The Turing bifurcation [7] is the basic bifurcation generating spatial pattern, wherein an equilibrium
of a nonlinear system is asymptotically stable in the absence of diffusion but unstable in the presence of
diffusion. This lies at the heart of almost all mathematical models for patterning in ecology, embryology,
and elsewhere in biology and chemistry [1, 2]. Since the relation between the organisms and the space
seems to be essential to stability of an ecological system, the effect of diffusion on the possibility of species
coexistence in an ecological community has been an important subject in population biology [3–6].

To formulate a spatio-temporal model, one has to make some basic choices about space, time, and
state variables. Each of them may be continuous or discrete [1]. One of the fundamental issues in
spatial ecology is how explicit considerations of space alter the prediction of population models. Classical
theories, such as diffusion-driven instability and meta-population dynamics which are developed via
simple spatial population models, have profoundly increased our understanding of the issue. In this
paper we scrutinize these theories by considering more complicated processes of spatial interaction of
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populations. For this purpose we consider spatio-temporal models as systems of ODE which describe
two-species Beddington-DeAngelis-type predator-prey system living in a habitat of two identical patches
linked by migration, where the phenomenon of the Turing bifurcation occurs. It is assumed in the models
that the migration rate of each species is influenced only by its own density (self-diffusion) or not only
by its own but also by the other one’s density (cross diffusion). We show that the equilibrium of a
standard (self-diffusion) system may be either stable or unstable, a cross-diffusion response can stabilize
an unstable equilibrium of standard system and destabilize a stable equilibrium of standard system. For
the models we show that at a critical value of the bifurcation parameter the system undergoes a Turing
bifurcation and numerical studies show that if the bifurcation parameter is increased through a critical
value the spatially homogeneous equilibrium loses its stability and two new stable equilibria emerge. We
conclude that the cross migration response is an important factor that should not be ignored when pattern
emerges.

This paper is organized as follows. In Section 2 the model is built, in Section 3 the conditions for the
Turing bifurcation are established with self-diffusion, in Section 4 the conditions for the Turing bifurcation
are established with cross-diffusion (these are the main results of this paper) with an example to illustrate
what can be expected, in Section 5 we summarize the main conclusions of the study.

2. The model

In this section, we consider a two-species Beddington-DeAngelis-type predator-prey system living in
a habitat of two identical patches linked by migration.

Let u1(t, j) := density of prey in patch j at time t and u2(t, j) := density of predator in patch j at time
t, j = 1, 2; t ∈ R. The interaction between two species is described as a system of differential equations as
follows:

·
u1(t, 1) = r1u1(t, 1)(1 −

u1(t, 1)
K

) −
βu1(t, 1)u2(t, 1)

α+ u1(t, 1) + γu2(t, 1)
+ d1(ρ1(u2(t, 2))u1(t, 2) − ρ1(u2(t, 1))u1(t, 1)),

·
u2(t, 1) = −r2u2(t, 1) +

εβu1(t, 1)u2(t, 1)
α+ u1(t, 1) + γu2(t, 1)

+ d2(ρ2(u1(t, 2))u2(t, 2) − ρ2(u1(t, 1))u2(t, 1)),

·
u1(t, 2) = r1u1(t, 2)(1 −

u1(t, 2)
K

) −
βu1(t, 2)u2(t, 2)

α+ u1(t, 2) + γu2(t, 2)
+ d1(ρ1(u2(t, 1))u1(t, 1) − ρ1(u2(t, 2))u1(t, 2)),

·
u2(t, 2) = −r2u2(t, 2) +

εβu1(t, 2)u2(t, 2)
α+ u1(t, 2) + γu2(t, 2)

+ d2(ρ2(u1(t, 1))u2(t, 1) − ρ2(u1(t, 2))u2(t, 2)),

(2.1)

where r1 > 0 and r2 > 0 are the intrinsic growth rate and intrinsic mortality of the respective species, ε is
the conversion rate, K is the carrying capacity for the prey, β, α > 0 are the maximum consumption rate
and the saturation constant of predator respectively, the constant γ a predator interference parameter, ad
γ < 0 is the case where predators benefit from cofeeding. di > 0 (i = 1, 2) are the diffusion coefficients
and ρ1 ∈ C1 is a positive increasing function of u2, the density of the predator, ρ′1 > 0 and ρ2 ∈ C1 is a
positive decreasing function of u1 the density of the prey, ρ′2 < 0. The idea is that the dependence of the
diffusion coefficient on the density of the other species reflects the inclination of a prey (or an activator)
to leave from a certain patch because of the danger (or the inhibition) and the tendency of a predator (or
the inhibition) to stay at a certain patch because of the abundance of prey (or an activator) (see [2, 7]). The
functions ρi model the cross-diffusion effect. We say that the cross diffusion is strong if

∣∣∣ρ′iuk∣∣∣ (i 6= k) is

large. If by varying a parameter,
∣∣∣ρ′iuk∣∣∣ (i 6= k) is increasing, then we say that the cross diffusion effect is

increasing. If ρi = 1, i = 1, 2, then we have mere ′′self-diffusion′′.
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First we consider the kinetic system without migration, i.e., d1 = d2 = 0:

·
u1(t, 1) = r1u1(t, 1)(1 −

u1(t, 1)
K

) −
βu1(t, 1)u2(t, 1)

α+ u1(t, 1) + γu2(t, 1)
,

·
u2(t, 1) = −r2u2(t, 1) +

εβu1(t, 1)u2(t, 1)
α+ u1(t, 1) + γu2(t, 1)

,

·
u1(t, 2) = r1u1(t, 2)(1 −

u1(t, 2)
K

) −
βu1(t, 2)u2(t, 2)

α+ u1(t, 2) + γu2(t, 2)
,

·
u2(t, 2) = −r2u2(t, 2) +

εβu1(t, 2)u2(t, 2)
α+ u1(t, 2) + γu2(t, 2)

.

(2.2)

In particular, we will focus on the existence of equilibria and their local stability. This information will
be crucial in the next section where we study the effect of the diffusion parameters on the stability of
the steady states. System (2.2) is made up by two identical uncoupled systems, in which has a positive
equilibrium

(u1(t, 1),u2(t, 1),u1(t, 2),u2(t, 2)) ≡ (u1,u2,u1,u2),

where

u1 =
1

2r1γε
[K(r1γε− εβ+ r2) +

√
K2(rεγ− εβ+ r2)2 + 4r1Kγεr2α], u2 =

(βε− r2)u1

γr2
−
α

γ
.

The Jacobian matrix of the system (2.2) linearized at (u1,u2,u1,u2) is

Jk =


Φ1 −Φ2 0 0
Φ3 −Φ4 0 0
0 0 Φ1 −Φ2
0 0 Φ3 −Φ4

 ,

where

Φ1 = −
r1u1

K
+ r1(1 −

u1

K
) −

βu2

α+ u1 + γu2
+

βu1u2

(α+ u1 + γu2)2 ,

Φ2 =
βγu1u2

(α+ u1 + γu2)2 −
βu1

α+ u1 + γu2
,

Φ3 =
εβu2

α+ u1 + γu2
+

εβu1u2

(α+ u1 + γu2)2 ,

Φ4 = r2 −
εβγu1u2

(α+ u1 + γu2)2 −
εβu2

α+ u1 + γu2
.

The characteristic polynomial is

D4(λ) = (D2(λ))
2, D2(λ) = λ

2 + λ(Φ4 −Φ1) +Φ2Φ3 −Φ1Φ4.

Assume that
Φ4 −Φ1 > 0 and Φ2Φ3 −Φ1Φ4 > 0, (2.3)

then the coexistence equilibrium point (u1,u2,u1,u2) is linearly asymptotically stable.

3. The effects of a self-diffusion response

In this section, we treat a two-species model in a habitat of two identical patches linked by migration in
which the migration rate of each species is influenced only by its own density, i.e., there is no response to
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the density of the other one. The interaction is described as a system of differential equations as follows:

·
u1(t, 1) = r1u1(t, 1)(1 −

u1(t, 1)
K

) −
βu1(t, 1)u2(t, 1)

α+ u1(t, 1) + γu2(t, 1)
+ d1(u1(t, 2) − u1(t, 1)),

·
u2(t, 1) = −r2u2(t, 1) +

εβu1(t, 1)u2(t, 1)
α+ u1(t, 1) + γu2(t, 1)

+ d2(u2(t, 2) − u2(t, 1)),

·
u1(t, 2) = r1u1(t, 2)(1 −

u1(t, 2)
K

) −
βu1(t, 2)u2(t, 2)

α+ u1(t, 2) + γu2(t, 2)
+ d1(u1(t, 1) − u1(t, 2)),

·
u2(t, 2) = −r2u2(t, 2) +

εβu1(t, 2)u2(t, 2)
α+ u1(t, 2) + γu2(t, 2)

+ d2(u2(t, 1) − u2(t, 2)),

The Jacobian matrix of the system with self-diffusion at (u1,u2,u1,u2) can be written as:

JSelf =


Φ1 − d1 −Φ2 d1 0
Φ3 −Φ4 − d2 0 d2
d1 0 Φ1 − d1 −Φ2
0 d2 Φ3 −Φ4 − d2

 .

The characteristic polynomial is

DSelf = D2(λ)(λ
2 + λ(Φ4 −Φ1 + 2(d1 + d2)) +Φ2Φ3 −Φ1Φ4 + 2d1Φ4 − 2d2(Φ1−2d1)).

We know that D2(λ) has two roots with negative real parts. By (2.3), clearly, Φ4 −Φ1 + 2(d1 +d2) > 0. The
other polynomial will have a negative and a positive root if the constant term is negative. By the properties
of the model and conditions (2.3) the first three terms are positive. Suppose that the parameters have been
chosen so that

Φ1−2d1 > 0. (3.1)

If we have achieved this we may increase d2 and the constant term becomes negative. The calculations
lead to the following Theorem.

Theorem 3.1. If (2.3) and (3.1) hold and if

d2 > d2crit =
(Φ2Φ3 −Φ1Φ4 + 2d1Φ4)

2(Φ1 − 2d1)
,

then Turing instability occurs.

Remark 3.2. If the corresponding conditions hold and the parameters have been chosen so that

Φ1−2d1 < 0, (3.2)

then self-diffusion never destabilizes the equilibrium (u1,u2,u1,u2) which is asymptotically stable for the
kinetic system, i.e., the equilibrium (u1,u2,u1,u2) is diffusively stable for all values of d2.

We apply our analytical approach to the following example and we are looking for conditions which
imply Turing instability with self diffusion.

Example 3.3. We choose r1 = 0.5, r2 = 0.25, α = 0.6, β = 0.6, γ = 0.4, ε = 1, K = 2.6, d1 = 0.004.
The unique positive equilibrium is (u1,u2,u1,u2) = (0.72812, 1.0484, 0.72812, 1.0484). We see that it is
asymptotically stable for the kinetic system (2.2).

We consider d2 as a bifurcation parameter. In this case at d2crit ∼= 10.11330832, we have four eigenval-
ues λi(i = 1, 2, 3, 4) such that Re λi < 0, (i = 1, 2, 3) and λ4 = 0.

If d2 < d2crit ⇒ Re λi < 0, (i = 1, 2, 3, 4), then (u1,u2,u1,u2) is asymptotically stable.
If d2 > d2crit ⇒ Re λi < 0, (i = 1, 2, 3) and λ4 > 0, then (u1,u2,u1,u2) is unstable.

Thus as d2 is increased through d2 = d2crit the spatially homogeneous equilibrium loses its stability.
Numerical calculations show that two new spatially non-constant equilibria emerge (see Figure 1) and
these equilibria are asymptotically stable; so that this is a pitchfork bifurcation.
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Figure 1: Graphs of the coordinate u1(t, 1) of five solutions of the Example corresponding to the respective initial conditions
(3.7281, 1.0484, 0.5281, 3.484), (1.7281, 0.0484, 1.2812, 1.4841), (2.0281, 3.8401, 0.92812,1.0484), (5.5728, 2.0484, 0.4281, 2.0484),
(0.2812, 1.0484, 1.7281, 1.0484) (Figure produced by applying Matlab).

4. The effects of a cross-diffusion response

For model (2.1) with cross-diffusion response (i.e., ∂ρi(u)∂uj
6= 0, i 6= j) we see that (u1,u2,u1,u2) is also

a spatially homogeneous equilibrium of the system with cross-diffusion.
The Jacobian matrix of the system with cross-diffusion at (u1,u2,u1,u2) can be written as:

Jcross =


Φ1 − d1ρ1 −Φ2 − d1ρ

′
1u1 d1ρ1 d1ρ

′
1u1

Φ3 − d2ρ
′
2u2 −Φ4 − d2ρ2 d2ρ

′
2u2 d2ρ2

d1ρ1 d1ρ
′
1u1 Φ1 − d1ρ1 −Φ2 − d1ρ

′
1u1

d2ρ
′
2u2 d2ρ2 Φ3 − d2ρ

′
2u2 −Φ4 − d2ρ2

 ,

where ρ1 and ρ
′
1 are to be taken at u2 and ρ2, ρ

′
2 at u1.

Theorem 4.1. Under condition (2.3), if
Φ1 − 2d1ρ1 > 0 (4.1)

and ρ2(u1) is sufficiently large, then Turing instability occurs.

Proof.

det(JD − λI) =

∣∣∣∣∣∣∣∣
Φ1 − d1ρ1 − λ −Φ2 − d1ρ

′
1u1 d1ρ1 d1ρ

′
1u1

Φ3 − d2ρ
′
2u2 −Φ4 − d2ρ2 − λ d2ρ

′
2u2 d2ρ2

d1ρ1 d1ρ
′
1u1 Φ1 − d1ρ1 − λ −Φ2 − d1ρ

′
1u1

d2ρ
′
2u2 d2ρ2 Φ3 − d2ρ

′
2u2 −Φ4 − d2ρ2 − λ

∣∣∣∣∣∣∣∣ .
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Using the properties of determinant we get∣∣∣∣∣∣∣∣
Φ1 − λ −Φ2 d1ρ1 d1ρ

′
1u1

Φ3 −Φ4 − λ d2ρ
′
2u2 d2ρ2

0 0 Φ1 − 2d1ρ1 − λ −Φ2 − 2d1ρ
′
1u1

0 0 Φ3 − 2d2ρ
′
2u2 −Φ4 − 2d2ρ2 − λ

∣∣∣∣∣∣∣∣
= D2(λ){λ

2 + λ[Φ4 −Φ1 + 2(d1ρ1 + d2ρ2)] +Φ2Φ3 −Φ1Φ4

+ 2d1Φ4ρ1 − 2d2ρ2(Φ1 − 2d1ρ1) + 2d1u1Φ3ρ
′
1 − 2d2ρ

′
2u2(Φ2 + 2d1ρ

′
1u1)}.

We know that D2(λ) has two roots with negative real parts. By (2.3), clearly, Φ4 −Φ1 + 2(d1ρ1 +d2ρ2) > 0.
The other polynomial will have a negative and a positive root if its constant term is negative. This can be
achieved if ρ2(u1) is increased.

Remark 4.2. If (3.2) holds and there is no cross-diffusion then the equilibrium remains stable for any d2 > 0.
Still, (4.1) may hold, i.e., in this case only the cross-diffusion effect may destabilize the equilibrium.

Remark 4.3. If the parameters have been chosen so that

Φ1 − 2d1 > 0 and Φ1 − 2d1ρ1 < 0,

then the equilibrium (u1,u2,u1,u2) remains asymptotically stable for any d2 > 0 and ρ2 > 0 in the
cross-diffusion case while, as we have seen, it will undergo a Turing bifurcation in the absence of cross-
diffusion.

We apply our analytical approach to the following example of migration function and we are looking
for conditions which imply Turing instability with cross-diffusion.

Example 4.4. We choose

ρ1(u2) =
m1u2

1 + u2
, ρ2(u1) = m2 exp(

−u1

m2
), m1, m2 > 0.

If r1 = 0.5, r2 = 0.25, α = 0.6, β = 0.6, γ = 0.4, ε = 1, K = 2.6, then the unique positive equilibrium is
(u1,u2,u1,u2) = (.728122, 1.04842, .728122, 1.04842). We see that this point is asymptotically stable with
respect to the kinetic system (2.2).

If d2 = 8 (Resp. 12 ), then (u1,u2,u1,u2) is asymptotically stable (Resp. unstable).
For the cross-diffusion system we considerm2 as a bifurcation parameter. In this case at d1 = 1,d2 = 1,

m1 = 0.001, and m2crit ∼= 34.62, we have four eigenvalues λi(i = 1, 2, 3, 4) such that Re λi < 0, (i = 1, 2, 3)
and λ4 = 0.

If m2 < m2crit ⇒ Re λi < 0 (i = 1, 2, 3, 4), (u1,u2,u1,u2) is asymptotically stable .
If m2 > m2crit ⇒ Re λi < 0 (i = 1, 2, 3) and λ4 > 0, (u1,u2,u1,u2) is unstable.
If d1 = 0.004, d2 = 11, and m1 = 10, then (u1,u2,u1,u2) is asymptotically stable for all m2.
In this example

∣∣∣ρ′2u1
(u1,u2)

∣∣∣ = exp(− u1
m2

). As we see, if m2 is increased for fixed u1, this derivative is
increasing, i.e., the cross-diffusion effect is increasing and the spatially homogeneous equilibrium loses its
stability. Numerical calculations show that two new spatially non-constant equilibria emerge (see Figure
2), and these equilibria are asymptotically stable; so that this is a pitchfork bifurcation.

5. Conclusions

In the present article our interest is to study spatio-temporal models as systems of ODE which describe
two-species Beddington-DeAngelis-type predator-prey system living in a habitat of two identical patches
linked by migration. It is assumed in the models that the migration rate of each species is influenced
only by its own density (self-diffusion) or not only by its own but also by the other one’s density (cross
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diffusion). We show that the equilibrium of a standard (self-diffusion) system may be either stable or
unstable, a cross-diffusion response can stabilize an unstable equilibrium of standard system and destabi-
lize a stable equilibrium of standard system and the cross migration response is an important factor that
should not be ignored when pattern emerges, also as m2 is increased through m2 = m2crit the spatially
homogeneous equilibrium loses its stability and two new stable equilibria emerge.

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

t

u
4

Cross diffusion d2:=5<d2crit

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

t
u

4

Cross diffusion m2:=20<m2crit

0 100 200 300 400 500 600 700 800 900 1000

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Cross−diffusion m2:=80>m2crit

t

u
4

Figure 2: Graphs of the coordinate u4(t, 1) of five solutions of the Example corresponding to the respective initial conditions
(3.7281, 1.0484, 0.5281, 3.484), (1.7281, 0.0484, 1.2812, 1.4841), (2.0281, 3.8401, 0.92812,1.0484), (5.5728, 2.0484, 0.4281, 2.0484),
(0.2812, 1.0484, 1.7281, 1.0484) (Figure produced by applying Matlab).
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