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Abstract
The paper presents adaptive stratagems to scrutinize the system of first order fuzzy differential equations (SFDE) in two

modes, fuzzy and in crisp sense. Its fuzzy solutions are carried out using two approaches, namely, Zadeh’s extension principle
and generalized Hukuhara derivative (gH-derivative). While, different defuzzification techniques; central of area method (COA),
bisector of area method (BOA), largest of maxima (LOM), smallest of maxima (SOM), mean of maxima (MOM), regular weighted
point method (RWPM), graded mean integration value (GMIV), and center of approximated interval (COAI), are employed
to discuss the crisp solutions. Moreover, the arms race model (ARM), which have a significant implication in international
military planning, are pragmatic examples of system of first order differential equations, but not studied in fuzzy sense, hitherto.
Therefore, ARM is re-established and studied here with fuzzy numbers to estimate its uncertain parameters, as a practical
utilization of SFDE. Additionally, an illustrative example of ARM is undertaken to clarify the appropriateness of the proposed
approaches.
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1. Introduction

After the introduction and major innovations in the theory of fuzzy differential equations [4, 6, 14], the
term fuzzy differential equation (FDE) is instantaneously growing as a new area in fuzzy calculus. These
equations are acquired interchangeably by incorporating differential equations with fuzzy initial values,
fuzzy boundary values or with fuzzy functions as well. Pertinently applicable to reformulate many
dynamic models with multiple uncertain parameters, FDEs have noteworthy apperception in various
fields of biology, engineering, physics, and so forth. In this regard, up till now, many attempts have been
made in developing different approaches to discuss the solutions of FDEs [1, 16, 17, 20].

Moreover, SFDEs are considered to be prominently in the lead among all the FDEs. These equations
have wide applications in different aspects to handle uncertainty of numerous real-world phenomenon.
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For example, population dynamics model [2], modeling hydraulic [5], bioinformatics and computational
biology [7], quantum optics and gravity [10], HIV model [24], friction model [3], and decay model [9] to
name a few. Consequently, many techniques have been employed to investigate the solutions of SFDEs,
for instance, Gasilova et al. [12] described system of differential equations with fuzzy initial conditions
and applied a geometric approach to obtain its solutions as a fuzzy set of vector functions, Fard et al.
[11] discussed nonhomogeneous n-dimensional system of fuzzy differential equations and obtained its
approximate-analytical solutions using variational iteration method etc. [15, 25].

In spite of above mentioned developments, lacunas still exist in the formulation and solution of many
realistic models of complementary items. In this connection, here arms race model has been restructured
and deliberated in fuzzy environment to undergo these lacunas. ARMs, also known as Richardson’s
model [13, 18], have been intensively constructed by many political scholars. It is mainly studied to specify
the structural and behavioral properties of the international system so that the military of the respective
country can have complete hegemony over the opponent during a war. The novelty in present endeavor
is that the uncertain parameters of ARM is also taken into consideration by using fuzzy numbers. Two
approaches, Zadeh’s extension principle [19] and gH-derivative [1, 4], are conducted to illustrate the
fuzzy solutions. Furthermore, crisp solutions are also calculated by defuzzifying the fuzzy solutions
using different defuzzification methods [8, 21–23].

2. Preliminaries

Bearing in mind the prerequisites of the paper, in this section, we give some necessary descriptions
and notions related to fuzzy set theory and fuzzy calculus, briefly.

2.1. Fuzzy set theory
Let AF be a set on real line < defined as AF = {τ|τ : < −→ [0, 1]}, such that τ is normal, fuzzy convex,

upper semi continuous and compactly supported on <. Then τ is a fuzzy number and AF is said to be
the set of fuzzy numbers. Each τ may be expressed as nonempty compact intervals, [τ]α = [τ1 (α) , τ2 (α)]

for all α ∈ [0, 1], which are said to be α-level sets or α-cuts of τ. The terms τ1 (α) and τ2 (α) represent its
non-decreasing lower and non-increasing upper functions, accordingly, with τ1 (α) 6 τ2 (α) and both are
bounded left continuous on (0, 1] and right continuous at α = 0.

Different types of fuzzy numbers exist in literature with respect to their membership functions, but in
this sequel, we use the triangular fuzzy numbers. Thus, a triangular fuzzy number Λ is represented with
the help of vertices of triangle, i.e., (a1,a2,a3), where a1 < a2 < a3 such that (a1,a3) measures the base
and a2 is the height of the triangle. Its membership function is defined as

ΩΛ (x) =


x− a1

a2 − a1
, if a1 6 x 6 a2,

a3 − x

a3 − a2
, if a2 6 x 6 a3,

0, otherwise

with its α-level set as, [Λ]α = [Λ1 (α) ,Λ2 (α)] = [a1 + (a2 − a1)α,a3 − (a3 − a2)α]. Moreover, algebraic
operations of fuzzy numbers can be defined as, ∀u, v ∈ AF and ∀α ∈ [0, 1],

a.

[u⊕ v]α = [u]α ⊕ [v]α = [u1 (α) + v1 (α) ,u2 (α) + v2 (α)] ;

b. ∀c ∈ <

[cu]α = c [u]α =


[cu1 (α) , cu2 (α)] , if c > 0,
{0} , if c = 0,
[cu2 (α) , cu1 (α)] , if c < 0;
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c.

[u� v]α = [min {u1 (α) v1 (α) ,u1 (α) v2 (α) ,u2 (α) v1 (α) ,u2 (α) v2 (α)}

, max {u1 (α) v1 (α) ,u1 (α) v2 (α) ,u2 (α) v1 (α) ,u2 (α) v2 (α)}] ,

where ⊕ and � define fuzzy addition and fuzzy multiplication, respectively. Whereas, the quantity,

DF (u, v) =

(∫ 1

0
(u1 − v1)

2 +

∫ 1

0
(u2 − v2)

2

)1
2

defines the distance between fuzzy numbers u and v [4, 16].

2.2. Generalized Hukuhara Difference

For the fuzzy numbers u and v, the gH-difference is defined as

ΩΛ (x) =


x− a1

a2 − a1
, if a1 6 x 6 a2,

a3 − x

a3 − a2
, if a2 6 x 6 a3,

0, otherwise,

and in terms of α-level set it is elaborated as, ∀α ∈ [0, 1]

u (α)	gH v (α) = [min{u1 (α) − v1 (α) ,u2 (α) − v2 (α)}, max{u1 (α) − v1 (α) ,u2 (α) − v2 (α)}] .

Furthermore, a fuzzy-valued function f̃ (t) is defined as f̃ : < −→ AF, with its α-level sets, f (t;α) =
[f1 (t;α) , f2 (t;α)], ∀t ∈ < and ∀α ∈ [0, 1].

2.3. Generalized Hukuhara differentiability

The ground-breaking theory of gH-differentiability of fuzzy-valued functions is a tremendous inno-
vation of Bede et al. [4]. This great contribution in theory of fuzzy calculus has been widely studied and
utilized by many inspired researches of this field [1]. Along these lines, the gH-differentiability of fuzzy-
valued function f̃ (t) is defined as below: A fuzzy-valued function f̃ : (a,b) −→ AF is gH-differentiable at
t0 ∈ (a,b) if f̃′ (t0) ∈ AF, such that

f̃′ (t0) = lim
h−→0

f̃ (t0 + h)	gH f̃ (t0)

h
.

In α-level set it is explained as,

f̃′ (t;α) =
[
min{f′1 (t;α) , f′2 (t;α)}, max{f′1 (t;α) , f′2 (t;α)}

]
.

For the condition that f1 (t;α) and f2 (t;α) are differentiable. In addition, f̃ (t) is said to be (i)-gH differ-
entiable at t0 if,

f′ (t;α) =
[
f′1 (t;α) , f′2 (t;α)

]
and f̃ (t) is (ii)-gH differentiable at t0 if,

f′ (t;α) =
[
f′2 (t;α) , f′1 (t;α)

]
.



S. P. Mondal, et al., J. Math. Computer Sci., 18 (2018), 192–205 195

3. System of linear fuzzy differential equations (SLFDE)

Let aij, f̃i (t), and g̃i be crisp numbers, fuzzy functions, and fuzzy numbers, respectively, for 0 6 g̃i 6
1, 1 6 i 6 n, and j 6 n, then system of fuzzy differential equation is outlined as

dx1 (t)

dt
= a11x1 (t) + · · ·+ a1nxn (t) + f̃1 (t) ,

dx2 (t)

dt
= a21x1 (t) + · · ·+ a2nxn (t) + f̃2 (t) ,

...
dxn (t)

dt
= an1x1 (t) + · · ·+ annxn (t) + f̃n (t) ,

(3.1)

with fuzzy initial conditions

x1 (t) = g̃1, x2 (t) = g̃2, · · · , xn (t) = g̃n. (3.2)

System (3.1)-(3.2) can also be written in matrix form as

dX (t)

dt
= AX (t) + F̃ (t) , X (t0) = G̃, (3.3)

where A =
[
aij
]

is a n× n crisp matrix, F̃ (t) =
(
f̃1 (t) , f̃2 (t) , . . . , f̃n (t)

)T
is a vector of fuzzy function,

and G̃ = (g̃1, g̃2, . . . , g̃n)
T is a vector of fuzzy numbers.

3.1. Zadeh’s extension principle
Zadeh’s extension principle plays a vital role in fuzzy calculus, according to this principle, any crisp

function can take fuzzy sets as arguments. This principle can be stated as the following.
If a function φ : <m −→ <n induces to another function ψ : φ (K) −→ φ (M) defined for each fuzzy

set K in <m, we obtain a fuzzy set M in <n, i.e., let y ∈ <n

φ (M) (y) =

{
supx∈f−1(y) K (x) , if y ∈ range (φ) ,

0, if y /∈ range (φ) .

If φ is one to one mapping, then

φ (M) (y) =

{
K
(
f−1 (y)

)
, if y ∈ range (φ) ,

0, if y /∈ range (φ) .

Rewriting Eq. (3.3) as
X′ (t) = H ((t) , x (t)) , a 6 t 6 b, X (t0) = G̃,

then, by using the extension principle we have the membership function

Q (t, x (t)) (s) = sup {x (t) (σ) |s = H (t,σ)} , s ∈ <.

The result Q (t, x (t)) (s) is a fuzzy function where

Q1 (t, x1 (t;α) , x2 (t;α)) (s) = min {H (t,u) (s) |u ∈ [x1 (t;α) , x2 (t;α)]}

and
Q2 (t, x1 (t;α) , x2 (t;α)) (s) = max {H (t,u) (s) |u ∈ [x1 (t;α) , x2 (t;α)]} .
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3.2. Generalized Hukuhara derivative
Let X (t) be fuzzy-valued functions in Eq. (3.3), then SLFDE is structured under two different cases.

Case 1: When X (t) is (i)-gH differentiable.

Case 2: When X (t) is (ii)-gH differentiable.

Illustrating Eq. (3.3) for each case, consecutively, we attain the following SLFDEs.

Case 1: Converting Eq. (3.3) into α-level sets of X (t) under (i)-gH differentiability, we attain two differ-
ential equations as

dX1 (t;α)
dt

= AX1 (t;α) + F1 (t;α) ,
dX2 (t;α)

dt
= AX2 (t;α) + F2 (t;α)}

with initial conditions
X1 (t0;α) = B1 (α) , X2 (t0;α) = B2 (α) ,

where X1 (t;α) = (x11 (t;α) , x21 (t;α) , . . . , xn1 (t;α)), X2 (t;α) = (x12 (t;α) , x22 (t;α) , . . . , xn2 (t;α)),
F1 (t;α) = (f11 (t;α) , f21 (t;α) , . . . , fn1 (t;α)), F2 (t;α) = (f12 (t;α) , f22 (t;α) , . . . , fn2 (t;α)) and A =[
aij
]
, aij > 0, is a n×n crisp matrix.

Case 2: Whereas, under (ii)-gH differentiability of X (t), Eq. (3.3) expands into the following differential
equations

dX2 (t;α)
dt

= AX1 (t;α) + F1 (t;α) ,
dX1 (t;α)

dt
= AX2 (t;α) + F2 (t;α)}

with initial conditions
X1 (t0;α) = B1 (α) , X2 (t0;α) = B2 (α) ,

where X1 (t;α), X2 (t;α), F1 (t;α), F2 (t;α) and A is same as defined in Case 1.

In this paper, we will only consider two cases

i. All x̃i (t), i = 1, 2, . . . ,n are (i)-gH differentiable and all aij > 0, i, j = 1, 2, . . . ,n;
ii. All x̃i (t), i = 1, 2, . . . ,n are (ii)-gH differentiable and all aij > 0, i, j = 1, 2, . . . ,n.

4. Defuzzification method

Defuzzification method is advantageous for a fuzzy problem for two important views, i.e. to obtain
the crisp solution and for the researchers who cannot analyze the fuzzy results of the phenomena. De-
fuzzification is the process of producing a quantifiable result in fuzzy logic, when given the fuzzy sets and
the corresponding degree of membership function. There are several defuzzification techniques among
them some of the common and useful aids are as follows.

4.1. Centre of area (COA) method
In this method defuzzification of a fuzzy number u is carried out by using the following formula

COA (u) =

∫
sup(u) xΩu (x)dx∫
sup(u)Ωu (x)dx

.

Therefore, to defuzzify a triangular fuzzy number Λ = (a1,a2,a3) we get

COA (Λ) =

∫a2
x=a1

x
x− a1

a2 − a1
dx+

∫a3
x=a2

x
a3 − x

a3 − a2
dx∫a2

x=a1

x− a1

a2 − a1
dx+

∫a3
x=a2

a3 − x

a3 − a2
dx

.

On simplifying we get

COA (Λ) =
(a1 + a2 + a3)

3
.
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4.2. Bisector of area (BOA) method
The BOA is the vertical line that divides the region into two sub regions of equal area, i.e.,

Area of the left-hand side of the bisector = Area of the right-hand side of the bisector,

which in case of a triangular fuzzy number Λ is attained as,

1
2
{(BOA (Λ) − a1) + (BOA (Λ) − a2)} · 1 =

1
2
{(a3 − BOA (Λ)) + (a2 − BOA (Λ))} · 1.

On solving we get

BOA (Λ) =
a1 + 2a2 + a3

4
.

4.3. Largest of maxima (LOM) method
The largest of maxima of a fuzzy number u, i.e., LOM (u) takes the largest among all x ∈ sup (u) with

maximum membership degree as the crisp value. For example, according to LOM, defuzzified value of a
triangular fuzzy number Λ is

LOM (Λ) = a2.

4.4. Smallest of maxima (SOM) method
The smallest of maxima of a fuzzy number u, i.e. SOM (u) takes the smallest among all x ∈ sup (u)

with maximum membership degree as the crisp value. So, for triangular fuzzy number Λ it is

SOM (Λ) = a2.

4.5. Mean of maxima (MOM) method
In this method, only active rules with highest degree of fulfillment are taken into account. The output

is
MOM (u) =

1
2
(LOM (u) + SOM (u)) .

Therefore, in case of triangular fuzzy number it is

MOM (Λ) = a2.

4.6. Regular weighted point (RWP) method
Let Λ = (a1,a2,a3) be a triangular fuzzy number with α-levels [Λ]α = [Λ1 (α) ,Λ2 (α)], then the regular

weighted point is given by

RWP (Λ) =

∫1
0
Λ1 (α) +Λ2 (α)

2
ξ (α)dα∫1

0 ξ (α)dα
,

where

ξ (α) =


1 − 2α, if α ∈

[
0,

1
2

]
,

2α− 1, if α ∈
[

1
2

, 1
]

.

Thus,

RWP (Λ) =

∫0.5
0
Λ1 (α) +Λ2 (α)

2
(1 − 2α)dα+

∫1
0.5
Λ1 (α) +Λ2 (α)

2
(2α− 1)dα∫0.5

0 (1 − 2α)dα+
∫1

0.5 (2α− 1)dα
. (4.1)

On manipulation, we have

RWP (Λ) =
a1 + 2a2 + a3

4
.
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4.7. Graded mean integration value (GMIV) method
Let Λ = (a1,a2,a3) be a triangular fuzzy number with α-levels [Λ]α = [Λ1 (α) ,Λ2 (α)], where

Λ1 (α) = min {ΩΛ (x) > α,∀α ∈ [0, 1]}
= min {x : x ∈ [(a1 + (a2 − a1)α) , (a3 − (a3 − a2)α)]} = a1 + (a2 − a1)α

and

Λ2 (α) = max {ΩΛ (x) > α,∀α ∈ [0, 1]}
= max {x : x ∈ [(a1 + (a2 − a1)α) , (a3 − (a3 − a2)α)]} = a3 − (a3 − a2)α,

then

GMIVλ (Λ) =

∫1
α=0 {(1 − λ)Λ1 (α) + λΛ2 (α)}αdα∫1

α=0 αdα
,

where λ > 0 is a parameter. After simplification, we obtain

GMIVλ=0.5 (Λ) =
a1 + 4a2 + a3

6
.

4.8. Centre of approximated interval (COAI) of a fuzzy number
Let [a,b] be approximated interval of a fuzzy number u and let α-level of u be [u]α = [u1 (α) ,u2 (α)].

Calculating the distance between fuzzy number u and interval [a,b], for w ∈ (0, 1],

DF (u, [a,b]) =

√∫w
α=0

(u1 (α) − a)
2 dα+

∫w
α=0

(u2 (α) − b)
2 dα.

Since [a,b] is the nearest interval of u, i.e., minDF (u, [a,b]), ∀a,b, therefore,
∂DF
∂a

= 0,
∂DF
∂a

= 0,

principal minors of Hessian matrix H =

∂
2DF
∂a2

∂2DF
∂a∂b

∂2DF
∂b∂a

∂2DF
∂b2

 are positive, i.e., ∆1 =
∂2DF
∂a2 > 0 and ∆2 =

∂
2DF
∂a2

∂2DF
∂a∂b

∂2DF
∂b∂a

∂2DF
∂b2

 > 0. Here,
∂DF
∂a

=
∫w
α=0 2 (A1 (α) − a) (−1)dα, which implies a =

1
w

∫w
α=0A1 (α)dα and

∂DF
∂b

=
∫w
α=0 2 (A2 (α) − b) (−1)dα implies b =

1
w

∫w
α=0A2 (α)dα. Moreover,

∂2DF
∂a2 = 2

∫w
α=0 dα = 2w,

∂2DF
∂a∂b

=
∂2DF
∂b∂a

= 0,
∂2DF
∂b2 = 2

∫w
α=0 dα = 2w. Therefore, the Hessian matrix becomes H =

[
2w 0
0 2w

]
with

∆1 = 2w > 0 and ∆2 =

∣∣∣∣2w 0
0 2w

∣∣∣∣ = 4 > 0. Hence

COAI (Λ) =
a+ b

2
=

1
w

∫w
α=0

u1 (α) + u2 (α)

2
dα.

Thus, for a triangular fuzzy number Λ = (a1,a2,a3), the defuzzified form, using COAI method is

COAI (Λ) =
a1 + 2a2 + a3

4
.

5. Arms race model

An interesting application that leads to a system of differential equations is the study of arms race.
When there is a dispute between two nations, a war arises between the nations so that the nations are then
said to be in conflict. In this case, each nation will try to acquire arms to defend itself against a possible
attack by the opponent nation in a conflict. This begins the race for accumulation of arms.
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Here, we will present a model for arms race, which is known as Richardson’s model. In this model
following assumptions are taken into account.

(i) The rate of increase of armament expenditure is proportional to the other countries expenditure.

(ii) The rate of decrease of armament expenditure is proportional to its own expenditure.

(iii) The rate of change of arms expenditure for a country has a constant component that measures the
level of antagonism of that country towards the other.

(iv) The effects of all these assumptions are additive.

Let x (t) and y (t) denote the expenditure incurred by two countries on armament at a time t, then
under the assumptions (i)-(iv), the system of differential equation is structured as

dx (t)

dt
= ay (t) − px (t) + r,

dy (t)

dt
= bx (t) − qy (t) + s, (5.1)

where, p and q represent the costs of the equipment, r and s are the leftovers of the countries. On the
other hand, a and b illustrate the first assumption. All the parameters are taken to be positive constants,
whereas r and s can take any value. Positive values arise if the countries have internal attitudes of distrust
of each other. In matrix notation Eq. (5.1) may be written as

Ẋ = AX+B, X (0) =
(
x (0)
y (0)

)
,

where

Ẋ (0) =
(
ẋ (t)

ẏ (t)

)
,X (t) =

(
x (t)

y (t)

)
,A =

(
−p a

b −q

)
,A =

(
r

s

)
.

The nature of the solutions of the system will depend upon the eigenvalues of the matrix A, i.e., on the
roots of the following characteristic equation∣∣∣∣−p− κ a

b −q− κ

∣∣∣∣ = κ2 + (p+ q) κ+ (pq− ab) = 0.

So, the roots are obtained as

−(p+ q)±
√

(p− q)2 + 4ab

2
.

As a and b are positive, so the eigenvalues are real and distinct. For p > 0 and q > 0, it follows that the
roots are negative if

−(p+ q)±
√
(p− q)2 + 4ab

2
< 0,

which results (pq− ab) > 0, while the roots will have opposite signs, if (pq− ab) < 0. The presence of
a positive eigenvalue is disturbing, since it will lead to an exponential function that becomes unbounded
as time increases and the situation that may result in a runaway arms race.

6. Applications

Consider the following ARM having positive parameters

dX (t)

dt
=

(
−3 2
3 −4

)
X (t) +

(
1
2

)
(6.1)

with fuzzy initial condition X (0) =
(
γ̃1
γ̃2

)
, where γ̃1 = γ̃2 = (70, 100, 130) and X (t) =

(
x (t)

y (t)

)
.
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6.1. Zadeh’s extension principle
Let the nonhomogeneous system (6.1) has a solution of the form

Xp (t) =

(
µ

η

)
. (6.2)

Substituting Eq. (6.2) in the system (6.1) we have(
0
0

)
=

(
−3 2
3 −4

)(
µ

η

)
+

(
1
2

)
,

which on simplifying gives

Xp (t) =

(
µ

η

)
=


4
3

3
2

 .

Thus, the general solution of Eq. (6.1) is attained as

X (t) =

(
2e−6t e−t

−3e−6t e−t

)(
c1
c2

)
+

(
µ

η

)
=


4
3

3
2

 .

Using the initial conditions and calculating values of c1 and c2 we get the solution

X (t) =


2e−6t + 3e−t

5
2
5
(
−e−6t + 3e−t

)
−3
5
(
e−6t − 3e−t

) 3e−6t + 2e−t

5


(
γ̃1
γ̃2

)
+


e−6t

15
−

7e−t

5
+

4
3

−
e−6t

10
−

7e−t

5
+

3
2

 . (6.3)

Since,
2e−6t + 3e−t

5
> 0,

2
5
(
−e−6t + 3e−t

)
> 0, and

−3
5
(
e−6t − 3e−t

)
> 0,

3e−6t + 2e−t

5
> 0, therefore,

Eq. (6.3) can be written in expanded form as

x (t) =
2e−6t + 3e−t

5
γ̃1 +

2
5
(
−e−6t + 3e−t

)
γ̃2 +

e−6t

15
−

7e−t

5
+

4
3

,

y (t) =
−3
5
(
e−6t − 3e−t

)
γ̃1 +

3e−6t + 2e−t

5
γ̃2 −

e−6t

10
−

7e−t

5
+

3
2

.

Substituting α-levels of γ̃1 and γ̃2 we get

x1 (t;α) = (70 + 30α) e−t +
1
15
e−6t −

7
5
e−t +

4
3

, x2 (t;α) = (130 − 30α) e−t +
1
15
e−6t −

7
5
e−t +

4
3

,

y1 (t;α) = (70 + 30α) e−t +
1
10
e−6t −

7
5
e−t +

3
2

, y2 (t;α) = (130 − 30α) e−t +
1
10
e−6t −

7
5
e−t +

3
2

.
(6.4)

6.1.1. Defuzzification of the solution
To defuzzify the obtained solutions (6.4) of system (6.1), the scheme is proceeded as follows. Calculat-

ing Eqs. (6.4) at a particular time, we get

x1

(
1
4

;α
)

= 54.7739424 + 23.36402349α, x2

(
1
4

;α
)

= 101.5019894 − 23.36402349α,
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and

y1

(
1
4

;α
)

= 54.9034207 + 23.36402349α, y2

(
1
4

;α
)

= 101.6314677 − 23.36402349α.

Taking the mean of the respective lower and upper functions, we attain

x1

(
1
4

;α
)
+ x2

(
1
4

;α
)

2
= 78.1379659 =M1,

y1

(
1
4

;α
)
+ y2

(
1
4

;α
)

2
= 78.2674442 =M2.

In addition, on using Eq. (4.1), defuzzified solution of Eq. (6.1) is also obtained as

RWP (x̃) =

∫1
0 M1ξ (α)dα∫1

0 ξ (α)dα
= 78.1379659 = GMIV0.5 (x̃) =M1,

RWP (ỹ) =

∫1
0 M2ξ (α)dα∫1

0 ξ (α)dα
= 78.2674442 = GMIV0.5 (ỹ) =M2.

Hence, the defuzzified solutions of system (6.1) are x = 78.138 and y = 78.267.

6.2. Generalized H-derivative approach
For the cases of gH-differentiability, let x (t) and y (t) in system (6.1) be fuzzy-valued functions, then

the governing problem will undergo the following cases.

6.2.1. When x (t) and y (t) are (i)-gH differentiable
In this case, system (6.1) can be expressed in its α-level sets as

ẋ1 (t;α) = 0x1 (t;α) − 3x2 (t;α) + 2y1 (t;α) + 0y2 (t;α) + 1,
ẋ2 (t;α) = −3x1 (t;α) + 0x2 (t;α) + 0y1 (t;α) + 2y2 (t;α) + 1,
ẏ1 (t;α) = −3x1 (t;α) + 0x2 (t;α) + 0y1 (t;α) − 4y2 (t;α) + 2,
ẏ2 (t;α) = 0x1 (t;α) + 3x2 (t;α) − 4y1 (t;α) + 0y2 (t;α) + 2,

with fuzzy initial conditions 
x1 (0;α)
x2 (0;α)
y1 (0;α)
y2 (0;α)

 =


70 + 30α

130 − 30α
70 + 30α

130 − 30α

 . (6.5)

Solving the above system, we get the fuzzy solutions as

x1 (t;α) = −6 (1 −α) et − 24 (1 −α) e6t +
493
5
e−t +

1
15
e−6t +

4
3

,

x2 (t;α) = 6 (1 −α) et + 24 (1 −α) e6t +
493

5
e−t +

1
15
e−6t +

4
3

,

y1 (t;α) = 6 (1 −α) et − 36 (1 −α) e6t +
493

5
e−t −

1
10
e−6t +

3
2

,

y2 (t;α) = −6 (1 −α) et + 36 (1 −α) e6t +
493
5
e−t −

1
10
e−6t +

3
2

.

(6.6)

Calculating the crisp values of Eqs. (6.6) at α = 0, 1 and t =
1
4

we get

x1

(
1
4

; 0
)

= −37.127, x2

(
1
4

; 0
)

= 193.403, x1

(
1
4

; 1
)

= x2

(
1
4

; 1
)

= 78.138.



S. P. Mondal, et al., J. Math. Computer Sci., 18 (2018), 192–205 202

Hence
x = (−37.127, 78.138, 193.403) . (6.7)

Similarly

y1

(
1
4

; 0
)

= −75.369, y2

(
1
4

; 0
)

= 231.904, y1

(
1
4

; 1
)

= y2

(
1
4

; 1
)

= 78.267.

Therefore
y = (−75.369, 78.267, 231.904) . (6.8)

The defuzzified solutions of Eqs. (6.6) obtained by using Eqs. (6.7)-(6.8) and the techniques defined in
Section 4 are x = 78.138 and y = 78.267.

6.2.2. When x (t) is (i)-gH differentiable and y (t) is (ii)-gH differentiable
Converting Eq. (6.1) into α-level sets under this case, we get

ẋ1 (t;α) = 0x1 (t;α) − 3x2 (t;α) + 0y1 (t;α) + 2y2 (t;α) + 1,
ẋ2 (t;α) = −3x1 (t;α) + 0x2 (t;α) + 2y1 (t;α) + 0y2 (t;α) + 1,
ẏ1 (t;α) = −3x1 (t;α) + 0x2 (t;α) − 4y1 (t;α) + 0y2 (t;α) + 2,
ẏ2 (t;α) = 0x1 (t;α) + 3x2 (t;α) + 0y1 (t;α) − 4y2 (t;α) + 2,

with the initial conditions as defined in Eq. (6.5). The solution is attained as

x1 (t;α) = −6 (1 −α) e−3t − 24 (1 −α) e2t +
493
5
e−t +

1
15
e−6t +

4
3

,

x2 (t;α) = 6 (1 −α) e−3t + 24 (1 −α) e2t +
493

5
e−t +

1
15
e−6t +

4
3

,

y1 (t;α) = −18 (1 −α) e−3t − 12 (1 −α) e2t +
493

5
e−t −

1
10
e−6t +

3
2

,

y2 (t;α) = 18 (1 −α) e−3t + 12 (1 −α) e2t +
493

5
e−t −

1
10
e−6t +

3
2

.

(6.9)

Calculating the crisp values of Eqs. (6.9) at α = 0, 1 and t =
1
4

we get

x1

(
1
4

; 0
)

= 35.734, x2

(
1
4

; 0
)

= 120.541, x1

(
1
4

; 1
)

= x2

(
1
4

; 1
)

= 78.138,

y1

(
1
4

; 0
)

= 49.980, y2

(
1
4

; 0
)

= 106.555, y1

(
1
4

; 1
)

= y2

(
1
4

; 1
)

= 78.267.

So,
x = (35.734, 78.138, 120.541) ,y = (49.980, 78.267, 106.555) .

Its defuzzified solutions, using the aforementioned techniques in Section 4, are x = 78.138 and y = 78.267.

6.2.3. When x (t) is (ii)-gH differentiable and y (t) is (i)-gH differentiable
Expressing Eq. (6.1) in its α-level sets under this case we get

ẋ1 (t;α) = −3x1 (t;α) + 0x2 (t;α) + 2y1 (t;α) + 0y2 (t;α) + 1,
ẋ2 (t;α) = 0x1 (t;α) − 3x2 (t;α) + 2y1 (t;α) + 0y2 (t;α) + 1,
ẏ1 (t;α) = 0x1 (t;α) + 3x2 (t;α) + 0y1 (t;α) − 4y2 (t;α) + 2,
ẏ2 (t;α) = 3x1 (t;α) + 0x2 (t;α) − 4y1 (t;α) + 0y2 (t;α) + 2,
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with the initial conditions defined in Eq. (6.5). After some manipulation, we get the solutions as

x1 (t;α) = −6 (1 −α) e3t − 24 (1 −α) e−2t +
493
5
e−t +

1
15
e−6t +

4
3

,

x2 (t;α) = 6 (1 −α) e3t + 24 (1 −α) e−2t +
493

5
e−t +

1
15
e−6t +

4
3

,

y1 (t;α) = −18 (1 −α) e3t − 12 (1 −α) e−2t +
493

5
e−t −

1
10
e−6t +

3
2

,

y2 (t;α) = 18 (1 −α) e3t + 12 (1 −α) e−2t +
493

5
e−t −

1
10
e−6t +

3
2

.

(6.10)

Calculating the crisp values of Eqs. (6.10) at α = 0, 1 and t =
1
4

we get

x1

(
1
4

; 0
)

= 50.879, x2

(
1
4

; 0
)

= 105.397, x1

(
1
4

; 1
)

= x2

(
1
4

; 1
)

= 78.138,

y1

(
1
4

; 0
)

= 32.883, y2

(
1
4

; 0
)

= 123.652, y1

(
1
4

; 1
)

= y2

(
1
4

; 1
)

= 78.267.

Thus
x = (50.879, 78.138, 105.397) ,y = (32.883, 78.267, 123.652) . (6.11)

The defuzzified solutions of Eqs. (6.10) obtained by using Eq. (6.11) and the techniques, defined in Section
4, are x = 78.138 and y = 78.267.

6.2.4. When x (t) and y (t) are (ii)-gH differentiable
In this case, system (6.1) can be expressed in its α-level sets as

ẋ1 (t;α) = −3x1 (t;α) + 0x2 (t;α) + 0y1 (t;α) + 2y2 (t;α) ,
ẋ2 (t;α) = 0x1 (t;α) − 32 (t;α) + 2y1 (t;α) + 0y2 (t;α) ,
ẏ1 (t;α) = 0x1 (t;α) + 3x2 (t;α) − 4y1 (t;α) + 0y2 (t;α) ,
ẏ2 (t;α) = 3x1 (t;α) + 0x2 (t;α) + 0y1 (t;α) − 4y2 (t;α) ,

with the initial conditions defined in Eq. (6.5). After some manipulation, we get the solution as

x1 (t;α) =
(

463
5

+ 6α
)
e−t −

(
359
15

− 24α
)
e−6t +

4
3

,

x2 (t;α) =
(

523
5

− 6α
)
e−t +

(
361
15

− 24α
)
e−6t +

4
3

,

y1 (t;α) =
(

523
5

− 6α
)
e−t +

(
361
15

− 36α
)
e−6t +

3
2

,

y2 (t;α) =
(

463
5

+ 6α
)
e−t +

(
359
15

− 36α
)
e−6t +

3
2

.

(6.12)

Calculating the crisp values of Eqs. (6.12) at α = 0, 1 and t =
1
4

we get

x1

(
1
4

; 0
)

= 68.11, x2

(
1
4

; 0
)

= 88.166, y1

(
1
4

; 0
)

= 74.908, y2

(
1
4

; 0
)

= 81.627,

x1

(
1
4

; 1
)

= x2

(
1
4

; 1
)

= 78.138, y1

(
1
4

; 1
)

= y2

(
1
4

; 1
)

= 78.267.

So,
x = (68.11, 78.138, 88.166) ,y = (74.908, 78.267, 81.627) . (6.13)

Hence, defuzzified solutions of Eqs. (6.12) obtained by using Eq. (6.13) and the aforementioned techniques
in Section 4, are x = 78.138 and y = 78.267.
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7. Conclusion

In this paper, system of fuzzy differential equations was taken into account to construct and estimate
uncertain parameters of an arms race model, which is considered to be an important area of research
in international military planning. Two different approaches, namely, Zadeh’s extension principle and
generalized Hukuhara derivative concept, were applied to elucidate the fuzzy solutions of the governing
model. We also discussed different defuzzification methods to defuzzify the fuzzy solutions and attain
its crisp solutions. The analytical solutions acquired in fuzzy sense, are beneficial to locate all the expen-
ditures that is suitable for the countries to incur on armament at any time period with a fixed equipment
costs and leftover. The likelihoods of expenditures on armament are achieved in the form of lower and
upper levels of closed intervals for each time period. While the defuzzified solution shows exactly one
choice of expenditure for each country at a certain time. Comprehensively, the whole deliberation reaches
its conclusion with the following remarks.

• Demonstrating ARM with fuzzy numbers enabled to meet the imprecise parameters as well, which
is approvingly advantageous for the military planners to analyze the armament expenditures in a
more precise manner.

• Zadeh’s extension principle and gH-derivative approach, having significant place in fuzzy calculus,
efficiently made it possible to obtain the fuzzy solutions of the governing model in both the cases,
structured in crisp form or in fuzzy sense, accordingly.

• Most of the time in real-world applications, results are necessitated as single terms but with the con-
sideration of all uncertainties. Defuzzification techniques are surely very helpful for any researcher
to have a specific result after defuzzifying the fuzzy solutions.

Hence, this endeavor provides an aid to interpret the SFDEs in two ways, i.e. in crisp and in fuzzy
sense. In future, we seek to apply these concepts to different types of differential equations in fuzzy
environments.
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