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Abstract

In this work, using CLR property, tripled coincidence and common fixed point theorems for hybrid pair of mappings are
studied. As an application, existence of solution to the system of integral equation is also discussed.
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1. Introduction and preliminaries

Alber and Gurre [2] presented weak contraction by generalizing the concept of contraction and showed
the presence of fixed points for a self-map in Hilbert space. In [18], Rhoades proved that the result is still
true for ¢-weak contraction in metric space. Dutta and Choudhury [9] investigated fixed point results by
using (, ¢) weak contraction. In [22], Zhang and Song proved fixed point theorem for generalized ¢-
weak contraction for two self-maps. Doric [8] generalized the result of Zhang and Song for the presence
of common fixed point with (1, ¢) weak contraction.

Bhaskar and Lakshmikantham [10] derived some coupled fixed point results using mixed monotone
property. Furthermore, they applied their results on a first order differential equation with periodic
boundary conditions [11]. Lakshmikanthem and Ciri¢ [13] generalized the concept of mixed monotone
mapping and established a coupled fixed point theorem for nonlinear contractions in partially ordered
metric spaces.

Berinde and Borcut [5] introduced the concept of tripled fixed point for single-valued mappings in
partially ordered metric spaces. Rao et al. [15] obtained a unique common triple fixed point theorem for
hybrid pair of mappings in metric spaces. Aydi and Abbas [4] introduced the concept of w-compatiblity
for single-valued tripled hybrid mappings.
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Deshpande et al. [7] introduced the concept of w-compatibility and weakly commutativity for hybrid
pair of mappings, F: Ax AxA — 2% and g : A — A and established a common tripled fixed point
theorem with generalized nonlinear contraction. In [6] the authors introduced the concept of E.A property
and occasionally w-compatibility for hybrid pair F: A x A x A — 2% and g : A — A. Khan and Sumitra
[12, 17] defined E.A and CLR property for coupled mapping. Rao et al. [16] defined CLRg property for
multi-valued coupled maps in fuzzy metric spaces. For detail see ([3, 20]).

In the present manuscript, by using CLR property, some common hybrid tripled fixed point results
for (P, ¢) weak contraction in the setting of metric space are established. Throughout the paper R¥,
IN and Ny stand for the set of all non-negative real numbers, the set of positive integers and the set of
non-negative, integers respectively.

Definition 1.1. Suppose A is nonempty set and let d : A x A — R be a function satisfying the conditions:

1. d(&,¢) =0 implies that & =, forall £, € A;
2. d(&,0) >0, forall £ £ (8,0 €A

3. d(¢,0) =d((¢, &), where &, € A

4. d(§,0) <d(&,2)+d(¢z), forall §,(,Z € A.

Then d is a metric on A and the pair (A, d) is called metric space.

Definition 1.2 ([19]). Let A be a nonempty set and F: A x A x A — A be a given mapping. An element
(x,y,z) € Ax A x Ais called a tripled fixed point of the mapping F if F(x,y,z) = x, F(y,z,x) =y and
Flz,x,y) =

We denote the set of tripled coincidence points of mappings F and g by C(F, g). Note that if (x,y,z) €
C(F, g), then (y,z,x) and (z,x,y) are also in C(F, g).

Definition 1.3 ([7]). Let F: A x A x A — 22 be a multi-valued mapping and g be a self-map on A. The
hybrid pair (F, g) is called w-compatible if g(F(x,y,z)) € F(gx, gy, gz) whenever (x,y,z) € C(F, g).

Definition 1.4 ([7]). Let F : A x A x A — 22 be a multi-valued mapping and g be a self-map on A.
The mapping g is called F-weakly commuting at some point (x,y,z) € A3, if g?x € F(gx, gy, gz), g*y €
F(gy, 9z, 9x) and g’z € F(gz, gx, gy).

Definition 1.5 ([7]). Let A be a nonempty set, F: A x A x A — 22 (a collection of all nonempty subsets of
A) and g be a self-map on A. An element (x,y,z) € A x A x Ais called

(1) a tripled fixed point of Fif x € F(x,y,z), y € F(y,z,x) and z € F(z,x,y);

(2) a tripled coincidence point of hybrid pair {F, g} if g(x) € F(x,y,z),9(y) € Fly,z,x) and g(z) €
F(z,x,y);

(3) a common tripled fixed point of hybrid pair F, g if x = g(x) € F(x,y,z), y = g(y) € F(y,z,x) and
z=4(z) € F(z,x,y).

Definition 1.6 ([21]). Maps f, g : A — A are said to satisfy the common limit in the range of f with respect
to g (shortly, the (CLR¢)-property with respect to g) if there exists a sequence &, in A such that for some
ueA, limf&, = lim g&,, = fu.

n—o0 n—o0

The following definition can be found in [1].

Definition 1.7. Mappings f: A — A, S: A — CB(A) on metric space (A, d) are said to satisfy the common
limit in the range of f with respect to S (shortly, the (CLR¢)-property with respect to S) if there exists a
sequence &y, in A and Qg € CB(A) such that for some u € A, li_r}n fén=fue Q= li_r)n S&,, = fu.

n—oo n—oo
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Definition 1.8. Mappings f,g : A - A and S,T : A — CB(A) on metric space (A, d) are to satisfy

the common limit in the range of f with respect to S (shortly, the (CLR¢)-property with respect to S) if

there exist sequences &;,, and ¢, in A and Q4,Q; € CB(A) such that for some u € A, lgr1 S&n = Qy,
n—oo

Iim T¢,, = Q) and hm fE,n = hm gCn =fue Q;NQ,.

n—oo

Definition 1.9. Mappings f : A -+ Aand S : A x A — CB(A) on metric space (A, d) are said to have
E.A property if there exist sequences &, and ¢, in A and Q1,Q, € CB(A) such that for some u € A,
Iim fé,, =ue Q1 = lim S(&,,, (), im 0, =v e Qp = lim S(Cn, &n).
n—oo n—oo n—oo n—oo
Definition 1.10. Mappings f : A - Aand S : A x A — CB(A) on metric space (A, d) are to satisfy the
common limit in the range of f with respect to S (shortly, the (CLR¢)-property with respect to S) if there
exist sequences &y, and (n in A and Q4, Q; € CB(A) such that for some u € A

Iim ¢, =u =" € Q1 = lim S(&n, Cn),

n—oo

n—oo

lim fl, =v=~fl € Qy = hm S(Cn, En).

n—o00

In the sequel we also need the following;:
Assume that d is a metric on A, define the function H : CB(A) x CB(A) — R™ for 1, Q, € CB(A) by

H(Q1, Q) = max{ sup d(o, Qy), sup d((,O4)},

ce0), e,
where
d(&, Q) =inf{d(E, Q) : ¢ € Qq},
6(Q1/Q2) = Sup{d(G/ C) 10 € Ql/ C S QZ}/
and

D(Q1,Q2) =inf{d(0, () : 0 € O, € Qr}.

The following can be deduced from the definition of &

8(Q1,Q2) = 8(Q2, (),

(Q1,0Q3) < 8(Q1,Q2) +5(Q2,Q3),
8(Q1,Q) =04 Q1 = Q) = {0},
8(Q1, Q1)

Lemma 1.11 ([14]). Let (A, d) be a metric space. For any 1, Q5,3 € CB(A) and &, C € A, the following hold:

1. d(E0Q2) <d(E,Q), Ve

8(Q1, Q2) < H(Q4, Qy);

d(&,Qr) < H(Qq,Q2), VE € Qy;

0,01) =0;

04, Q2) = H(Qy, Q1);

Q1,Q3) < H(Q1, Q2) + H(Q2, O3);
Q) < d(&, Q) +d( Q).

Lemma 1.12 ([14]). Suppose (A, d) is metric space. Furthermore, let 1,y € CB(A), then for every h > 1 and
for each o € Q) there exists ((o) € Qy such that d(o, () < hH(Qq, Q).

NGl LN
IIII

(
(
(
(&

In [14] it is shown that the above lemma is also true for h > 1.

Lemma 1.13. Assume a metric space (A, d). Let Q1,Qy € CB(A), then for every h > 1 and for each o € Q; there
exists ((o) € Qy such that d(o, () < hH(Q1, Q).
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Definition 1.14. Let f : A - A, F: Ax Ax A — Cl(A) on metric space (A,d). Mappings (F,f) have
(CLR¢)-property, if there exist sequences Xn, Yn, zn in A for some z;,25,z3 € A and Cy, Dy, E; € CB(A)

such that

lim F(xn,yn,zn) = Cq, lim fx,, = fz; € Cq,
n—oo n—oo

lim F(yn,Xn,zn) = D1, lim fy, = fz; € Dy,
n—,oo

n—oo

lim F(zn,yn,xn) = E1, lim fz, = fz3 € E4.
n—oo n—oo

Definition 1.15. Let f,g: A — A, F,G : A x A x A — Cl(A) on metric space (A, d). Mappings (F,f) and
(G, g) have (CLR¢) and (CLRy)-property, respectively, if there exist sequences xn, Yn, zn and un vyp,wy in
A for some z1,25,2z3 € A and Cq,Cy, D1, D5, Eq, E; € CB(A) such that

lgrl F(Xn/yn/ ZTI) = Cl/ llm G(unzvnrwn) - CZ/
n o0

lim fx, = fz; € Cq, hm 1 gun = 921 € Cyp,
n—,oo

lim F(ynzxnrzn) =Dy, hm G(Vnrunzwn) = Do,
n—oo

lim fy,, = fz, € Dy, hm 1 gvn = 922 € Dy,

n—oo

llm F(anynz XTI) = El/ llm G(Wnrvn/un) = EZ/

hm fz, = fzz € Ey, hm 1 gWn = 923 € E,.
n—oo

2. Main results

In our main results we use the following two classes.

v P :RT — R* is continuous and non-decreasing function such that
| ¥(t) =0if and only if T = 0. !

D — ¢ : Rt — RT is a lower semicontinuous and non-decreasing
| function such that ¢(t) =0 if and only if T =

Theorem 2.1. Let f,g: A = A, F,G : A x Ax A — CUA) on metric space (A, d). Furthermore assume that (F, f)
have CLR¢ and (G, g) have CLRg-property, also the following condition holds:

Y(HP (F(x,y,2), G(w,v,w))) < $(B(x,y,z,1,v,w)) — $(O(x,y,z,u,v, W), (2.1)

where
P(fx,gu),dP(fx, F(x,y,z
P(fy, gv), dP(fy, Fly, z,
dP(fz, gw), dP(fz, F(z, x,
dP (fx,gu)+dP (fx,F(x,y,z)
( )
( )

z)), d?(gu, G(u,v,w)),
x)), dP(gv, G(v,w,u)),
y)), d?P (gw G(w,u,v)),
O(x,y,z,14,v,w) = max +dP (gu,G (w,v,w))

) (gu
)+dP(gv,G(v,wu))
)+

7

2
dP(fy,gv)+dP(fy,F(y,z,
2

4
dP (fz,gw)+dP (fz,F(z,x,y da? (gw,G(w,a,v))

X
2

Here, b €¢ ¥, b € ®and p > 1. Then

(A1) (f, F) have tripled coincidence point.

(A2) (g, G) have tripled coincidence point.

(Az) If f is F-weakly commuting for (z1,z2,2z3) € C(F,f) and 221 = fzq, f22y = fzp, 223 = fz3, then F and f
have a common tripled fixed point.

(A4) If g is G-weakly commuting for (w1, wa, ws) € C(G, g) and g>wi = gwy, gwy = gws, g?wsz = gws, then
G and g have a common tripled fixed point.
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(As) F, G, fand g have common tripled fixed point if (A3) and (A4) hold.

Proof. Since (F, f) have (CLR¢)-property, there exist sequences xn, Yn, zn and Cy, Dy, E; € CB(A) such that
lim F(xn,Yn,zn) = Cy, lim fx,, = fz; € Cq,
n—,oo n—,oo

lim F(yn,Xxn,zn) =Dy, lim fy, = fz; € Dy,
n—oo n—,oo

lim F(zn,yn,xn) =E1, lim fz, =fz3 € k4,
n—oo n—oo
for some z1,25,235 € A.
Similarly, since (G, g) have (CLRg)-property, there exist sequences un, v, wn and Cp, Dy, E» € CB(A)
such that

lim G(un,vn, wn) =Cy, lim gun, =gz € Cp,
n—oo n—o0

lim G(vn, un, wn) =Dy, lim gv, = gzp € Dy,
n—oo n—oo

lim G(wp, v, un) =Ep, lim gw, = gz3 € Ey,
n—o00 n—oo

for some z1,2,,2z3 € A.
Putting x =Xn, Yy =Yn, z=2zn and u = uy, v =vy, W = Wy in inequality (2.1) we get

¢(HP(F(Xn/Un/ Zn), G(U—nrvnlwn))) < Ur’(@(xnzyn/ Zn/unlvnzwn)) - ¢(®(Xn/9n/ Zn, unrvnlwn))/ (2-2)

4

2
dP (fyn,gvn)+dP (fy,F(Yn,zn,Xn))+dP (gvn,G (Vn,Wn,in))

7

2
dr on/QWn)+dp (fzn,F (anxn/yn ))+dP (gwn/G (Wn,Un,vn))
5 .

where
dp (fXTL/ guTL)/ dp (fxn/ F(Xﬂ./ yn/ ZTL))/ dp (guﬂ./ G (uTL/ Vnzwn))/
dp (fyn/ gvn)/ dp (fyn/ F(Um Zn/ XTL) )/ dp (QVn; G (VTU WTL/ un))/
dp (fzn/ QWn)/ dp (fZ/ F(Zn/ Xn/ yﬂ) )/ dp (gwn/ G (WT‘L/ un/ Vn))/
O(Xn, Yn,Zn, Un, Vn, Wn) = Max {  dP (fxn,gun)+dP (F,F(xnyn,zn))+dP (gitn, G (Un,vi,wn))
(
(

Applying limit to (2.2) we have

lim ll)(Hp(F(Xn/yn/Zn)/ G(unzvnzwn))) < lim w(@(xn/yn/ Zn/un/Vnng))
n—oo n—oo

— lim (I)(@(Xn_, Yn,Zn, un/Vann))/
n—oo
where

lim O(Xn, Yn, Zn, Un,Vn, Wn) = max { dP(fzy,gz1), dP (fzp, 92), dP (fz3, 9z3) },
n—oo

which implies
dP(fz1, 9z1), dP(fz1, 9z1),
P(dP(fzq,9z1)) <Y (maX dP(fzp, gz2), ) —¢ (maX dP(fzp, gz2), ) : (2.3)
dP(fzs, gz3) dP(fzs, gz3)
By putting x =yn, Yy =2zn, z=Xn and u =vy, v =wy, W = u, in inequality (2.1) we get
1|)(Hp (F(anyn/ Zn)/ G(unfvn/ Wn))) < lb(@(xn/yn/ Zn,Un,Vn, Wn)) - dJ(@(Xn,ym Zn,Un,Vn, Wn)) (24)
By applying limit to (2.4) we conclude that

dr (lel gll)/ dr (lel 9Z1),
P(dP(fzp, 922)) <V (max dP(fzp, gz2), ) —¢ (max dP(fzp, 9z2), ) : (2.5)
dP(fz3, gz3) dP(fz3, gz3))
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Next, putting x = zn, Y =Yn, 2 =xn and u =wy, v =v,, W = U, in inequality (2.1) we get
U (Hp (F(Zn/ Yn, Xn)/ G (an Vn,Un ) ) <Y (Q(Zn/ Y, Xn, Wn, Vn, Un ) ) —¢ (G(Zn/ Y, Xn, Wn,Vn, un) ) . (26)
Again, applying limit to (2.6), by simplification one can write
dp(lel 921); dp (lel gzl)l
P(dP(fzs, gz3)) < (max dP(fz, 9z2), ) — ¢ (max dP(fz, 9z2), ) (2.7)
dP (fz3, gz3) dP(fz3, gz3)
Combining (2.3), (2.5) and (2.7) we have
dP(fzy, gz1), dP(fzy, gz1), dP(fzy, gz1),
11) (maX dp (fZ’ZI 922)/ ) < 11) (max dp (fZZI 922)/ ) - Cb <maX dp (fZZI 922)/ ) .
dP (fz3, gz3) dP(fz3, gz3) dP (fz3, gz3)
By using the definition of ¢ and 1 we conclude that
max{dP (fz1, gz1), dP (fzp, 9z2), dP (fz3, gz3)} = 0,

which implies that
dP(fz1, gz1) = dP (fz, gzo) = dP(fz3, gz3) = 0.

Thus
fz1 = 9z1, fzp =9zp, fz3 = gzs. (2.8)

By putting x =z, y =2, z=2z3 and u = un, v =v,, W = wy in inequality (2.1) we get
'LI)(HP (F(le 22, Z3)r G (uﬂ/ vnrwn))) g 11)(@(21, 22,23, Un,Vn, Wﬂ)) - (I)(G(er 22,23, Un, Vn, WTI) )r (29)
where,

dp (lel gun)/ dp (lel F(le 22, Z3))I dP (gunz G(unlvnlwn))l
dp (fZZ/ gvﬂ.)/ dp (fZZI F(ZZ/ Z3/ Z])), dp (gvn/ G(VTL/ Wn/ u‘r‘L))/
dp((fz,?” QWn)z dP (fZ’/ F(Z3/ Z1, ZZ))/ dP (QWnl G(Wn/ un/Vn))/
dar
(
(

6(21/ 22,23, Un, vnzwn) = max fzy,gun)+dP (fx,F(21,22,23)) +dP (gun,G (Un,Vn,Wn))

7

2
dP (fzo,gvn)+dP (fy,F(22,23,21))+dP (gvn,G (Vi,Wn,un))

dP (fz3, gwn )+ dP (fz3,F(z5,21,22))+ AP (gW, G (W ttn Ve )
2
Applying limit to (2.9) and using (2.8) we have
dP(fz1, F(z1, 22, 23)),
P(dP (fz1, Fz1,22,23))) < <max dP (fzp, Flzo, 23, 21)), )
dP (fz3, F(z3,21, 22))

dP (fz1, F(z1, 22, 23)),
- q) <max { dp(fZZIF(ZZ/ Z3, Zl))l } )
P

dP(fz3, F(z3,21, 22))

(2.10)

By putting x = zp, y =23, z = z; and u = up, v = vy, W = Wy, in inequality (2.1), by following similar
step we get

dP(fz1, F(z1, 22, 23)),
w(dp (sz,F(ZQ, z3, Zl))) < 11’ (max { dp(fZZ/F(ZZ/ z3, Z’l))l } )
)

dP(fz3, F(z3,21, 22)

(2.11)
dP (fz1, F(z1, 22, 23)),
- (b ((max { dp(fZZ,F(Zz, Z3, Z’l))l } >

dP(fz3, F(z3,21, 22))
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By placing x = z3, y =21, z =2 and u = Uy, v =V, W =Wy in inequality (2.1), by following same line
we have

(lel (le Z2, Z3))l
w(dp (fZ3,F(Z3, Z1, ZZ))) < d) <maX (fZZI (Z21Z31Z1))/ )
dP (fzs, F(z3,21,22))

dp(lelF(er Zy, Z3))I
—¢ <max dP (fzp, F(z2,23,21)), > -
P )

dP(fz3, F(z3,21,22))

(2.12)

Combining (2.10), (2.11) and (2.12) we have

(dp(fZLF(Z],ZZ,ZG)), (ler (21122123))1
P | max< dP(fzp, F(zo, 23, 21)), <P | max < dP(fzy, F(zo, 23, 21)),
dP (fzs, F(z3,21,22)) dP(fzs, F(z3,21,22))

[dp (lel F(Z’ll 22, Z3))/
- Cb (max dp (fZZI F(ZZI Z3, Zl))/ )/
dP (fzs3, F(z3, 21, 22)))

using the definition of 1 and ¢ one can get

dp(lelF(21/Z2/Z3))/
max ¢ dP(fzy,F(z2,23,21)), p =0,
dP(fz3, F(z3,21, 22))

which implies dP(fzq, F(z1,22,23)) = 0, dP(fzp, F(2z2,23,21)) = 0 and dP(fz3, F(z3,21,22)) = 0. Thus fz; €
F(z1,22,23), fz2 € F(z2,23,21) and fz3 € F(z3, 21, 22).
Similarly, by the same procedure one can obtain

gwi € G(wi, wp,wW3), gwa € G(wy, w3, wy), gwsz € G(ws, Wi, wa).

Since, f is F-weakly commuting so 221 € F(fzq,fzo,f23), 220 € F(fzp, fz3,fz1) and f2z3 € F(fzzfzy, fz).
Since, f2z; = fzy, f2zp = fzp and f?z3 = fz3, thus (fz,fzy, fz3) is a common fixed point. A similar
argument proves (A4). Then using (2.8) (As) holds immediately. O

By taking f(x) = g(x) = x in Theorem 2.1 we deduce the following corollary.

Corollary 2.2. Let F,G : A x A x A = CL(A) on metric space (A, d), and satisfying the following
PY(HP(F(x,y,2), G(u,v,w))) < V(O(x,y,z,u,v,w)) — d(O(x,y,z,u,v,W)),

where

), dP(u, G(u,v,w)),
), dP (v, G(v,w,u))
), dP

7
(w, G(w,u,v)),
@(X/UIZ/U/VIW) = ImaXx dp X,

2
Here,\p € ¥, ¢ € ©® and p > 1. Then F and G have common tripled fixed point.

Similarly, we can prove the following result.
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Theorem 2.3. Let f: A = A, F: A x A x A — CU(A) on metric space (A, d). Furthermore assume that (F, f) have
CLR¢-property and satisfy the following

w(Hp(F(XIUIZ)IF(uIVIW)) < ll)(@(xlylz’lulvlw)) - (b(@((xlylzlulvlw))/

where
P(fx,fu),dP(fx, F

(x,y,
fy, fv), dP(fy, F(y, z,x)), dP (fv, F(v,w,u))

( y,z)), dP (fu, F(u, v, w)),

( d 7
dP (fz, fw), dP (fz, F(z,x,y)), dP (fw, F(w, u,v)),

P

(

(

@(x,y,z,u,v,w) = max fx,fu)+dP(fx, F(xy z fu,F(uw,v,w))

4

7

)P (
dP (fy,fv)+dP (fy,F(y, zx)) dP (fv,F(v,w,u))
))+adP (fw,F(w,u,v))

dP (fz,fw)+dP (fz, F(zxy
2

Here,\p € ¥, ¢ € © and p > 1. There exists a common fixed point of f and F if one of the following holds:

(A1) (F,f) are weakly compatible lim f"z; =u, lim "z, =v, lim f"zz =w, for (z1,22,23) € C(f, F) where f
. . n—oo n—,oo n—oo
is Continuous at u,v, w.

(Az) fis F weakly commuting f2zy = fz1, f2zp = fzp, 223 = fz3, for (z1,22,23) € C(f, F).

(Az) lim f"u =z, lim f"u =2z, lim f™w = z3, for (21,29, 2z3) € C(f, F) where f is Continuous at z, z, and
1£.3—>00 n—oo n—oo

(A4) f(C(f,F)) is singleton set of C(f, F).

Proof. Following the line of the proof of Theorem 2.1, we conclude that (A;) holds. Further, we have
to check that (A1), (Az) and (A4) hold respectively. Suppose condition (A;) holds i.e., lgn 'z = u,

im fzy = v, hm f“Z3 = w. Since f is Continuous at u,v and w we have
n—oo

fu=u, fv=v, fw=w. (2.13)
As (F, f) are weakly compatible, therefore for n > 1

M2y € F(f" 1z, 12y, 7 123),
M2y € F(fVlzy, MV 1z, M 1z3), 5 . (2.14)
M2z € F(f"zg, 2y, 7 12).

Next,
w(Dp(fnz’llF(ulvlw)) < d)( p(F(fnilzllfnilzZI fnilZG)/F(u/VIW)))
SPY(OF™ 1zy, 1z, 25,1, v, W) (2.15)
d)(g(fnilzlffnilZZ/ leleB, ulvlw))l
where

dP (f™zy, fu), dP (fzq, F(f1zy, f 7 1zp, M 123)),

dP (fu, F(u,v,w)), dP (f"zy, fv),

dP (fMzp, F(f1zy, f 12y, £ 123)), AP (fv, F(V w,u)),
ot ana dP (fzs, fw), dP (fzq, F(f" " lzq, 12y, £ 1zg)),

O((f" "z1, I 2o, ™ Tz3,uw,v, W)) =max { dP(fw, F(w,u,v)),

dP (f'zq,fu),dP (fzy, F(F 1zy, £ 12y, £ 125)+dP (fu, F(u,v,w)))

(

(f™

7

2
dP (M2, fv),dP (fhzp, F(F " 1zp, fM 125, 1124 ) )+ dP (fv,F (v w,u))

2 7
23, fwW)+dP (fhz3, F(f* Lz, M 1z 1 125) )4+ dP (fw,F(w,u,v))
5 .

ar(f
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By taking limit in (2.15) and using (2.14) we get

dP (fu, F(u,v,w)),
P(DP (fu, Flu,v,w))) <Y (max dP(fv, F(v,w,u)), )
dP (fw, F(w,u,v))
dP (fu, F(u,v,w)),
—d)(max dP (fv, F(v,w,u)), )
dP (fw, F(w,u,v))

(2.16)

Similarly we have

dP (fu, F(u,v,w)),
Y(DP (fv, F(v,w,u))) <P <max dp(fv, F(v,w,u)), )
dP (fw, F(w,u,v))
dP (fu, F(u,v,w)),
—d)(max dP (fv, F(v,w,u)), ),
dP (fw, F(w,u,v))

(2.17)

and

dP (fu, F(u,v,w)),
P(DP (fw, F(w,u,v))) <V (max dP (fv, F(v,w,u)), >
dP (fw, F(lw,u,v))
dP (fu, F(u,v,w)),
—d)(max dP(fv,F(v,w,u)), >
dP (fw, F(w,u,v))

(2.18)

Combining (2.16), (2.17), (2.18) in last we get
DP(fu, F(w,v,w)) =0, DP(fv,F(v,u,w)) =0, DP(fw,Flw,v,w)) =0,

which implies fu € F(u,v,w), fv € F(v,u,w) and fw € F(w,v, w). Hence using (2.13) (u, v, w) is a common
fixed point of F and f.
Suppose (A3z) holds. Assume (z1,2,23) € C(f,F), then lim f"u = z;, lim f"u = 2z, lim f"w = z3.
n—oo n—oo n—oo
Since f is Continuous at z1,z, and z3, therefore

fz1 =21, fzp =2p, fz3=2z3. (2.19)

Since (z1,20,z3) € C(f,F), therefore fz; € F(z1,22,23), fzo € F(zp,21,23) and fz3 € F(z3,2;,21). Hence from
(2.19), (z1,22,23) is a common tripled fixed point of F and f.

Finally, let f(C(f, F)) = (z1, 22, 2z3) then {z1} = {fz1} = F(z1, 22, z3). Hence (z1, 22, z3) is tripled fixed point
of fand F. O

3. Applications to systems of integral equations

On ward, we develop sufficient conditions for the solutions to the following general nonlinear systems
of Fredholm integral equations of 2nd kind given by

o

(V) = b(1) +L Ku(fi(t), faa (), Faa(D)dt, te [, o],
- (3.1)

ci(t)—¢(t)+L Kal(fi (1), fion (1), fra(t)dt, te (G o), i=1,23.
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Let A = L[(, 0] be the set of all Lebesgue integrable functions on [(, 0. Define d : A x A — R* by
o
dn ) = | i)~ cixax.

Then (A, d) is a metric space on A. For the derivation of aforesaid condition, we give the following
theorem.

Theorem 3.1. Assume that the following assumptions holds:

(A1) ¢:RY — RT is continuous.
(Ay) There exist Kq,Kp : R — R which are continuous functions such that

IXi+1 —Yisal,
Ky (Xi41,Xi42,Xi+3) — K2 (Ui+1/yi+2/yi+3)‘ <max<{ [Xiy2 —Yigal, ¢,
IXi4+3 —Yit3l

fori=1,2,3.
Then, the systems of integral equations (3.1) has a common solution in L'[(, o).

Proof. Define F, G : L'[¢, 0] — L'[¢, o] by

o

Froftis (8) = d(1) + L Ka(fi(t), faa (1), Faa(0)dt, te [, o],

o

Ggi+1gi+zgi+3 (t) = d)(t) + J'C KZ(gl(t)l gi+1 (t)l gi+2(t))dt/ te [C/ G]/ i= 1/ 2/ 3.

Now, we have

d(FfiH fi+2fi+3’G 9i+19i+29i+3 )
o

- |Ffi+1,f1+2f1+3(t) - G91+19i+291+3(t)‘dx
C

c , o 3.2
=), (L i (Fi (), Fia (1), Fia(t) —algis (1), gira(t), gira(t))dt ) dx e
< (J max{[fi+1(t) — gi+1(t)], [fir2(t) — gira(t)], [fira(t) — 91+3(t)|}|dt> dx.

JC C

Now, there are three cases fori=1,2,3.
If i =1 again there are three cases.
Case 1. If

max{|f2(t) — ga(t)], [f3(t) — ga(t)], [fa(t) — ga(t)[} = [f2(t) — ga(t)],
then inequality (3.2) implies that

Case 2. If
max{[f2(t) — g2(t)], [f3(t) — g3 (t)l, [fa(t) — ga(t)[} = [f3(t) — ga(t)],
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then from inequality (3.2) we have

Case 3. If

o o
d(Ffzf3f4/ G9293g4) < J J’ |f3(t) - g3(t)|dt> dX

max{[f2(t) — g2(t)], [f3(t) — ga(t)], [f4(t) — ga(t)]} = [fa(t) — ga(t)],

then from inequality (3.2) we have

o
d(Ffzfsﬂu G929394) < J

Similar result can be held for other two cases for i = 2,3. By taking {() = (0 — {)n, $(n) =0, p =1 from
Corollary 2.2 the system of integral equations (3.1) has common solution in the form of (f, fo, fo). O
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